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Abstract

The expression of inhibitory immune checkpoint molecules such as PD-L1 is frequently observed 

in human cancers and can lead to the suppression of T cell-mediated immune responses. Here, we 

apply ECCITE-seq, a technology which combines pooled CRISPR screens with single-cell mRNA 

and surface protein measurements, to explore the molecular networks that regulate PD-L1 

expression. We also develop a computational framework, mixscape, that substantially improves the 

signal-to-noise ratio in single-cell perturbation screens by identifying and removing confounding 

sources of variation. Applying these tools, we identify and validate regulators of PD-L1, and 

leverage our multi-modal data to identify both transcriptional and post-transcriptional modes of 

regulation. Specifically, we discover that the kelch-like protein KEAP1 and the transcriptional 

activator NRF2, mediate levels of PD-L1 upregulation after IFNγ stimulation. Our results identify 

a novel mechanism for the regulation of immune checkpoints and present a powerful analytical 

framework for the analysis of multi-modal single-cell perturbation screens.

INTRODUCTION

Immune checkpoint molecules regulate the critical balance between activation and inhibition 

during immune responses. Under normal physiological conditions, inhibitory immune 

checkpoint molecules are essential to maintain self-tolerance and prevent autoimmunity 

[1,2], but their expression is often mis-regulated in human cancers in order to escape 
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immune surveillance [3,4]. For example, the inhibitory immune checkpoint CD274 (also 

known as PD-L1), which interacts with the PD-1 receptor on T cells to inhibit T-cell 

activation [5], is overexpressed in many cancers and is a prognostic factor for patient 

survival and response to immunotherapy [6]. There is therefore substantial interest not only 

in identifying therapeutic avenues to block these interactions, but also in understanding the 

molecular networks utilized by cancer cells to up-regulate molecules like PD-L1.

Previous efforts have established an initial set of molecular regulators that influence both 

mRNA and surface protein levels for PD-L1. Numerous studies have observed that exposure 

to interferon gamma (IFNγ) rapidly induces PD-L1 expression both in cancer cell lines and 

in the tumor microenvironment [7–10]. Core components of the IFNγ response therefore 

represent upstream regulators of PD-L1 expression, including the transcription factor IRF1 

[11], the JAK-STAT signal transduction pathway, and the IFNγ receptors themselves. 

Additional modulators of IFNγ signaling [12], PD-L1 promoter chromatin state [13], or 

response to UV-mediated stress [14] have also been identified. In addition, there has been 

particular recent interest in the characterization of putative post-transcriptional regulators of 

PD-L1 stability and degradation. For example, the Cullin 3-SPOP E3-ligase complex can 

directly ubiquitinate PD-L1 in a cell-cycle dependent manner, leading to its degradation 

[15]. In addition, a genome-wide CRISPR screen identified two previously uncharacterized 

regulators, CMTM6 and CMTM4, which stabilize PD-L1 surface expression by preventing 

lysosome-mediated degradation [16,17]. In each of these cases, perturbation of PD-L1 

regulators was shown to modulate the activity of anti-tumor T cells, highlighting the 

therapeutic interest in understanding the regulation of immune checkpoint molecules.

We recently introduced expanded CRISPR-compatible CITE-seq (ECCITE-seq), which 

simultaneously measures transcriptomes, surface protein levels, and perturbations at single-

cell resolution [18]. ECCITE-seq builds upon the experimental design of pooled CRISPR 

screens, where multiple perturbations are multiplexed together in a single experiment, but 

offers distinct advantages. First, the single-cell sequencing readout (i.e. Perturb-seq, CROP-

seq, CRISP-seq) [19–21], enables the measurement of detailed molecular phenotypes, 

instead of one phenotype (expression of a single protein or cell viability). Second, by 

simultaneously coupling measurements of mRNA, surface protein, and direct detection of 

guide RNAs (gRNAs) within the same cell [22], ECCITE-seq allows for multimodal 

characterization of each perturbation. We therefore reasoned that ECCITE-seq would enable 

us to simultaneously test and identify new regulators of immune checkpoint molecules, and 

in particular, to distinguish between transcriptional and post-transcriptional modes. 

Moreover, the rich and high-dimensional readouts readily facilitate network and pathway-

based analyses, which could go beyond the identification of individual genes and yield 

insights into their regulatory mechanism.

Here, we apply ECCITE-seq to simultaneously perturb and characterize putative regulators 

of PD-L1 in response to IFNγ stimulation. When analyzing our single-cell data, we 

identified confounding sources of heterogeneity, including the presence of cells that received 

a targeting gRNA but exhibited no perturbation effects, introducing substantial noise into 

downstream analyses. We developed and validated computational methods to control for 
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these factors, and substantially increased our statistical power to characterize multi-modal 

perturbations.

Leveraging these tools, we identify a set of genes whose perturbation affects PD-L1 
transcript levels, surface protein levels, or both, and characterize the underlying molecular 

pathways utilized by each regulator. In particular, we find that the kelch-like protein KEAP1 

and the transcriptional activator NFE2L2 (also known as NRF2), both of which are 

frequently mutated in human cancers [23], can modify PD-L1 levels. We link these findings 

to a novel regulatory mechanism for CUL3 and show that this protein acts as an indirect 

transcriptional activator of PD-L1 mRNA via stabilization of the NRF2 pathway. Taken 

together, our findings identify an important pathway for immune checkpoint regulation and 

present a powerful and broadly applicable analytical framework for analyzing ECCITE-seq 

data.

RESULTS

Human cancer cells routinely up-regulate immune checkpoint molecules, such as PD-L1, to 

escape immune surveillance. The blockade of these checkpoints can significantly enhance 

the efficacy of the anti-tumor immune response, particularly during immunotherapy [24]. 

We were therefore motivated to gain deeper understanding of the molecular pathways and 

regulators that affect inhibitory immune checkpoint expression, with a particular focus on 

PD-L1. Aiming to develop an experimental system to study multiple immune checkpoints 

simultaneously, we screened four cancer cell lines (THP-1, K562, KG-1 and U937, 

Supplementary Figures 1, 2) and tested their ability to up-regulate immune checkpoint 

molecules in response to cytokines by flow cytometry (Supplementary Note). We found that 

stimulating THP-1 cells with a combination of IFNγ, Decitabine (DAC), and transforming 

growth-factor beta 1 (TGFβ1) resulted in robust induction of three immune checkpoints: 

PD-L1, PD-L2, and CD86 (Supplementary Figure 1a). We also created a modified THP-1 

cell line with inducible expression of Cas9 under doxycycline treatment, representing an in-

vitro model system amenable to environmental and genomic perturbations (Supplementary 

Note).

In order to identify and characterize new regulators, we pursued a two-step experimental 

strategy (Figure 1a). First, we performed CITE-seq [22] on both unstimulated and stimulated 

THP-1 cells. CITE-seq enables the simultaneous measurement of cellular transcriptomes 

alongside surface protein levels of PD-L1, PD-L2, and CD86. We reasoned that these data 

would enable us to identify gene modules whose transcriptional levels mirrored the surface 

expression of each immune checkpoint. Within these modules, we could identify a ‘target 

set’ of putative regulators representing genes known to affect transcription, chromatin, 

signaling, or protein stability. In a second step, we performed multiplexed perturbation and 

functional characterization of our target set. To accomplish this, we applied our recently 

developed ECCITE-seq technology, which extends CRISPR-compatibility to the CITE-seq 

protocol and enables simultaneous gRNA capture. ECCITE-seq allowed us to multiplex 

>100 individual perturbations together, and to simultaneously test the effect of each in a 

single experiment. Moreover, the rich and multi-modal nature of these data allowed us to 
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distinguish both transcriptional and post-transcriptional effects, and to explore mechanistic 

hypotheses for each gene.

CITE-seq identifies putative immune checkpoint regulators

To identify putative immune checkpoint regulators, we performed CITE-seq experiments on 

both stimulated and unstimulated THP-1 cells (Supplementary Note). We recovered a total 

of 7,566 single-cell profiles, each representing coupled measurements of cellular 

transcriptomes and surface levels for three proteins: PD-L1, PD-L2 and CD86. For each 

surface protein, we compared the patterns of up-regulation upon stimulation observed by 

CITE-seq with those observed by flow cytometry, and found highly concordant results 

across technologies (Figure 1b, c; Supplementary Figure 1a, b). The multi-modal CITE-seq 

measurements allowed for the identification of genes whose expression is activated 

alongside immune checkpoint surface protein induction (Supplementary Note). Induced 

genes included well-characterized members of the IFNγ pathway (JAK2, STAT1, and IRF1), 

while down-regulated genes (ELANE, MS4A6A, CTSG) were consistent with the monocyte 

progenitor identity of resting THP-1 cells (Figure 1d).

