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Abstract

Dengue, a mosquito-borne infectious disease caused by the dengue viruses, is present in

many parts of the tropical and subtropical regions of the world. All four serotypes of dengue

viruses are endemic in Singapore, an equatorial city-state. Frequent outbreaks occur, some-

times leading to national epidemics. However, few studies have attempted to characterize

breakpoints which precede large rises in dengue case counts. In this paper, Bayesian

regime switching (BRS) models were employed to infer epidemic and endemic regimes of

dengue transmissions, each containing regime specific autoregressive processes which

drive the growth and decline of dengue cases, estimated using a custom built multi-move

Gibbs sampling algorithm. Posterior predictive checks indicate that BRS replicates temporal

trends in Dengue transmissions well and nowcast accuracy assessed using a post-hoc clas-

sification scheme showed that BRS classification accuracy is robust even under limited data

with the AUC-ROC at 0.935. LASSO-based regression and bootstrapping was used to

account for plausibly high dimensions of climatic factors affecting Dengue transmissions,

which was then estimated using cross-validation to conduct statistical inference on long-run

climatic effects on the estimated regimes. BRS estimates epidemic and endemic regimes of

dengue in Singapore which are characterized by persistence across time, lasting an aver-

age of 20 weeks and 66 weeks respectively, with a low probability of transitioning away from

their regimes. Climate analysis with LASSO indicates that long-run climatic effects up to 20

weeks ago do not differentiate epidemic and endemic regimes. Lastly, by fitting BRS to sim-

ulated disease data generated from a stochastic Susceptible-Infected-Recovered model,

mechanistic links between infectivity and regimes classified using BRS were provided. The

model proposed could be applied to other localities and diseases under minimal data

requirements where transmission counts over time are collected.

Author summary

Dengue, a mosquito-borne infectious disease caused by the dengue viruses, is present in

many parts of the tropical and subtropical regions of the world. All four serotypes of
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dengue viruses are endemic in Singapore, an equatorial city-state. Frequent outbreaks

occur, sometimes leading to national epidemics. However, few studies have attempted to

characterize breakpoints which precede large rises in dengue case counts. In this paper,

Bayesian regime switching (BRS) models were employed to infer epidemic and endemic

regimes of dengue transmissions, each containing regime specific processes which drive

the growth and decline of dengue cases, estimated using a custom built multi-move Gibbs

sampling algorithm. Assessments against various baseline showed that BRS performs bet-

ter in characterizing dengue transmissions. The dengue regimes estimated by BRS are

characterized by their persistent nature. Next, climate analysis showed no short nor long

term associations between classified regimes with climate. Lastly, fitting BRS to simulated

disease data generated from a mechanistic model, we showed links between disease infec-

tivity and regimes classified using BRS. The model proposed could be applied to other

localities and diseases under minimal data requirements where transmission counts over

time are collected.

Introduction

An estimated 390 million dengue infections occur annually creating considerable health and

economic burdens [1]. Dengue is widespread across South-East Asian countries and is classi-

fied as hyper-endemic due to all four serotypes being in active circulation [2]. Widespread

ongoing urbanization and greater host movement rates via both domestic and international

travel have increased transmission, particularly across highly connected cities such as Singa-

pore. With favorable climatic conditions, a large daily influx of travelers and high population

density, the conditions for dengue transmission are ideal, as reflected in national case counts

being non-zero for every week in the past 10 years.

Vector control remains the primary control method for dengue, of the two dengue mos-

quito vectors Aedes aegypti and Aedes albopictus in Singapore [3]. The low seroprevalence

rates across the national population make the implementation of vaccination using Dengvaxia

(CYD-TDV) challenging, therefore techniques such as Wolbachia, fogging and breeding site

reduction are utilized to both prevent and control epidemics [4]. The successful application of

these methods in epidemics depends on the correct timing for control ramp up in which

house inspections increase, community engagement campaigns are rolled out to generate

awareness in breeding site reduction and fogging in areas deemed at high risk of transmission

[5].The characterization of dengue transmission dynamics through time is therefore critical.

Finite resources for ramp up of vector control measures also beg the question of estimating the

duration and severity of epidemics in different climates.

Compartmental models and statistical models such as time series estimation and machine

learning can characterize dengue transmission dynamics. Compartmental models model

infection as a function of separate compartments, and the evolution of the epidemic may be

described by ordinary differential equations [6]. However, parameter estimation and inputting

initial values for compartmental models often only estimate an epidemic curve, but usually

cannot explicitly model different endemic and epidemic dynamics [6]. Statistical frameworks

often characterize time series through autoregressive integrated moving average (ARIMA)

modelling or machine learning. ARIMA and machine learning both explain the current reali-

zation of infectious disease dynamics by its past observations and past exogenous variables.

ARIMA type models have been widely used to fit dengue time serieses [7] due to the ease of

interpretability. Lagged climatic variables have been assessed to affect dengue and influenza
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transmission counts linearly in temperate climates [8], but the signal for climatic variables on

dengue transmission counts has been found to be weak in tropical climates [9]. A combined

approach using time series subsceptible-infected-recovered (TSIR) models takes into account

the evolution of population across time as well as autoregressive disease dynamics, was first

introduced by Finkenstädt and Grenfell for measles [10]. It was then further developed for

modelling multi-strain diseases such as dengue by including cross-immunity dynamics [11–

13],. A limiting factor of these models is that they cannot account for the plausibly nonlinear

and time varying structure of infectious disease transmission across time. Calibration of multi-

strain TSIR models also require virological surveillance data, which may not be always avail-

able. Machine learning tools such as random forest and least squares shrinkage operator

(LASSO) have been proven to outperform ARIMA type models in predictive metrics such as

root mean square error for H5N1 [14] and the ROC in classifying dengue outbreaks respec-

tively [9]. However, these tools have difficulties in inferring the variables driving infectious dis-

ease transmission counts and do not have standard confidence intervals to determine model

compatibility with data. The variable importance factor calculated for ensemble methods such

as random forest remains only asymptotically valid and may not be useful for small count

infectious disease time series data [15].

Regime switching models are used to model phenomena in which time series are character-

ized by characteristic changes in behavior [16]. They originated from econometrics to account

for the changes in behavior in macroeconomic variables such as inflation and debt [17] and

they have potential applicability in modelling disease states and transmission due to the differ-

ential behavior of disease transmissions in epidemic and endemic periods [18]. Martinez et al.

explored influenza epidemic detection in Spain using a regime switching framework where

highly seasonal dynamics of infection allowed distinct classification of epidemic and endemic

disease states [19]. The framework used could detect periods and behavior of high influenza

transmission counts and low influenza transmission counts. However, regime switching mod-

els have yet to be applied for transmission dynamics which are highly non-seasonal, irregular

and persistent such as dengue within tropical climates [2,20].

This paper therefore explores the utility of regime switching models to investigate the

dynamic signature of dengue within Singapore. We aim to classify the irregularity in epi-

demic lengths, estimate the different dynamics in dengue transmission across the different

regimes and examine whether climate characterizes the estimated regimes. First, Bayesian

Autoregressive (BAR) models of various lags derived using Markov chain Monte Carlo

(MCMC) estimate dengue transmissions across time as a benchmark model to explain den-

gue transmission counts. Next, we utilized Bayesian fixed transition probability regime

switching models (BRS) to account for the endemic-epidemic structure of dengue while

allowing autoregressive parameters to vary in separate regimes. Model explanatory power

was assessed with the mean-absolute percentage error, log Bayes factor, relative deviance

information criterion, as well as the predictive power of the BRS by ex-ante classification

accuracy of regimes. Next, we estimate the influence of climate on dengue transmission

behavior by using the classified regimes from BRS as a dependent variable to climate with the

least absolute shrinkage operator (LASSO) with logistic link using area under the receiver

operator characteristic (AUC-ROC) as a tuning criterion. The LASSO was subject to non-

parametric bootstrapping to recover confidence intervals for inference of climatic variables

on the classified regimes. Lastly, using simulated data generated from a stochastic Suscepti-

ble-Infected-Recovered model, we provide possible mechanistic links between infectivity and

regimes classified using BRS.
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Results

We fitted BAR and BRS models for up to 2/3 lagged differenced dengue case counts, with an

additional BAR 3 specification containing climatic variables. (Tables 1 and 2, S1 Appendix)

Convergence was achieved on Gibbs sampling the posterior of BAR and BRS parameters (S2