Based on these results, we looked at the top 200 genes that correlated with PD-L1 

expression and selected 26 genes based on their protein class identity for downstream 

characterization (Supplementary Table 1). Our panel included eight genes with well-

characterized regulatory effects, and 18 genes representing transcription factors, chromatin 

regulators, signaling regulators, and modifiers of protein stability, that were mined from our 

CITE-seq data but where a clear link with PD-L1 regulation has not been firmly established. 

We designed a pooled single gRNA (sgRNA) library consisting of three to four gRNAs per 

gene along with ten non-targeting (NT) controls, representing a total library of 111 gRNAs.

ECCITE-seq validates putative immune checkpoint regulators

In order to functionally characterize our previously identified genes, we performed ECCITE-

seq, a 5’ capture-based scRNA-seq method that is able to reverse transcribe gRNAs via the 

addition of a scaffold-specific primer, alongside cellular transcriptomes and Antibody-

derived oligos (ADTs). To guide our experimental design, we first performed a pilot 

experiment using gRNAs targeting PD-L1 or IFNGR1 as well as NT controls. In both cases, 

we observed a substantial reduction in PD-L1 expression, and perturbation of IFNGR1 also 

ablated the IFNγ transcriptional response (Figure 1e). Clear effects were observed even after 

downsampling the dataset to 25 cells/gRNA (Figure 1f).

We next performed an ECCITE-seq experiment utilizing our full library of 111 guides. Our 

total dataset represents three independent transductions at low multiplicity of infection, 

aiming to maximize the proportion of cells infected with a single gRNA. After transduction, 

Cas9 expression was activated with doxycycline, and 90% of cells were stimulated to induce 

immune checkpoint expression (the remainder were profiled without stimulation as a 

negative control and were not included in downstream analyses, Supplementary Figure 3a). 

Cells were processed with the 10x Genomics Single Cell 5’ assay kit and sequenced on the 

Illumina NovaSeq platform (55,300 average mRNA reads/cell). Out of 30,328 cells, we 

found 22,606 cells where we could detect robust expression of at least one gRNA, including 
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22,573 where a cell could be specifically assigned to an individual perturbation 

(Supplementary Figures 3b–d).

Perturbation signature removes confounding variation

We next performed unsupervised dimensionality reduction (PCA) and visualization (UMAP) 

of the ECCITE-seq data based on cellular mRNA profiles (Figure 2a, b; Supplementary 

Note). While we had expected that cells would form groupings that were consistent with 

their underlying genetic perturbation, we initially observed that alternative sources of 

variation, including transduction replicate identity, cell-cycle stage, and the activation of 

cellular stress responses (Extended Data 1a, b), confounded our analysis. These sources of 

heterogeneity were also present in an independent analysis of control cells (those expressing 

NT gRNAs, Extended Data 1c), and we therefore designed a procedure to mitigate their 

effects.

Briefly, for each cell, we identified 20 cells from the control pool (NT cells) with the most 

similar mRNA expression profiles (Figure 2c; Supplementary Note). These k=20 nearest 

neighbors should be in a matched biological state to the target cell but did not receive a 

targeting gRNA. Therefore, subtracting their averaged expression from each cell’s original 

mRNA profile results in a local perturbation signature, the component of each cell’s 

transcriptome that specifically reflects its genetic perturbation. Notably, our procedure is 

capable of characterizing both linear and non-linear perturbation effects, and requires 

minimal prior knowledge (for example, it does not require a pre-computed list of cell cycle 

genes). We note that this focuses downstream analyses on changes in expression, rather than 

cell-state proportions. However, we independently tested for relationships between each 

perturbation and the resulting fraction of cells in each cell-cycle state and found no 

significant effects. In addition, we obtained very similar results either when varying the 

choice of the k parameter, or when identifying nearest neighbors after integrating targeted 

and control cells (Extended Data 2a–d).

We then repeated principal components analysis and UMAP visualization based on these 

perturbation signatures, and found that variation in transduction replicate, cell cycle state 

and activation of cellular stress was substantially mitigated (Figure 2d). As a result, we 

observed two clear groups of cells expressing a consistent set of gRNAs, including a cluster 

consisting of cells perturbed for key upstream components of the IFNγ pathway (IFNGR1, 

IFNGR2, JAK2, STAT1), and a second consisting of cells lacking the downstream IFNγ 
mediator IRF1. Cells from the remaining 21 perturbations grouped into a single cluster in 

this unsupervised analysis. However, a subset of cells (for example, those perturbed for 

SMAD4) were not evenly distributed and showed evidence of substructure (Extended Data 

3).

A subset of cells ‘escape’ molecular perturbation

The ECCITE-seq data clearly identified the substantial molecular consequences and distinct 

clustering associated with perturbation of key IFNγ components. For example, IFNGR2g2 

cells in the perturbed cluster (circled cells in Figure 2e), exhibited sharp decreases in the 

expression of hundreds of IFNγ pathway genes, as well as in PD-L1 protein levels (Figure 
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2f, g). However, a subset of these cells also appeared to ‘escape’ molecular perturbation. Out 

of the 1,193 cells expressing gRNAs targeting IFNGR2, 74% were members of the 

perturbed cluster, but the remaining 26% were indistinguishable from NT controls (Figure 

2f, g), demonstrating heterogeneous functional responses among cells expressing the same 

gRNA.

As has been previously suggested [19,21], cells that ‘escape’ perturbation may not have a 

deleterious mutation at the target locus. We explored this idea by isolating IFNGR2 reads 

overlapping the IFNGR2g2 gRNA cut site. We were able to recover reads for 16,543 cells in 

the overall dataset (278 of these cells expressed IFNGRg2 gRNA, of which 115 appeared to 

escape perturbation), and characterized the specific mutations that were introduced. As 

expected, non-targeted cells did not contain insertion or deletion mutations at the cut site 

(INDELs), while ‘perturbed’ cells typically exhibited frameshift INDELs (Figure 2h). 

Strikingly, ‘escaping’ cells, when mutated, were primarily characterized by in-frame 

INDELs, particularly for three or six bases (Figure 2h). These results confirm that a 

substantial fraction of cells escape the introduction of a deleterious mutation, and therefore 

exhibit no functional consequence of perturbation.

While this phenomenon will also weaken the signal in bulk screens, the ECCITE-seq 

readout provides us with an opportunity to remove ‘escaping’ cells from the analysis. Due to 

the limited depth of scRNA-seq based readouts (alongside the inability to profile mutations 

outside the transcript end), we cannot directly measure the mutational profile of each cell in 

the vast majority of cases. However, inspired by previous pioneering work [19,21,26], we 

reasoned that we could use the cell’s transcriptome as a phenotypic readout of the presence 

or absence of a deleterious mutation, and developed a strategy to systematically identify and 

remove ‘escaping’ cells.

Mixscape robustly classifies ‘non-perturbed’ cells

Our analytical solution to identify ‘escaping’ cells is inspired by a classification tool known 

as Mixture Discriminant Analysis (MDA). MDA assumes that individual samples fall into 

different groups, but that each group is a mixture of n different subclasses [27]. This 

assumption is valid for our ECCITE-seq data, where individual cells can be divided into 

groups dependent on their expressed gRNA, but each group can represent a mixture of 

‘perturbed’ and ‘escaping’ (or non-perturbed) subclasses. MDA fits Gaussian mixture 

models for data points in each group, enabling the assignment of subclass identity.