Appendix). Testing univariate MCMC samples across parameters also indicates convergence

at the 0.05 level with the Geweke diagnostic test (S1 Appendix). Residual autocorrelation was

adequately accounted for by BRS and BAR models, but with autocorrelation on around the 1st

to 5th lags exceeding the 95% confidence interval for the BAR-2/3 Lag and BRS-2 Lag models

(S2 Appendix). We use the BRS model with 3 lags for parsimony and its ability to account for

residual autocorrelation across both regimes. The BRS-3 Lag model performed marginally bet-

ter on fitting the time series with 5.43% mean absolute percentage error (MAPE) compared to

5.61% and 5.55% on the BAR 2 and 3 Lag model respectively. (Tables 1 and 2) Regime switch-

ing models also characterized the likelihood of change in Dengue transmissions better with the

Bayes factor and relative DIC highly favoring regime switching models over autoregressive

models (Tables 1 and 2).

In the BRS-3 Lag model, the endemic and epidemic regime lasts for around 66 and 20

weeks respectively (Table 2). While our variable of interest is differenced dengue case counts

and identifying restriction set to the variance of the differenced dengue transmission counts,

Table 1. Coefficients of AR(2) and 2 Regime AR(2) models.

BAR-2 Lag1 BRS-2 Lag–Regime 1 (Endemic)2 BRS-2 Lag-Regime 2 (Epidemic)

Coefficients Posterior Mean 95% Credible Interval Posterior Mean 95% Credible Interval Posterior Mean 95% Credible Interval

Lag 1 -0.47 (-0.114, 0.051) -0.291 (-0.404, -0.174) 0.012 (-0.134, 0.161)

Lag 2 0.12 (0.051, 0.187) 0.011 (-0.1, 0.118) 0.136 (-0.016, 0.285)

MAPE 5.61% 3.11% 13.33%

MAPE (Aggregate) 5.43%

Bayes Factor 906

Relative DIC -592

Average Regime Length 60 Weeks (36.55, 69.00) 19 Weeks (11.06, 24.00)

Regime AUC-ROC 0.927

https://doi.org/10.1371/journal.pcbi.1007839.t001

Table 2. Coefficients of AR(3) and 2 Regime AR(3) models.

BAR-3 Lag BRS-3 Lag–Regime 1 (Endemic) BRS-3 Lag–Regime 2 (Epidemic)

Coefficients Posterior Mean 95% Credible Interval Posterior Mean 95% Credible Interval Posterior Mean 95% Credible Interval

Lag 1 -0.057 (-0.123, 0.012) -0.289 (-0.403, -0.173) 0.007 (-0.144, 0.161)

Lag 2 0.124 (0.057, 0.193) 0.055 (-0.056, 0.162) 0.132 (-0.021, 0.287)

Lag 3 0.086 (0.016, 0.153) 0.136 (0.039, 0.231) 0.058 (-0.101, 0.216)

MAPE 5.55% 3.10% 13.40%

MAPE (Aggregate) 5.41%

Bayes Factor 631

Relative DIC -649

Average Regime Length 66 Weeks (36.30, 67.45) 20 Weeks (10.63, 27.70)

Regime AUC-ROC 0.935

1 Autoregressive models coefficients were estimated using Gibbs samplings, with the dependent variable being change in dengue cases, and independent variables being

the first 2/3 lags of the change in dengue cases.2 Regime switching models were estimated using Gibbs sampling, with the dependent variable being change in dengue

cases, and independent variables being the first 2/3 lags of the change in dengue cases.

https://doi.org/10.1371/journal.pcbi.1007839.t002
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the model was able to correctly identify periods of high levels of dengue transmissions and

periods where levels of dengue transmissions are relatively low even when we compare regimes

to the undifferenced original time series (Figs 1 and 2). Posterior probabilities assigned to the

epidemic state also assign high probabilities near 1 to the epidemic regime when it occurs. (Fig

3), with contemporaneous classification of regimes being fairly accurate (BRS-3 Lag Model

AUC-ROC: 0.935) when we restrict the dataset to a previous timepoint compared to post-hoc

assessment after sufficient data (after 2005) was provided to train the BRS-3 Lag model (Fig 4).

Posterior predictive checks indicate that the posterior predictive density replicates the true

distribution of the data in the BRS 3 Lag model, however, more error and noise is observed in

fitting the epidemic regime. (Fig 5) 95% Credible intervals exclude 0 for lags 2 and lags 2 and 3

on BAR-2 and BAR-3 Lag models respectively, but only the endemic regime lag 1 and 3 coeffi-

cient on the BRS-3 Lag model. Plotting posterior samples of coefficients across regimes showed

that this is likely due to correlation between sampled parameters rather than a result of unim-

portant dimensions being specified (S2 Appendix).

Fig 1. Illustration of regimes to dengue case count data. Highlighted portions indicate fitted regimes of the BRS-3 Lag to dengue counts from 2000–

2017.

https://doi.org/10.1371/journal.pcbi.1007839.g001

Fig 2. Fit of regimes to dengue case incidence. Highlighted portions indicate fitted regimes of the BRS-3 Lag to dengue incidence from 2000–2017.

https://doi.org/10.1371/journal.pcbi.1007839.g002
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Our results suggest persistent epidemic and endemic regimes. Transitions across regimes

are characterized by the transition probabilities (TP) matrix in Table 3. This matrix shows the

likelihood of being in the same regime or switching over to another Regime in the next time

period. TP across the endemic (EN) and epidemic (EP) regimes are low (Table 3, TP regimes

EN to EP: 2.0%, TP regimes EP to EN, 5.5%), while the TP of staying within the EN and EP

regimes are high (Table 3, TP regime EN, 98.0%, TP regime EP, 94.5%). The average lengths of

the endemic and epidemic regimes appear persistent but the endemic regime is marginally

more so in comparison to the epidemic regime, with the epidemic regime less likely to remain

in its current regime compared to the endemic regime (Table 3).

The BRS model characterizes 2 different stages of dengue transmission dynamics, which

are apparent from the estimated regime-specific autoregressive parameters. Future changes in

dengue transmission counts in the endemic regime are expected to go lower as a proportion of

the observed change in dengue differenced counts one week before (Table 2, BRS-3 Lag

Model, Lag 1 Autoregessive Endemic Coefficient: -0.289). The epidemic regime values are

Fig 3. Posterior smoothed probabilities for the epidemic regime. Highlighted portions indicate regimes of the BRS-3 Lag to their corresponding

posterior probabilities from 2000–2017.

https://doi.org/10.1371/journal.pcbi.1007839.g003

Fig 4. Ex-ante classification accuracy of regimes. Highlighted portions indicate regimes of the BRS-3 Lag to their corresponding posterior

probabilities from 2000–2017.

https://doi.org/10.1371/journal.pcbi.1007839.g004
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expected to increase as a proportion of the observed dengue transmission counts one to three

weeks before. (Table 2, BRS-3 Lag Model, Lag 1–3 Autoregessive Epidemic Coefficients:

0.007,0.132,0.058).

LASSO with logistic link was conducted using regimes from the BRS-3 Lag model as depen-

dent variables (Table 4). Ranking the 600 independent variables according to coefficient mag-

nitude showed that a quadratic 5 week lagged response to air temperature, equivalent 14–20

week lag for relative humidity and 2–5 week lag for 2nd order interactions between relative

humidity and air temperature, absolute humidity and dewpoint temperature are correlated to

epidemic regime shift initiation with poor predictive ability in climatic responses with

AUC = 0.603 (Fig 6). Bootstrapping the LASSO over 1000 repetitions to recover estimated

coefficient intervals for inference also confirms high parameter uncertainty (S1 Appendix)

with all parameter intervals crossing 0 and highly undefined curvatures over the mean, 2.5%

and 97.5% quantiles of climate over the epidemic response. (S2 Appendix). The bootstrap

results also suggest joint unimportance of climatic variables on epidemic probabilities due to

assignment of null-values for more than 80% of the iterations across the bootstrap (S2

Appendix).