We therefore modeled our ECCITE-seq transcriptomic data using a mixture of Gaussians, 

but placed two constraints on the method. First, we set n=1 for the ‘control’ group, and n=2 

for all other gRNA-defined groups. Second, based on our previous observations (Figure 2e–

g), we assumed that the ‘escaping’ cells exhibit a perturbation signature that is similar to 

‘control’ cells. When fitting Gaussian mixture models, we therefore constrained the 

parameters for one of the mixture components to mirror the ‘control’ cells. We refer to the 

resulting procedure as mixscape. For each targeted cell, mixscape considers a cell’s 

perturbation signature (calculated as previously described) and assigns it to a ‘perturbed’ or 

‘escaping’ subclass (Figure 3a, Extended Data 4).
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We validated the mixscape predictions on IFNGR2 cells (74.6% classified as perturbed 

(‘KO’), 25.4% classified as non-perturbed (NP)), by confirming that only cells predicted as 

KO exhibited reductions in IFNγ gene expression and PD-L1 surface protein levels. We 

observed similar results for additional interferon-regulators, including IFNGR1, JAK2, 

STAT1, and IRF1 (Figure 3b). Notably, mixscape predicted substantial variation in the 

perturbation rate of four independent IRF1 gRNAs, ranging from 39% to 92% (Figure 3c, 

black box). To independently measure the efficacy of each guide, we used flow cytometry to 

assess its effect on PD-L1 protein expression (Figure 3d, e). These measurements were 

concordant with mixscape predictions, further validating our approach.

We note that in cases where functional removal of a gene fails to result in a detectable 

transcriptomic shift, mixscape will also mark a cell as NP, even if a frameshift mutation was 

introduced (Figure 3f). Indeed, for 15 genes, mixscape predicted a 0% perturbation rate 

(Supplementary Figure 4a, b). In each of these cases, we also found no differentially 

expressed genes when comparing cells targeted by these gRNAs to NT controls. 

Furthermore, when we attempted to classify cells expressing NT gRNAs as a negative 

control, mixscape correctly predicted a 0% perturbation rate. Importantly, these results 

demonstrated that mixscape does not overfit the data and only predicts cells to be in the 

‘perturbed’ class when there is a detectable change in their molecular state.

A full description of mixscape is presented in the Supplementary Note, alongside 

comparative benchmarking with MIMOSCA [19] and MUSIC [26] (Extended Data 5 a–d 

and 6a–d). We used both positive controls (IFNGR2g2 cells) and negative controls (NT 

cells) to evaluate performance, and found that mixscape was the only method capable of 

sensitively identifying perturbed cells without overfitting (Extended Data 5a and 6a). We 

have implemented mixscape as part of Seurat, our open-source R toolkit for single-cell 

analysis [28], and include an introductory vignette (Supplementary Data 1) demonstrating 

how to run the software on our ECCITE-seq dataset.

For 11 genes, mixscape did predict the presence of perturbations, with a perturbation rate 

varying from 23% to 83%. This variation could reflect differences in gRNA targeting 

efficiency, the strength of perturbation for each individual gene, or differences in the dosage 

requirement (heterozygous vs homozygous KO) for each putative regulator. We also note in 

some cases our observed perturbation rate may be skewed for perturbations that result in cell 

death, as these could selectively deplete KO cells (Extended Data 7a, b). Regardless, these 

analyses highlight the importance of characterizing the extensive heterogeneity within cells 

that receive the same gRNA. In downstream analyses, we chose to remove cells that were 

predicted to escape perturbation, as including these cells will substantially dampen the 

biological effects associated with each knockout.

To visualize the remaining 11 classes, we applied Linear Discriminant Analysis (LDA). 

LDA aims to identify discriminant functions that maximally differentiate the mixscape-

derived classes (Supplementary Note). We then used these discriminant functions as input to 

generate a two-dimensional UMAP for visualization (Figure 3f). We found that the resulting 

UMAP effectively separated the different perturbations from NT control cells 

(Supplementary Note), while maintaining local proximity for similar perturbations (i.e. 
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IFNGR1 and IFNGR2 co-localize in the embedding). Using LDA as an initial step improved 

separation in all cases except for the negative control (Supplementary Figure 5), suggesting 

that combining LDA with UMAP is an effective approach for the visualization of pooled 

single-cell screens.

CUL3 and BRD4 are negative regulators of PD-L1 expression

These analyses suggest that after removing NP cells, each genetic KO induces a specific 

molecular response. Indeed, when performing differential expression compared to control 

cells, we observed striking differences in gene expression that defined each molecular 

perturbation (Figure 4a). Of particular interest, we observed that perturbation of eight genes 

also resulted in a shift of PD-L1 protein levels in our ECCITE-seq data (Figure 4b). We 

identified five positive regulators (PD-L1 downregulation upon perturbation) and three 

negative regulators, a subset of which had been previously validated [9,11,13,16,17,29]. For 

example, in addition to the core components of the IFNγ pathway, we verified that 

perturbation of BHLH transcription factor MYC [12] and the ubiquitin ligase CUL3 [15] 

both increased PD-L1 protein levels, consistent with previous reports. These results 

demonstrate the potential for ECCITE-seq data to robustly and accurately characterize 

multiplexed perturbations. Importantly, perturbation of these eight genes did not result in 

appreciable shifts in CD86 and PDL2 protein expression (Supplementary Figure 6a, b) 

suggesting that these regulatory effects are specific to PD-L1.

We observed that perturbation of the bromodomain-containing protein BRD4 resulted in an 

upregulation of PD-L1 protein levels, indicating that BRD4 acts as a negative regulator. 

Previous studies have utilized the bromodomain inhibitor JQ1, an alternative to BRD4 
genetic perturbation, to suggest that BRD4 is in fact a positive regulator of PD-L1 [13,29]. 

To help reconcile these differences, we treated our stimulated cells with JQ1 and observed a 

reduction in PD-L1 expression (Figure 4c). However, we validated that CRISPR-mediated 

genetic perturbation of BRD4 leads to an up-regulation of PD-L1 expression using flow 

cytometry (Figure 4d, two independent gRNAs), confirming the ECCITE-seq result. 

Furthermore, bulk RNA-seq from cells expressing BRD4 gRNAs showed upregulation of the 

gene module previously identified by ECCITE-seq (Extended Data 8a, b). These results 

indicate that BRD4 is a negative regulator of PD-L1 expression, and that the JQ1 inhibitor 

may interact with additional proteins in order to achieve PD-L1 reduction.

We also observed that CUL3 and BRD4 perturbation resulted in similar levels of PD-L1 

protein upregulation (Figure 4b). While the ubiquitin ligase complex CUL3-SPOP has been 

shown to post-transcriptionally regulate PD-L1 protein levels [15], we also detected a 1.6-

fold (p < 10−11) upregulation of PD-L1 mRNA levels (Figure 4e). We observed both protein 

and mRNA up-regulation only in cells predicted to be perturbed by mixscape. Our results 

suggest that in addition to its known role in regulating PD-L1 protein stability via direct 

ubiquitination, CUL3 also modulates PD-L1 mRNA levels.

To gain further insight into the effects of CUL3 perturbation, we identified differentially 

expressed genes between CUL3 KO and control cells, and intersected these genes with 

members of previously identified transcriptional pathways (Extended Data 9a, b). We 

observed no overlap with canonical IFNγ signaling targets, suggesting that CUL3-mediated 
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transcriptional regulation of PD-L1 is mediated through an IFNγ-independent pathway. 

Instead, we observed a striking enrichment (p < 10−14) for target genes of the nuclear factor 

erythroid 2-related factor 2 (NRF2) signaling pathway (Figure 4f).

CUL3 indirectly regulates PD-L1 expression through NRF2

The NRF2 pathway is activated during oxidative stress and induces the expression of many 

antioxidant genes to prevent cellular damage and death [30]. NRF2 has been shown to 

directly bind to the PD-L1 promoter and activate transcription under ultraviolet-induced 

stress [14], and NRF2 protein stability is directly regulated by the CUL3-KEAP1 ubiquitin 

ligase complex [31]. Taken together with these findings, our data suggest that CUL3 may 

have two distinct mechanisms for regulating PD-L1 expression. First, as previously 

described [15], perturbation of the CUL3-SPOP complex interferes with the ubiquitination 

of PD-L1, directly enhancing its stability and protein expression level. Second, our data 

indicate that perturbing the CUL3-KEAP1 complex interferes with the ubiquitination of 

NRF2, boosting pathway activation and PD-L1 transcript expression (Figure 5a).