We simulated the sSIR model over a daily timescale for 6600 time points, with the burnin

of 2000 time points being discarded. The remaining time points were then aggregated into the

weekly level (Fig 7A). This provided a simulated dataset which has irregular fluctuations in

simulated infected case counts, corresponding to the probability of infection in the imposed

Fig 5. Posterior predictive check on BRS-3 Lag model. Figures from left to right represent: (1) Fitted dengue transmission counts on

observed values from the BRS-3 Lag model, with line representing the Y = X function across endemic and epidemic regimes. (2) Dengue

transmission counts fitted against dengue transmission counts one week ago, with line representing the Y = X function across endemic and

epidemic regimes. (3) Probability density function of dengue transmission counts across endemic and epidemic regimes.

https://doi.org/10.1371/journal.pcbi.1007839.g005

Table 3. Posterior transition probability matrix.

Posterior Transition Probability Matrix

Endemic Regime Epidemic Regime

Endemic Regime 98.0% 2.0%

Epidemic Regime 5.5% 94.5%

1 Transition probability matrices were computed by averaging the sampled probabilities of being in the same regime

or transitioning into another regime across MCMC samples

https://doi.org/10.1371/journal.pcbi.1007839.t003
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epidemic and endemic phases using the sSIR transition matrix (Fig 7A, 7B and 7C). Fitting

BRS to the differenced and normalized simulated case counts using 3 lag terms showed that all

residual auto-correlation was accounted for within the model. The fitted regimes using BRS

correspond to periods where the number of infected individuals is elevated (Fig 7A) and when

the probability of infection is above 0.2 in general (Fig 7C).

Discussion

BRS models above can identify characteristic changes in the behavior of dengue case counts,

which form different repeating phases where regimes alternate. The methods utilized here can

also estimate the variables which explain the trends of dengue case counts in each of these

regimes. We interpret regime 1 as a stable endemic regime where changes in dengue counts

are pushed down to a proportion of the week before, and regime 2 an epidemic regime which

is characterized by an increase in change of dengue differenced dengue counts in comparison

to the week before. Both regimes, the endemic and epidemic regimes are highly noncyclical

with varying temporal lengths across time in Singapore (Figs 1 and 2). Although 3 regimes

were considered for dengue transmission, constant switching and non-persistence between

Table 4. Top coefficients of LASSO Model with logistic link.

LASSO Logistic Regression1

Coefficient (Smallest) Value Coefficient (Largest) Value

Air Temperature Squared lag 5 -0.42 Air Temperature: Relative Humidity Squared lag 13 2.75

Relative Humidity lag 19 -0.04 Dewpoint Temperature: Relative Humidity Squared lag 5 2.75

Relative Humidity lag 18 -0.03 Relative Humidity Squared lag 20 2.96

Relative Humidity lag 20 -0.02 Absolute Humidity: Relative Humidity Squared lag 2 3.29

Relative Humidity lag 16 -0.01 Absolute Humidity: Relative Humidity Squared lag 3 3.48

Relative Humidity lag 14 -0.01 Air Temperature: Relative Humidity Squared lag 4 4.54

AUC 0.603

1LASSO with logistic link was tuned with 5 fold cross validation, with the dependent variable being the allocated

regimes from the BRS–3 Lag model. Colons represent 2nd order interaction terms between the variables listed.

https://doi.org/10.1371/journal.pcbi.1007839.t004

Fig 6. Predicted epidemic potential due to climatic factors. Highlighted portions indicate regimes of the BRS-3 Lag to their corresponding LASSO

estimated epidemic potential from 2000–2017.

https://doi.org/10.1371/journal.pcbi.1007839.g006

PLOS COMPUTATIONAL BIOLOGY Inference on dengue epidemics with Bayesian regime switching models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007839 May 1, 2020 8 / 15

https://doi.org/10.1371/journal.pcbi.1007839.t004
https://doi.org/10.1371/journal.pcbi.1007839.g006
https://doi.org/10.1371/journal.pcbi.1007839


PLOS COMPUTATIONAL BIOLOGY Inference on dengue epidemics with Bayesian regime switching models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007839 May 1, 2020 9 / 15

https://doi.org/10.1371/journal.pcbi.1007839


regimes indicated overfitting for this specification (S1 Appendix) therefore 2 regimes were

used to be representative of Singapore’s dengue transmission behavior.

The results show varying levels of persistence across the epidemic and endemic dengue

regimes with the endemic regime generally being more persistent on average. However, when

we explored the effects of climate on the estimated regimes, results suggest that climatic factors

up to even 20 weeks before do not affect the probability of being within a regime or another.

(S1 Appendix, S2 Appendix). While the importance of climatic factors such as temperature

and humidity for dengue counts were previously discussed for Singapore [21,22] and other

countries [23–25], along with preliminary estimation of a BAR-3 with climatic variables point-

ing towards near term effects of precipitation and dewpoint temperature on change in dengue

counts up to 3 weeks before (S1 Appendix), our results suggest that regimes in dengue trans-

missions are driven structurally by the changes in dengue counts themselves rather than cli-

matic factors. Mechanistically, the epidemic regimes classified using BRS on simulated data

also point towards the epidemic regime as periods of high infection probability (Fig 7). Lastly,

the BRS method allows nowcasting of dengue epidemics through inferring differenced dengue

transmission counts with fairly high predictive accuracy (Fig 4, Table 2).

Exploring long-term structural dynamics of dengue is important for vector control as it sig-

nals that considerable forward planning and financial resource allocation is necessary for suc-

cessful implementation. Distinguishing between epidemic and endemic regimes, prediction of

upcoming regimes and characterizing the persistence and climatic differences of epidemics

provides policy makers with the estimated duration required for epidemic control where other

data such as serotype switching may be unavailable. The methods described here could be eas-

ily applied to other countries where dengue transmission counts are collected. One potential

application could be to compare the regime lengths and dynamics of different countries, and

explore the factors driving different dengue regime patterns.

There are several limitations of the approach outlined above. The regime switching model

structure demands parsimony as each additional regime requires an additional fold of explana-

tory variables for estimation. Longer dynamics are thus harder to estimate for BRS. While the

model estimates phenomological components, such as the evolution of dengue case counts

through autoregressive parameters and structural components, such as the regimes of dengue

transmission, the interpretation of structural breaks within the model remains a largely quali-

tative exercise. Serotype switching, which is documented to be a possible cause of epidemics in

endemic regions [26] is omitted due to the unavailability of data. Sensitivity to misclassifica-

tion may also make BRS models a suboptimal forecasting tool [27], which limits BRS to in-

sample analysis of dengue counts. Lastly, further work is required to enhance the model to

incorporate more policy components which may affect dengue transmission such as vector

control efforts. Incorporating vector control and serotype switching will allow investigation in

the important interactions between structural and phenomological effects on the temporal

evolution of dengue.

To the best of the authors’ knowledge, this is the first application of regime switching auto-

regressive models for analyzing dengue transmission dynamics across separable states. We

found evidence that epidemic and endemic regimes which characterize dengue transmission

are highly persistent and are not associated to climatic factors. Our results point towards the

need for long-term policy formation for effective vector control which is timed with upcoming

epidemic switches.

Fig 7. Fit of BRS to sSIR simulated case counts. Figure represents: A) Simulated infected individuals B) Fitted epidemic regime probability

over the infected time series. C) Infectivity parameter used for the simulated sSIR model. Highlighted portions indicate BRS 3-Lag fitted

regimes to the corresponding timepoint.

https://doi.org/10.1371/journal.pcbi.1007839.g007
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Material and methods

Sources of data

Dengue incidence data is collected by the Ministry of Health, Singapore with mandatory noti-

fication of virologically confirmed or laboratory-confirmed cases [28]. We aggregated individ-

ual-level data into the weekly number of cases from 2000 to 2017. The Institutional Review

Board of the National University of Singapore provided the ethical approval for this study.

Climate data was obtained from ERA5, published by the European Centre for Medium-

Range Weather Forecasts. ERA5 provides hourly estimates across a 30km grid [29], which we

have aggregated over a weekly timescale and spatially averaged over Singapore. Mean, mini-

mum and maximum air temperature at 2m was calculated to represent thermal forcing and

stress on vector population growth, and total rainfall for the weekly interval obtained for

breeding site availability. Air temperature and dewpoint temperature were utilized to calculate

saturation vapor pressure and actual vapor pressure using Tetens formula, whence relative and

absolute humidity could be estimated using standard formula [30].