To validate our findings, we performed a focused CRISPR screen using 27 gRNAs targeting 

six genes (Supplementary Table 1). We used flow cytometry to isolate PD-L1 high (PD-

L1hi) and low expressing (PD-L1lo) cells after stimulation (Supplementary Figure 7), 

sequenced the gRNA locus for each group, and compared the gRNA representation. gRNAs 

targeting genes that were predicted to be negative regulators of PD-L1, including CUL3, and 

KEAP1 were consistently overrepresented in PD-L1hi cells in two biological replicates 

(Figure 5b), while we observed the converse for genes encoding predicted positive regulators 

(NRF2 and IFNGR1).

As an additional validation, we transiently overexpressed NRF2 in cells, and performed flow 

cytometry and bulk RNA-seq. As expected, we observed up-regulation of both PD-L1 
mRNA and PD-L1 protein levels (Figure 5c–e). Moreover, when we examined the module of 

genes that were responsive to CUL3 perturbation in our ECCITE-seq data, we found that 

they were strongly up-regulated after NRF2 overexpression (Figure 5f). We observed 

concordant results when using gRNAs against KEAP1, which should mimic NRF2 

overexpression (Figure 5g–i; Extended Data 8a, b). Taken together, our data demonstrate 

that by modifying the activity of the NRF2 pathway, the CUL3-KEAP1 complex is an 

indirect regulator of PD-L1 and highlight the potential for ECCITE-seq to disentangle 

complex regulatory pathways via simultaneous characterization of both RNA and protein 

modalities.

DISCUSSION

In this study, we coupled pooled CRISPR screens to a multi-modal single-cell sequencing 

readout in order to investigate the regulation of immune checkpoint proteins, such as PD-L1. 

We leveraged our dataset to characterize the transcriptional and post-transcriptional effects 

of 111 independent perturbations. To assist in this process, we developed unsupervised 

computational methods to control for confounding sources of variation that can mask 

perturbation signals in ECCITE-seq datasets. Our analyses identified numerous regulators of 
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PD-L1, and in particular, two negative regulators (BRD4 and CUL3) which we validated 

using complementary approaches.

The multi-modal nature of ECCITE-seq data enabled us to move beyond the identification of 

regulators towards a more in-depth molecular characterization. For example, we found that 

CUL3-KEAP1 can act as an indirect regulator of PD-L1 transcription, in addition to the 

previously identified role for CUL3-SPOP in directly regulating PD-L1 protein stability. 

These findings are intriguing in light of recent reports that KEAP1 is often mutated in lung 

cancer, and mutations in NRF2/KEAP1 have been associated with treatment resistance 

[23,32]. Future studies may benefit from exploring possible links between these mutations 

and the expression of immune checkpoint molecules.

Our datasets also highlight that cells which are targeted with the same sgRNA are inherently 

heterogeneous. First, we demonstrated that the calculation of a ‘local’ perturbation signature 

can remove confounding sources of variation from downstream analyses, even when these 

sources are unknown. Second, we introduce mixscape, inspired by mixture discriminant 

analysis and building on previous pioneering methods [19,21,26]. Mixscape robustly filters 

cells that do not exhibit transcriptomic evidence of perturbation, and substantially increases 

the signal-to-noise ratio in downstream analyses (Extended Data 10). The ability to 

computationally leverage the heterogeneity within targeted cells is a distinct advantage of 

coupling genetic screens to a single-cell sequencing readout. Importantly, alternative genetic 

perturbations such as CRISPR interference and CRISPR activation may reduce this 

heterogeneity, though confounding sources of variation and ‘escaping’ cells are likely to 

characterize these technologies as well.

One limitation of mixscape is the reliance on detecting transcriptomic shifts in order to 

classify cells. In particular, perturbations that modify alternative phenotypes, such as 

epigenetic state, protein levels, or functional responses, but exhibit no evidence of 

transcriptomic change will be classified as non-perturbed. In this manuscript, we inferred 

perturbation status using the transcriptome, and validated our calls using surface protein 

levels from ECCITE-seq. However, integrative multi-modal approaches [33] could enable 

joint analysis of the transcriptome and protein levels when filtering non-perturbed cells and 

represent a promising future extension of our method.

Lastly, we note that mixscape’s binary classification of targeted cells likely represents an 

oversimplification that can be improved with additional experimental data from large-scale 

future experiments. Genetic perturbation with CRISPR/Cas9 introduces a diverse set at the 

cut site. As datasets increase in size, we envision sufficient scale to characterize how each 

precise mutation has a unique (though potentially subtle) effect on a cell’s molecular 

phenotype. Moreover, rapid molecular advances continue to enable the simultaneous 

measurement of additional cellular components, such as chromatin state and gene expression 

[34–37]. Together, these data will enable systematic perturbation of gene structure and 

dosage, alongside detailed characterization of multiple molecular modalities.
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METHODS

Cell culture and Maintenance

THP-1 cell line was obtained from ATCC (TIB-202) and was grown at 37C in RPMI 

medium supplemented with 10% FBS. To induce the expression of various immune 

checkpoint proteins cells were treated with Decitabine (Sigma-Aldrich A3656, 0.25μM) for 

three days, TGFβ1 for two days (Thermo Fisher Scientific PHG9204, 2.5ng/ml) and IFNγ 
for one day (R&D systems 284-IF-100, 10ng/ml). HEK293FT human embryonic kidney 

(#R70007) cells were grown in DMEM medium supplemented with 10% FBS (D10). The 

D10 medium for HEK293FT cells was additionally supplemented with 6mM L-glutamine 

(Thermo Fisher Scientific, #25030081), 1mM Sodium Pyruvate (Thermo Fisher Scientific, 

#11360070) and 0.1mM MEM Non Essential Amino Acids (Thermo Fisher Scientific, 

#11140050). TrypLE (Thermo Fisher Scientific, #12604039) was used to lift HEK293FT 

cells from plates during passaging. All cells were passaged every two to three days and low 

passage cells were used for all experiments (p3-p12).

Flow Cytometry

After treatment, cells were centrifuged at 300g for five minutes and resuspended in 100μl of 

MACS buffer (1X PBS, 0.5% BSA, 2mM EDTA). 5μl of FcX blocking reagent was added 

and cells were placed on ice for 10 minutes. Next, antibodies were added directly into the 

mix and cells were kept on ice for another 30 minutes. Prior to flow cytometry (FACS), cells 

were passed through a 40μm cell strainer (VWR, #10032–802) to remove any cell clumps. 

The following FACS antibodies were used in these experiments at concentrations 

recommended by the manufacturer: PD-L1 (BD Biosciences, #558017), PD-L2 (BioLegend, 

#329606), CD86 (BioLegend, #305412). Compensation beads were used to overcome signal 

overlap between fluorophores (BD Biosciences, #552843). To check and remove any dead or 

apoptotic cells DAPI (Sigma Aldrich, #D9542–5MG) was added to the staining mix at a 

concentration of (0.4μg/1mL). All FACS measurements were performed using the SONY 

SH800 cell sorter. FACS analyses and plots were made using the FlowJo™ Software [38].

CITE-seq experiment

THP-1 cells were stimulated as described above or left unstimulated. At the end of the 

stimulation, cells were collected by centrifugation at 300g for 5 minutes. Cells were 

resuspended in 100μl of staining buffer containing 5μl of FcX blocking reagent and were 

placed on ice for 10 minutes. Next, 100μl of staining buffer containing CITE-seq antibodies 

(0.5μg/antibody/sample) was added to the cells. The cells were placed in the 4C fridge for 

30 minutes to allow for antibodies to bind to their target protein. For the CITE-seq 

experiment antibodies were conjugated in-house following the hyper Oligo-antibody 

conjugation protocol as detailed here (https://cite-seq.com/protocol/). To keep track of the 

experimental condition (stimulated vs unstimulated) and be able to detect and remove cell 

doublets, cells were aliquoted into three tubes containing a uniquely barcoded hashing 

antibody. Cells were placed in the fridge for an additional 20 minutes. After staining was 

complete, all samples were washed three times with 1ml staining buffer to remove all the 

excess unbound antibodies. Next, cells were resuspended in 200–300μl of 1X PBS and 

counted using the Countess II Automated cell counter system. Immediately before loading to 
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the 10x Genomics instrument, cells from all experimental conditions were pooled at the 

appropriate concentration (recovery of 10,000 cells per lane).