Statistical Analysis

Bayesian Autoregressive (BAR) Models. Firstly, we built parsimonious BAR models

with 2 to 4 lags with differenced dengue counts as the dependent variable to study the effects

of past differenced dengue counts and climatic variables on current differenced dengue counts,

until residual autocorrelation was sufficiently accounted for (S2 Appendix). Differenced den-

gue counts were utilized to ensure that our dependent variable is a difference stationary pro-

cess. We let Yt denote dengue differenced dengue counts for week t, Xt denote one or more

exogenous climatic variables while εt~N(0,σ2) represents white noise. βi represents the autore-

gressive term which is estimated for a maximum of p number of lags

Yt ¼ b0 þ
Xp

i¼1

ðbiYt� i þ yiXt� iÞ þ εt ð1Þ

We placed the canonical normal prior on β0,βi,θi~N(0,100) having a large variance for the

intercept, AR and exogenous climatic parameters to impose noninformativeness. The inverse

gamma prior is placed on the variance parameter σ~IG(0.5,0.5) with rate and shape hyperpara-

meters made equal to also impose noninformativeness. Conditional conjugacy between model

priors and likelihood allows for Gibbs sampling of parameter posteriors. Gibbs sampling for

BAR is run with 50000 iterations with a burnin of 5000. S1 Appendix details the derivation of

these distributions and full computational strategy.

Bayesian Regime Switching Models. Regime switching models [31] were used to estimate

the dynamics and change points in dengue transmission across time. In contrast to normal

autoregressive models, regime switching models are characterized by multiple autoregressive

models contingent on which regime the dependent variables are currently in. The estimation

detects and fits separate models depending on its classification at the current time point of an

epidemic or endemic regime.

The Bayesian fixed transition probability regime switching (BRS) model [16] was utilized

(2).

Yt ¼ bst ;0
þ
Xp

i¼1

bst ;i
Yt� i þ εst

ð2Þ

Where Yt denote differenced dengue counts, st indexes the regime at the tth timepoint and
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εst
� Nð0; s2

st
Þ represents white noise. st follows the Markov property with a transition matrix

to be estimated. The intercept bSt ;0
may vary across regimes, as well as the regime specific auto-

regressive and variance terms parameterized by bst ;i
and s2

st
for a maximum of p number of

lags. Additionally, as climatic signals on dengue counts were found to be weak in the Bayesian

autoregressive case, they were omitted from the BRS specification for model parsimony.

To estimate our model, we placed the same normal and inverse gamma priors on our

regression and variance parameters βs~N(0,100) and σs~IG(0.5,0.5) respectively. Regimes are

sampled using multi-move Gibbs sampling via the Carter-Kohn recursion [16] with up to 3

regimes considered. The recursion first conducts a forward pass filtering step to infer the prob-

ability of arriving at a regime given the first t observations for all t�{1,. . .,T}, where T denotes

the final time point. Next, the backward pass smoothing step provides the probabilities of

being in a regime at t, given its future observations {t+1,. . .,T}. The second step allows the

recursion to consider the full data likelihood and provides assignment of datapoints to each

regime, which were then post-hoc labelled based on their behavior. The Dirichlet prior ξ1~Dir
(25,5),ξ2~Dir(5,25) was also placed on each row of the transition matrix, dictating the belief

that the probability of staying within one regime is higher than the probability of transitioning

to another. We impose the identifiability constraint σepidemic>σendemic to account for label

switching. This is reasonable as dengue transmission counts should fluctuate more in absolute

numbers within an epidemic compared to endemic period. These steps are nested within a

Gibbs sampling framework due to prior-likelihood conditional conjugacy. Gibbs sampling for

BRS is run with 50000 iterations with a burn-in of 5000. Full computational details are pro-

vided in the S1 Appendix.

Model assessment. First, Geweke convergence diagnostic checks are conducted to ensure

that MCMC estimation is well-behaved [32]. Residual autocorrelation is computed to ascertain

whether dengue transmission dynamics are properly accounted for and to determine the maxi-

mum lag order for each specification. Next, posterior predictive checks are conducted by com-

paring the fit of the posterior predictive distribution with the actual data. Fourth, posterior

probabilities of the fitted regimes, which provide a measure of uncertainty to regime classi-

fication are computed. Fifth, we used mean-absolute percentage error (MAPE) and log Bayes

factor as the model assessment criterion for comparing model fit of dengue differenced trans-

mission counts between BAR and BRS as it balances explanatory power of the estimated

model along with parsimony. The log Bayes factor was computed using naïve Monte Carlo

simulation as detailed in S1 Appendix. Additionally, the relative deviance information crite-

rion (DIC) comparing BRS models to the BAR models was computed, as detailed in S1 Appen-

dix. Lastly, ex-ante classification efficacy of BRS on regimes is conducted in a rolling manner,

where we fit the BRS specification sequentially from around 1/3 of the data set at the 250th

week onwards and increase the information set provided to the BRS by 1 more week in each

refitting. We obtain the contemporaneously classified regime from the regime fitted to the

final timepoint in each model iteration and compared the classification to the case where BRS

is estimated on the full dataset.