CITE-seq data library construction, sequencing and data analyses

We ran 1 lane of 10x Genomics 5’ (Chromium Single Cell Immune Profiling Solution v1.0, 

#1000014, #1000020, #1000151) aiming for 20,000 cell recovery per lane. Prior to the run, 

cell viability was determined and cell numbers were estimated as previously described. To 

increase the number of cells assayed we hashed them following the cell hashing protocol 

[25]. mRNA, hashtags (Hashtag-derived oligos, HTOs) and protein (Antibody-derived 

oligos, ADTs) libraries were constructed by following 10x genomics and CITE-seq 

protocols. All libraries were sequenced together on a Novaseq run. Sequencing reads coming 

from the mRNA library were mapped to the hg19 reference genome using the Cellranger 
Software (V2.1.0). To generate count matrices for HTO and ADT libraries, the CITE-seq-
count package was used (https://github.com/Hoohm/CITE-seq-Count). Count matrices were 

then used as input into the Seurat R package [28,39] to perform all downstream analyses.

Cells with low quality metrics, high mitochondrial gene content (> 10%) and low number of 

genes detected (< 500) were removed. RNA counts were log-normalized using the standard 

Seurat workflow. ADT and HTO counts were normalized using the centered log ratio 

transformation approach, with a margin = 2 (to normalize across cells instead of across 

features). To identity cell doublets and assign experimental conditions to cells, we used the 

HTODemux function. We performed PCA on the protein measurements, observing a 

continuum in the level of PD-L1 up-regulation, and selected the top 200 genes whose 

expression correlated with this continuum. These genes are shown in Figure 1D, where cells 

in both the protein and RNA heatmaps are ordered based on their PC1 embedding values.

CITE03 plasmid construction

To increase sgRNA targeting efficiency we switched the sgRNA scaffold on the CROP-seq 

plasmid (addgene, #86708) with the optimized sgRNA scaffold as described in [40]. 

Moreover, we replaced the puromycin resistance gene on the CROP-seq plasmid with a 

blasticidin resistance gene fused to eGFP amplified from the pFUGW-EFS-V5-EGFP-2A-

Bla-WPRE plasmid (addgene, #71215). Finally, we removed Cas9 protein to decrease the 

size of our plasmid and achieve higher viral titer.

Inducible Cas9 THP-1 cell line

The THP-1-Cas9 inducible cell line was made by lentiviral transduction using the pCW-

Cas9-puro plasmid (addgene, #50661). Single cells were sorted into 96-well plates three 

days after puromycin selection to obtain single cell clones. Single cell colonies were 

expanded for four weeks before assessing Cas9 expression. Protein lysates were obtained 

from ten clones before and after 24hrs of doxycycline treatment (1μg/ml, Sigma-Aldrich 

D9891) to check Cas9 expression by westernblot. Briefly, cells were washed 2 times with 

1mL of ice-cold 1X PBS and resuspended in RIPA lysis buffer (Amresco, N653) 

supplemented with a protease inhibitor cocktail (Bimake, B14001). Cas9 expression was 

verified by western blot using GAPDH antibody as loading control (Cell signaling 

Technology, 2118S) and Flag antibody (Cell signaling Technology, 14793S) to detect Cas9 
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protein. Protein bands were visualized using fluorescently labeled secondary antibodies (LI-

COR, #925–32212 and #925–68073) and the Odyssey Imaging System. One of the clones 

with the highest Cas9 expression was selected and used for all downstream experiments. To 

minimize leakiness of our doxycycline inducible Cas9 system, a TET-free FBS (VWR, 

97065–310) was used to grow these cells.

gRNA design, virus production and Cas9 dynamics

Guides webtool (http://guides.sanjanalab.org/#/) was used to predict gRNAs with high 

targeting efficiency and low off-target effects [41]. 3–4 guides per gene were selected 

together with 10 guides predicted to have no sequence similarity with the human genome 

(non-targeting controls). Guide oligos were synthesized individually using IDT. Oligos were 

cloned into the CITE03 vector as previously described [42]. Low passage HEK293FT cells 

were transfected with MD2.G (addgene #12259), PAX2 (addgene #35002) and the CITE03 

plasmids carrying gRNAs using Lipofectamine 2000 (Thermo Fisher Scientific, 

#11668030). Media was replaced with DMEM + 10% FBS + 1% BSA (NEB, B9000S), 6 

hours post-transfection. Viral supernatants were harvested 48–72 hours post transfection by 

centrifugation (ten minutes, 3000 rpm, 4C) and stored in a −80C freezer until used. To 

estimate the concentration of the virus, cells were infected with increasing amounts of virus 

and three days post antibiotic selection, the percentage of dead and live cells was calculated. 

In all experiments, cells were infected at low multiplicity of infection (MOI) to achieve one 

gRNA insertion per cell.

To estimate how many days after Cas9 induction we have saturation of CRISPR-induced 

insertions and deletions (INDELs), we ran single gRNA experiments targeting PD-L1 

protein. Cas9 was induced with the addition of doxycycline (1μg/mL) for one, three, five and 

seven days and we used TIDE [43] and Surveyor assays (IDT, #706020) to estimate the 

percentage of cells with INDELs. As an independent method, we also used flow cytometry 

to check PD-L1 expression and quantify the percentage of knockout cells (KO). We found 

that after five days of Cas9 induction the percentage of cells with INDELs stops increasing 

and we have achieved the highest percentage of cells with low PD-L1 protein expression. 

Based on these observations, we decided to treat cells with 1μg/mL of doxycycline for five 

days prior to running the ECCITE-seq experiments.

ECCITE-seq pilot experiment

We ran an initial pilot experiment to validate our ability to accurately recover gRNA and 

plan experimental design. We generated single gRNA cell lines for 20 gRNA, including PD-

L1, IFNGR1, and non-targeting controls, and performed individual infections. Next, we 

stimulated cells as previously described. We hashed each cell line separately [25] prior to 

running our ECCITE-seq experiment. This experimental set up enabled us to have two 

independent methods for encoding the perturbation received by each cell. Libraries were 

sequenced on a NextSeq500. mRNA libraries were quantified using Cell Ranger (2.1.1; 

hg19 reference), and normalized using standard log-normalization in Seurat. HTO and ADT 

libraries were processed with CITE-seq-count (https://github.com/Hoohm/CITE-seq-Count), 

and normalized using the centered log-ratio (CLR, across cells). Cells with high 

mitochondrial gene content (> 8%) were removed. RNA counts were log-normalized using 
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the standard Seurat workflow. ADT, HTO and GDO counts were normalized using the 

centered log ratio transformation approach, with a margin = 2 (to normalize across cells 

instead of across features).

We demultiplexed the cell hashing data using the MULTIseqDemux function adopted from 

[44], and removed all classified doublets. We assigned gRNA identity using HTODemux in 

Seurat. To assess the accuracy of gRNA classification, we examined each cell with an 

identified gRNA, and compared its classification to its HTO-derived label. We observed an 

overall concordance of 99.4%. Concordant cells were used for plotting PD-L1 expression in 

Figure 1E.

ECCITE-seq experimental setup

THP-1 Cas9-inducible cells were transduced with virus containing 111 guides at low MOI to 

obtain cells with 1 gRNA. 24 hours post-transduction cells were centrifuged and 

resuspended in new media containing blasticidin (15μg/mL) to select for successfully 

transduced cells. Three days after antibiotic selection, media was exchanged with fresh R10 

containing blasticidin (15μg/mL) and doxycycline (1μg/mL) to induce Cas9 expression and 

INDEL formation. After five days of doxycycline treatment, cells were stimulated with 

DAC, IFNγ and TGFβ1 for an additional three days or left unstimulated prior to running the 

10x Genomics experiment (Supplementary Figure 2A). The final pool of cells loaded onto 

the 10x Genomics chip contained 10% of unstimulated cells and 90% of stimulated cells 

coming from four biological replicates.

Single cell ECCITE-seq library construction and sequencing

For the ECCITE-seq experiment, we run eight lanes of 10x Genomics 5’ (Chromium Single 

Cell Immune Profiling Solution v1.0, #1000014, #1000020, #1000151) aiming for 10,000 

cell recovery per lane. Prior to the run, cell viability was determined, and cell numbers were 

estimated as previously described. To keep track of each biological replicate identity, 

samples were hashed following the cell hashing protocol [25]. mRNA, hashtags (Hashtag-

derived oligos, HTOs), protein (Antibody-derived oligos, ADTs) and gRNA (Guide-derived 

oligos, GDOs) libraries were constructed by following 10x genomics and ECCITE-seq 

protocols. All libraries were sequenced together on two lanes of a NovaSeq run. Sequencing 

reads coming from the mRNA library were mapped to the hg19 reference genome using the 

Cellranger Software (V2.1.1). To generate count matrices for HTO, ADT and GDO libraries, 

the CITE-seq-count package was used (https://github.com/Hoohm/CITE-seq-Count). Count 

matrices were then used as input into the Seurat R package [28,39] to perform all 

downstream analyses.

ECCITE-seq data pre-processing in Seurat

Cells with low quality metrics, high mitochondrial gene content (> 10%) and low number of 

genes detected (< 100) were removed. RNA counts were log-normalized using the standard 

Seurat workflow. ADT, HTO and GDO counts were normalized using the centered log-ratio 

transformation approach, with margin = 2 (normalizing across cells). To identity cell 

doublets and assign experimental conditions to cells, we used the MULTIseqDemux 
function adopted from [44]. MULTIseqDemux-defined cell doublets and negatives were 
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removed from any downstream analyses. To assign a gRNA identity to each cell, we looked 

at the GDO counts. If a cell had less than five counts for all gRNA sequences we classified it 

as negative. For all other cells, we found the gRNA with the highest number of counts and 

assigned it to that cell. Cells that had high counts for more than one gRNA were classified as 

doublets.

We checked the gRNA representation across all four biological replicates included in this 

experiment by calculating the percentage of cells that belonged to each gRNA class within 

each biological replicate (Supplementary Figure 3b). We removed replicate #4 (both 

stimulated and unstimulated cells) as it had a skewed gRNA representation, likely due to 

long term cell culture. We also removed cells in target gene classes where less than 10 total 

cells were detected, even after pooling across gRNA and replicates.

RNA-based clustering of single cells

To visualize cells based on an unsupervised transcriptomic analysis (Figure 2a), we first ran 

PCA using 2000 variable genes. The first 40 components were used as input for UMAP 

visualization in two-dimensions [45]. We calculated cell-cycle scores using the 

CellCycleScoring function in Seurat v3.1 with default parameters.

Description of the mixscape method

For a detailed description of the mixscape method, please see the Supplementary Note.

Estimating the percentage of INDELs from scRNA-seq reads

We used Sinto (https://timoast.github.io/sinto/basic_usage.html) to extract all sequencing 

reads that belonged to the perturbed and non-perturbed IFNGR2g2 cells as well as the non-

targeting control cells from the cellranger possorted genome bam files. Bam files from all 

10x Genomics lanes were merged to three final bam files, one for each group (Non-

targeting, knockout and non-perturbed). Samtools [46] was used to create the index file used 

for visualization into IGV tools Software [47]. To quantify the percentage of INDELs at the 

expected gRNA cut site, we used GenomicRanges, GenomicFeatures, GenomicAlignments, 

Rsamtools and bedr R packages. First, a bed file was constructed to specify the gRNA cut 

site. Next, we removed any reads that didn’t overlap our cut site. To ensure accurate INDEL 

quantification, we only assessed reades that extended enough into the 3’ end of the gRNA 

sequence. We relied on the read cigar string information to quantify the number of reads 

with frameshift or inframe mutations by looking at the number of bases inserted/deleted 

(three or multiple of three = inframe, any other as frameshift). To calculate the percentage of 

inframe and frameshift deletions we divided each class by the total number of reads post 

filtering.

IRF1 gRNA efficiency experiments

THP-1 Cas9 cells were transduced with viruses containing one of the following gRNAs: 

IRF1g1, IRF1g2, IRF1g3, IRF1g4 and non-targeting gRNA control. After selection, Cas9 

induction and three days of stimulation with DAC, TGFB1 and IFNγ cells were collected 

and flow cytometry was used to assess changes in PD-L1 protein expression as previously 

described.
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Differential expression and gene set enrichment analyses

We used FindMarkers() in Seurat to find differentially expressed genes between non-

targeting cells and cells that belonged to a targeted gene class. The top 20 genes from each 

class were used as input into the heatmap in Figure 4A. Finally, this top 300 list of genes 

from each class was used as input into the EnrichR package [48,49] to run pathway analysis 

using the human WikiPathways database from 2019. Figure 4F shows the top five enriched 

pathways with a p_value < 0.001 for CUL3 KO cells.

JQ1 inhibitor experiments

THP-1 cells were treated with DMSO, JQ1 (1μM, 24 hours), JQ1 + IFNγ, Decitabine

+TGFβ1+IFNγ or Decitabine+TGFβ1+IFNγ +JQ1. PD-L1 expression was assessed by flow 

cytometry as previously described.

Validation CRISPR screen

We designed new gRNAs using the guides webtool to target KEAP1, NRF2, BRD4 and 

CUL3 in order to validate our ECCITE-seq findings. Plasmids containing the gRNAs were 

pooled at equal ng amounts and the virus was produced as previously described. THP-1 cells 

were transduced at low MOI and cells were selected with blasticidin for three days. After 

selection Cas9 expression was induced and cells were stimulated as previously described. At 

the end of stimulation, cells were spun down, resuspended in 100μl of MACS buffer 

containing 5μl of FcX blocking reagent and placed on ice for ten minutes. Next, cells were 

stained with a PD-L1 antibody for 30 minutes, washed with 1mL of MACS buffer and 

passed through a 40μM cell strainer to remove cell clumps. The Sony SH100 sorter was used 

to sort the top 15% of cells with the highest and lowest PD-L1 protein expression in two 

separate tubes containing Quick Extract buffer (Epicenter). We amplified the gRNA 

sequence from the isolated genomic DNA as described in [50]. Samples we sequenced with 

a target recovery of 1000 reads per gRNA per sample. To quantify gRNA counts in each 

sample, we first made a gRNA reference fasta file and used it to map and quantify our reads 

with Bowtie2 [51]. To analyze our data and find gRNAs enriched or depleted in our samples 

we used MAUDE [52].

gRNA KEAP1 and BRD4 perturbation experiments

THP-1 Cas9 cells were transduced with viruses containing one of the following gRNAs: 

BRD4g2, BRD4g5, KEAP1g1, KEAP1g3 and non-targeting controls. After three days of 

stimulation with DAC, TGFB1 and IFNγ cells were collected and flow cytometry was used 

to assess changes in PD-L1 protein expression as previously described. Cells from all 

experimental conditions were sorted directly into 96-well plates (three replicates, 500 cells 

per replicate) containing 20μl of RLT lysis buffer for bulk RNA-seq analyses.

NRF2 overexpression experiments

NRF2 over-expression plasmid was purchased from Addgene (#21549). To transfect THP-1 

cells, GeneXplus reagent was used as recommended by the manufacturer. 24 hours post-

transfection cells were inspected under the microscope to verify reporter eGFP and dsRed 

proteins were expressed in the cells. 24–48 hours post-transfection, cells were collected and 
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washed with R10 media. Flow cytometry was used to assess changes in PD-L1 protein 

expression as previously described. Cells from all experimental conditions (control and 

NRF2 OE) were sorted directly into 96-well plates (three replicates, 100 cells per replicate) 

containing 20μl of RLT lysis buffer for bulk RNA-seq analyses.

Bulk RNA-seq library construction, sequencing and analyses

100 – 500 cells were sorted directly into 96-well plates containing 20μl of RLT lysis buffer 

(#79216, Qiagen) and stored in −80C until ready to proceed with reverse transcription (RT). 

RNA CleanXP beads (A66514, Beckman coulter) were used for a 2X cleanup in order to 

exchange RLT lysis buffer for RT master mix. RNA on the beads was eluted directly into the 

RT master mix containing dNTP mix (10mM), NxGen RNase inhibitor (Lucigen, 40U/μl), 

Maxima RT 5X buffer and water. To keep track of the identity of the sample in each well, a 

different 3’ UMI barcode primer was added to each well. Samples were incubated at 72C for 

three minutes and Betaine, MgCL2 (100mM), TSO primer (10μM) and maxima enzyme 

were added as well. Reverse Transcription, PCR amplification and library construction 

following the barcoded plate-based single-cell RNA-seq protocol [53]. Samples were 

sequenced on a MiSeq or NextSeq instrument.