Least Absolute Shrinkage and Selection Operator (LASSO). The least absolute shrink-

age and selection operator (LASSO) was used to estimate the influence of climate on dengue

transmission behavior, due to its ability to provide both model parsimony and regularization

in a high dimensional climatic space to enhance predictive accuracy and interpretability.

Briefly, we fit LASSO (3) with a logistic link with Yt−i,j locally measured climatic factors on St

estimated regimes obtained from (2). Factors considered were dewpoint temperature, air tem-

perature, precipitation, absolute and relative humidity of up to 20 weeks so that possibly long-

term climatic fluctuations may be taken into account. These factors were normalized 0 to 1 by
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subtracting each factor by its minimum value and dividing each differenced factor by the

range of values each factor observes. Normalization was conducted to account for different

units of measurement and the non-invariance of LASSO regularization to scale [33]. Squared

transformations and 2nd order interactions were also considered to estimate possibly nonlinear

relationships between climate and mosquito biology.

log
pðSt ¼ 1Þ

1 � pðSt ¼ 1Þ

¼ b0 þ
X

j2fclimateg

X20

i¼1

ðbi;j;1Yt� i;j þ bi;j;2Y
2

t� i;jÞ þ
X

j;k2fclimateg;j6¼k

X20

i¼1

ðbi;jk;1Yt� i;jYt� i;k

þ bi;jk;2Y
2

t� i;jY
2

t� i;kÞ ð3Þ

subject to the constraint that ||β||1�λ, for some penalty term λ, as estimated below.

Five-fold cross validation was first conducted to yield test error rates which do not suffer

from unreasonably high bias or variance [34]. The cross-validation step optimizes the regulari-

zation parameter λ using area under curve of the receiving operator characteristic (AUC-ROC)

as the tuning criterion. We then refitted our data using the optimal regularization parameter

λ� to produce probabilities for being in each regime at each timepoint. Next, bootstrapping

was conducted over 1000 iterations to recover confidence intervals and bootstrap mean esti-

mates [33] for each of our LASSO dependent variables. The bootstrap also allows computation

of LASSO inclusion probabilities, which provides a measure of the number of times the

LASSO estimation strategy assigns a parameter null value.

Stochastic Susceptible-Infected-Recovered Model. Lastly, to provide a mechanistic

interpretation of the labelled regimes, in addition to looking at posterior transition probabili-

ties and the data fit to the regimes on actual case count data, we fit BRS to data simulated using

a stochastic Susceptible-Infected-Recovered (sSIR) model. The sSIR model was used due to its

ability to generate realistic time series of disease case counts [6]. For the sSIR, we first let infec-

tions be parameterized by separate infection functions with seasonality, state (epidemic or

endemic) and population dependence. sSIR difference equations are then iterated forward in

time to provide a simulated time series of infected individuals. Simulated infected individuals

were then pre-processed through normalization and differencing, with regime classification

conducted by fitting the simulated time series using Bayesian regime switching following the

same estimation steps conducted for dengue case counts. The full technical details are pro-

vided in S3 Appendix.
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10. Bjørnstad ON, Finkenstädt BF, Grenfell BT. Dynamics of Measles Epidemics: Estimating Scaling of

Transmission Rates Using a Time Series Sir Model. Ecol Monogr. 2002; 72: 169–184. https://doi.org/

10.1890/0012-9615(2002)072[0169:DOMEES]2.0.CO;2

11. Reich NG, Shrestha S, King AA, Rohani P, Lessler J, Kalayanarooj S, et al. Interactions between sero-

types of dengue highlight epidemiological impact of cross-immunity. J R Soc Interface. 2013; 10:

20130414. https://doi.org/10.1098/rsif.2013.0414 PMID: 23825116
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