Reads were mapped to hg19 reference genome and once the count matrices were generated 

the Seurat package was used for all analyses. We used each sample’s 3’ UMI barcode to 

assign back their experimental ID. Finally, differential expression (DE) analysis was 

performed to generate lists of DE and compare them to the CUL3, BRD4 and KEAP1 KO 

DE lists from the ECCITE-seq experiment.

DATA AVAILABILITY

Raw and processed sequencing data is available through the Gene Expression Omnibus 

(GEO accession number: GSE153056). Processed data is also available through SeuratData 

(https://github.com/satijalab/seurat-data) to facilitate access with a single command: 

InstallData(ds = “thp1.eccite”).

CODE AVAILABILITY

The code for mixscape is freely available as open source software as part of the Seurat 

package for single-cell analysis (www.github.com/satijalab/seurat/tree/mixscape). A vignette 

demonstrating the application of mixscape to this dataset is available in Supplementary Data 

1, as well as an online resource (https://satijalab.org/seurat/v4.0/mixscape_vignette.html).
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Extended Data

Extended Data Fig. 1. Unwanted sources of variation drive mRNA-based clustering (related to 
Figure 2).
(A) UMAP visualization of the ECCITE-seq dataset based on cellular transcriptomes. 

Clusters are driven by different sources of variation shown in different colors (cell cycle 

state, CRISPR perturbation, stress). Figure is similar to Figure 2A, but with labels for the 

ER-stress cluster.

(B) Single-cell heatmap showing the up-regulation of a specific gene module in the ER-

stress cluster. EnrichR analysis demonstrates that this gene set is enriched (adjusted p-value 

< 5*10−20) for ‘response to endoplasmic reticulum stress”.

(C) Similar to (A) but computed using only NT cells. This demonstrates that confounding 

sources of heterogeneity are present even in the absence of perturbation

Papalexi et al. Page 18

Nat Genet. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 2. Identifying optimal parameters for calculating perturbation signature.
(A)Scatterplots showing the per cell correlation of mixscape classification posterior 

probabilities between k =20 and k=3, k=10, k=30 and k=200.

(B) Mixscape classification agreement k=20 and all other k.

(C)Same as in (A) only this time comparing finding neighbors before and after integration. 

In both cases k was set to 20.

(D)Same as in (B) only this time showing classification agreement between before and after 

integration.
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Extended Data Fig. 3. Calculating local perturbation signatures controls for unwanted sources of 
variation.
Similar to Figure 2D, but the cells from each individual perturbation are specifically 

highlighted. In addition to some perturbations which form specific clusters (e.g. IRF1), other 

perturbations (e.g. BRD4 and SMAD4) exhibit weaker evidence of sub-clustering, 

suggesting that improved analysis strategies would help to reveal their perturbation state.
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Extended Data Fig. 4. Mixscape models targeted cells as a heterogeneous mixture.
For each cell, we calculated a perturbation score (Supplementary Methods) representing its 

strength of perturbation compared to the average of NT controls. We calculated this not only 

for targeted cells, but also for cells expressing NT gRNA in order to estimate the variance in 

the control population. Here, we show the distribution of perturbation scores as a function of 

mixscape classification (similar to Figure 3A). Dots on the x-axis represent single-cell 

perturbation scores and are colored to match the mixscape classifications. Non-perturbed 
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cell densities (NP, light grey) overlap with the non-targeting control cell densities (NT, dark 

grey).

Extended Data Fig. 5. Benchmarking mixscape against MIMOSCA.
(A) Top: Barplots showing the % of KO (red) and NP (light grey) cells within each gRNA 

class as classified by mixscape, and MIMOSCA (Bottom). To assess the potential for 

overfitting, prior to running the dataset, we randomly sampled 1,000 cells expressing NT 

gRNA and re-labeled them as a new targeted gene class, representing a negative control 
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(NEG CTRL, marked with a black box). Only mixscape correctly classifies all of these cells 

as NP.

(B) Single-cell mRNA expression heatmap with IFNGR2g2 cells being grouped by 

mixscape and MIMOSCA classification. Cells classified by both methods as KO (Class ‘A’) 

exhibit downregulation of IFNγ pathway genes, while cells classified by both methods as 

ND (Class ‘D’) resemble NT controls. When mixscape classifies cells as NP and 

MIMOSCA classifies as KO (Class C), cells resemble NT controls, suggesting that the 

mixscape classification is correct. Class B (2 cells total) was removed for visualization due 

to low cell number.

(C) Violin plots showing PD-L1 protein expression in IFNGR2g2 cells grouped by their 

MIMOSCA and mixscape classification (see legend in (B)). Class C cells resemble NT 

controls, suggesting that the mixscape classification is correct.

(D) Barplot showing the % of reads with no INDELS (grey), inframe (orange) and 

frameshift (red) mutations across all MIMOSCA and mixscape IFNGR2g2 cell 

classifications. Class C cells resemble NT controls, suggesting that the mixscape 
classification is correct (n==20,729 cells over 3 viral transduction replicates).
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Extended Data Fig. 6. Benchmarking mixscape against MUSIC.
(A) Top: Barplots showing the % of KO (red) and NP (light grey) cells within each gRNA 

class as classified by mixscape, and MUSIC (Bottom). To assess the potential for overfitting, 

prior to running the dataset, we randomly sampled 1,000 cells expressing NT gRNA and re-

labeled them as a new targeted gene class, representing a negative control (NEG CTRL, 

marked with a black box). Only mixscape correctly classifies all of these cells as NP.

(B) Single-cell mRNA expression heatmap with IFNGR2g2 cells being grouped by 

mixscape and MUSIC classification. Cells classified by both methods as KO (Class ‘A’) 
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exhibit downregulation of IFNγ pathway genes, while cells classified by both methods as 

ND (Class ‘D’) resemble NT controls. When mixscape classifies cells as NP and MUSIC 

classifies as KO (Class C), cells resemble NT controls. When mixscape classifies cells as 

KO and MUSIC classifies as NP, cells exhibit evidence of perturbation. Therefore, groups B 

and C suggest that when the methods disagree, the mixscape classification is correct.

(C) Violin plots showing PD-L1 protein expression in IFNGR2g2 cells grouped by their 

MUSIC and mixscape classification. Groups B and C suggest that when the methods 

disagree, the mixscape classification is correct.

(D) Barplot showing the % of reads with no INDELS (grey), inframe (orange) and 

frameshift (red) mutations across all MUSIC and mixscape IFNGR2g2 cell classifications. 

Groups B and C suggest that when the methods disagree, the mixscape classification is 

correct (n==20,729 cells over 3 viral transduction replicates).

Extended Data Fig. 7. Number of detected cells in ECCITE-seq correlates with gene essentiality 
scores.
(A) Barplot showing the CERES scores for each target gene class generated from AVANA 

CRISPR screens on THP-1 cells. Low CERES scores for MYC, SPI1, BRD4 and CUL3 
suggests these genes are essential for cell survival. (B) Barplot showing the number of cells 

recovered from each target gene class in the ECCITE-seq experiment. For target genes with 

low CERES scores we only recover a small number of cells most likely due to decreased 

survival of KO cells (n==20,729 cells over 3 viral transduction replicates).
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Extended Data Fig. 8. Bulk RNA-seq on single gRNA KO samples validates ECCITE-seq 
findings.
(A) Heatmap showing expression of CUL3 and BRD4 KO signature genes as identified by 

ECCITE-seq DE on bulk RNA-seq samples. (B) Same as in (A) only this time showing the 

CUL3 and BRD4 KO cells from the ECCITE-seq experiment. Cells are split into groups 

based on their gRNA ID.
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Extended Data Fig. 9. CUL3 KO cells have a unique transcriptomic signature.
(A)Single-cell mRNA expression heatmap showing that CUL3 KO cells upregulate a 

module of genes in comparison to NT and CUL3 NP cells (including the PD-L1 transcript 

(CD274), highlighted on the heatmap).(B) Single-cell mRNA expression heatmap showing 

that the CUL3 transcriptomic signature is not IFNγ-related, suggesting CUL3 is acting 

through an alternative pathway to regulate PD-L1 at the transcriptional level. For both (B) 

and (C) heatmaps, lists of genes were obtained using FindMarkers() function in Seurat 

(Wilcoxon Rank sum test). mRNA counts are log-normalized and scaled (z-score).
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Extended Data Fig. 10. Mixscape increases the signal to noise ratio by removing “escaping” cells.
(A) Volcano plots showing DE genes before and after mixscape classification for BRD4 and 

CUL3 KO cells.(B) UpSet plot showing the intersection between DE genes from before and 

after mixscape classification.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CITE-seq and ECCITE-seq identify regulators of PD-L1 protein expression.
a) Experimental design schematic. NT, non-targeting. b) Expression of PD-L1 (left) and 

CD86 (right) protein in stimulated (green, n=20,000 cells) and control (grey, n=20,000 cells) 

THP-1 cells, as measured by flow cytometry and (c) CITE-seq. d) Single-cell heatmap 

showing the z-scored expression of 200 genes whose expression correlates with CD86 and 

PD-L1 protein expression (Supplementary Note). e) ECCITE-seq measurements of PD-L1 

protein expression in cells that received gRNAs targeting PD-L1 and IFNGR1, and non-

targeting controls. f) Power analysis to estimate the number of cells necessary to detect 
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statistically significant shifts in protein expression across two different gRNAs (IFNGR1g2 

and PDL1g1). A one-sided Wilcox Rank sum test was used. Each boxplot summarizes ten 

random sampling draws of the indicated number of cells and the log-transformed p-values 

generated through differential protein expression (DE) analysis using Wilcox Rank sum test. 

DE was performed using the same number of sampled IFNGR2g1, PDL1g1 and non-

targeting control cells. Boxplots: middle line is the median, the lower and upper hinges 

correspond to the first and third quartiles, the upper whisker extends from the hinge to the 

largest value no further than 1.5 × IQR from the hinge (IQR = inter-quartile range) and the 

lower whisker extends from the hinge to the smallest value at most 1.5 × IQR of the hinge.
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Figure 2. Calculating perturbation signature removes confounding variation.
a) UMAP visualization of the ECCITE-seq dataset based on cellular transcriptomes. Cells 

are colored by transduction replicate and cell cycle state. b) Same as in (a). Cells are split 

and colored by perturbation status (NT; non-targeted). Circle denotes a perturbation-specific 

cluster. c) Same as in (b). Top: example of three distinct cells expressing an IRF1 gRNA 

(red, blue, purple). Bottom: their 20 nearest NT neighbors (NN). Grey dots: all other cells. 

d) UMAP visualization based on perturbation signatures. Ovals denote perturbation-specific 

clusters. e) UMAP visualization showing IFNGR2g2 and NT cells. Oval denotes a group of 

putative IFNGR2g2 KO cells that cluster separately, but a subset of targeted cells appears to 

be non-perturbed (NP). f) Violin plot showing PD-L1 protein expression in NT, NP, and KO 

cells. IFNGR2g2 KO cells exhibit low PD-L1 protein levels while IFNGR2g2 NP and NT 

cells express PD-L1 at identical levels. g) Single-cell mRNA heatmap showing the IFNγ 
pathway-related gene expression in NT, NP, and KO cells. Gene expression is scaled (z-
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scored) across all single cells. For visualization purposes we downsampled our dataset to 

include 150 cells from each class. h) Interactive Genome Viewer (IGV) screenshot of a 

representative sample of reads mapping at theIFNGR2 gene locus (chr21: 34787276–

34787299) targeted by IFNGR2g2 gRNA. CRISPR-induced INDELs are seen as black lines. 

Arrow indicates cut site. Barplote showing the % of IFNGR2 reads with no INDELS (NID), 

in-frame (IF) and frameshift (FS) mutations across NT (n=2,386), IFNGR2g2 NP and KO 

cells (n=278).
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Figure 3. Mixscape removes cells that escape perturbation.
a) Distribution of perturbation scores (Supplementary Note) for NT (non-targeted, grey) and 

IFNGR2 (red) cells. IFNGR2 cells are a mixture of two Gaussian distributions reflecting 

non-perturbed (NP) and KO cells. Classifying cells with mixscape resolves this 

heterogeneity. b) Violin plot showing PD-L1 protein expression based on mixscape 
classification. Only KO cells show a reduction in PD-L1 protein levels when compared to 

NT control cells. c) Barplot showing the percentage of targeted cells classified as KO and 

NP by mixscape for each gRNA (n=20,729 cells over 3 viral transduction replicates). Black 
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box highlights three gRNAs targeting IRF1 gene locus. d) ECCITE-seq measurements of 

PD-L1 protein expression for cells expressing four distinct gRNAs targeting IRF1, and NT 

controls. e) Flow cytometry measurements of PD-L1 protein expression for the same 

populations as in (d). IRF1g1=7,500, IRF1g2=9,000, IRF1g3=5,300, IRF1g4=5,800 and 

NT=2600 cells. f) Barplot summarizing the percentage of KO and NP cells in each target 

gene class (n=20,729 cells over 3 viral transduction replicates). g) UMAP visualization of all 

7,421 NT and KO cells after running Linear Discriminant Analysis (LDA) (Supplementary 

Note), revealing perturbation-specific clustering.
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Figure 4. BRD4 and CUL3 are negative regulators of PD-L1 expression.
a) Single-cell mRNA expression heatmap showing 20 differentially expressed genes for each 

mixscape-classified perturbation. For visualization purposes we downsampled our dataset to 

include 30 cells from each class in the heatmap. b) Violin plots of PD-L1 protein expression 

for all identified regulators. BRD4 (p-value=4.37e−28), CUL3 (p-value=2.81e−11) and MYC 

(p-value=4.51e−7) are negative regulators, while the remaining are positive (p-value < 1e−6 

in all cases, two-sided Wilcox Rank sum). NT, non-targeted. c) Flow cytometry 

measurements of PD-L1 protein expression across experimental conditions. JQ1 inhibitor 
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treatment (24 hours, 1μM) reduces stimulation-induced PD-L1 expression. Control=20,000, 

stim=20,000 and JQ1+stim=20,000 cells. d) Flow cytometry measurements of PD-L1 

protein expression in BRD4 gRNA expressing cells, validating our ECCITE-seq findings. 

BRD4g2=9,100, BRD4g5=15,000 and NT=4,800 cells. e) Violin plots showing elevated 

expression of PD-L1 transcript in CUL3 KO cells, in comparison to non-targeting controls. 

f) Barplot summarizing gene set enrichment analysis results for 300 genes upregulated in 

CUL3 KO cells. Analysis was performed using the Human WikiPathways database from the 

EnrichR package and shows strong enrichment for the NRF2 pathway.
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Figure 5. CUL3-KEAP1 complex indirectly regulates PD-L1 through NRF2.
a) Schematic representation describing two complementary modes of CUL3-mediated PD-
L1 regulation. The CUL3-SPOP complex directly regulates PD-L1 protein stability through 

ubiquitination. The CUL3-KEAP1 complex regulates NRF2 protein stability, indirectly 

modulating NRF2-mediated PD-L1 transcription. b) Validation pooled CRISPR screen 

results (2 biological replicates) targeting KEAP1, SPOP, CUL3, BRD4, IFNGR1 and NRF2 
(including 4 non-targeting gRNAs). gRNAs targeting KEAP1, SPOP, CUL3 and BRD4 
(green) were enriched in cells expressing high levels of PD-L1 protein while NRF2 and 

IFNGR1 gRNAs were depleted (red) NT, non-targeted. c) Boxplots showing the PD-L1 

protein geometric mean fluorescence intensity (gMFI) (n =2 for each boxplot), (d) PD-L1 
transcript and (e) NRF2 transcript levels (log1p(TPM)) in control (n = 3) and NRF2 

overexpression (OE) (n = 4) cells. f) Density plot showing the average log2 fold change of 

three CUL3 KO cell DE gene subsets in the NRF2 OE dataset. g) Boxplots showing the PD-

L1 protein geometric mean fluorescence intensity (gMFI) (n=2 KEAP1 KO and n=3 NT), 

(h) PD-L1 transcript and (i) KEAP1 transcript levels (log1p(TPM)) in NT (n = 8) and 
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KEAP1 KO (n = 8) cells. In c-e and g-i boxplots the middle line is the median, the lower and 

upper hinges correspond to the first and third quartiles, the upper whisker extends from the 

hinge to the largest value no further than 1.5 × IQR from the hinge (IQR = inter-quartile 

range) and the lower whisker extends from the hinge to the smallest value at most 1.5 × IQR 

of the hinge.
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