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The reverse water-gas shift reaction (RWGSR), a crucial stage in the conversion of

abundant CO2 into chemicals or hydrocarbon fuels, has attracted extensive attention

as a renewable system to synthesize fuels by non-traditional routes. There have been

persistent efforts to synthesize catalysts for industrial applications, with attention given

to the catalytic activity, CO selectivity, and thermal stability. In this review, we describe

the thermodynamics, kinetics, and atomic-level mechanisms of the RWGSR in relation

to efficient RWGSR catalysts consisting of supported catalysts and oxide catalysts. In

addition, we rationally classify, summarize, and analyze the effects of physicochemical

properties, such as the morphologies, compositions, promoting abilities, and presence of

strongmetal-support interactions (SMSI), on the catalytic performance and CO selectivity

in the RWGSR over supported catalysts. Regarding oxide catalysts (i.e., pure oxides,

spinel, solid solution, and perovskite-type oxides), we emphasize the relationships

among their surface structure, oxygen storage capacity (OSC), and catalytic performance

in the RWGSR. Furthermore, the abilities of perovskite-type oxides to enhance the

RWGSR with chemical looping cycles (RWGSR-CL) are systematically illustrated. These

systematic introductions shed light on development of catalysts with high performance

in RWGSR.

Keywords: RWGSR, catalytic mechanism, catalytic performance, supported metal catalysts, oxide catalysts,

chemical looping cycles

INTRODUCTION

The increasing emissions of anthropogenic CO2 into our atmosphere through the unrestricted
use of fossil fuels to drive industrial processes and human activity, particularly over the past
few decades, has resulted in damage to the “carbon neutral” status of the earth and thus caused
serious harm to the ecological system and to sustainable human development (Aresta et al., 2014).
Therefore, the extensive efforts are needed to develop CO2 utilization technologies to address these
issues (Mikkelsen et al., 2010). Benefiting from plentiful low-cost CO2 raw materials as well as the
increasingly advanced CO2 capture and separation technologies, CO2 utilization is promising for
commercial-scale applications (Aresta et al., 2016; Klankermayer et al., 2016).
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The reverse water-gas shift reaction (RWGSR) is an
indispensable part of CO2 utilization because it is a non-
fossil route for providing feedstock for important chemical
processes, such as methanol synthesis (Gao et al., 2016; Huš
et al., 2017), Fischer-Tropsch synthesis (Riedel et al., 1999), and
Monsanto/Cativa acetic acid synthesis (Maitlis et al., 1996; Jones,
2000). When it is used as an intermediate step in the direct
thermochemical transformation of CO2 to hydrocarbons, such as
methane (Sahebdelfar and Takht Ravanchi, 2015; Avanesian et al.,
2016), ethanol (Sahebdelfar and Takht Ravanchi, 2015), low-
carbon olefin (Liu et al., 2008; Zheng et al., 2017), and dimethyl
ether (Centi and Perathoner, 2009), the RWGSR renders the
process more practical. An important workable application of
the RWGSR is associated with scarce H2 reutilization in the
Mars Exploration Program, in which it could regenerate H2O
more easily for astronauts to utilize (Avanesian et al., 2016). In
biomass-based solid oxide fuel cells, the ratio of CO2/CO/H2

in the biomass gas can be considerably dictated by the RWGSR
to realize its maximum energy storage efficiency (Chen et al.,
2017a). Additionally, the RWGSR can be used to couple CO2

with alkylene oxide or low alkanes to generate valuable chemicals,
including ethylene glycol (Arunajatesan et al., 2001), styrene
(Burri et al., 2007; Batista et al., 2010), and light olefins
(Mukherjee et al., 2016; Kang et al., 2017). In contrast to the direct
thermal cracking process, these coupled reactions can effortlessly
break the thermodynamic equilibrium constraints and effectively
accelerate their utilization (Reddy et al., 2008; Rao et al., 2009).

The chemically inert CO2, with its high C-O bond energy
of 806 kJ mol−1, enables the chemical transformation of CO2

to CO via the RWGSR (Wang et al., 2011). According to
activation theory, the adsorption of CO2 on the oxygen vacancy
sites of certain catalysts initiates the first step of the RWGSR
when it involves the cleavage of its own C-O bond under
thermal energy-driven conditions (Su et al., 2019). There are two
idiographic activation mechanisms proposed for the production
of CO from the RWGSR based on experimental observations and
theoretical calculations (Goguet et al., 2016). The first pathway
is CO2 hydrogenation to CO via the RWGSR, which proceeds
via more reactive carboxyl (COOH∗) or formate (HCOO∗)
intermediates, and the other pathway is the decomposition of
CO2 to CO∗ + O∗ via the direct C-O bond cleavage pathway
(Weatherbee and Bartholomew, 1984; Kattel et al., 2016a). Once
activated, these adsorbed intermediates will be instantaneously
dissociated or desorbed on the constructed active centers of
these catalysts to form the CO product (Tang et al., 2009;
Roiaz et al., 2016). Based on this objective analysis, it is
imperative to develop effective catalysts for CO2 activation in
the RWGSR.

In this review, we concentrate on the catalytic performance
of the RWGSR with two major categories of heterogeneous
catalysts, including supported metal catalysts and oxide
catalysts, which is a subject of increasing interest. Utilizing the
thermodynamics and kinetics analyses and the atomic-level
mechanisms, the principles of RWGSR catalyst design will be
comprehensively described. In addition, the physicochemical
properties of supported catalysts, such as the morphologies,

compositions, promoting abilities, and presence of metal-
support interactions, which affect the catalytic activity
and CO selectivity of the RWGSR, will be systematically
introduced to elucidate the structure-activity relationships.
The relationships among the surface structure, oxygen
storage capacity (OSC) and catalytic performance of oxide
catalysts in the RWGSR are highlighted, especially for the
application of perovskite-type oxides to enhance the RWGSR-
CL. The present review provides general guidelines for
the state-of-the-art architecture of heterogeneous catalysts
for the RWGSR and a discussion of their challenges and
further prospects.

THERMODYNAMIC ANALYSIS

Since CO is arguably the most important C1-builiding
block, the synthetic route of “CO2-to-CO” is considered an
economical and valuable strategy (Barnard, 2008; Brennführer
et al., 2009; Wu et al., 2011). Based on the thermodynamic
standard enthalpy, the transformation of CO2 to CO via the
RWGSR is more thermodynamically favorable at elevated
temperature because it is reversible and endothermic and
because its chemical equilibrium is pressure independent,
as shown in Equation (1). However, the RWGSR is always
accompanied by undesired CO2 methanation over the
catalysts because of its excessive hydrogenation under ambient
pressure (Kim et al., 2015; Ishito et al., 2016; Zhou et al.,
2017). In addition, methanation is exothermic, favored at
lower temperature, and pressure dependent, as shown in
Equation (2).

CO2 +H2 → CO+H2O 1rH
θ(298.15K)

= + 40.6 kJ mol−1. (1)

CO2 + 4H2 → CH4 + 2H2O 1rH
θ(298.15K)

= −165.0 kJ mol−1. (2)

For both the parallel and the cascade reactions over the catalysts,
the CO yield is seriously restricted to H2 utilization in additional
competitive methanations. From the thermodynamic standpoint,
as shown in Figure 1, the equilibrium composition favors the
production of CH4 rather than that of CO in the RWGSR at
lower temperatures. Therefore, it is challenging to construct
heterogeneous catalysts to restrict the production of undesirable
CH4 as a lower value-added by-product for applications at
lower temperatures.

MECHANISM

The well-known catalytic mechanisms proposed for the RWGSR
reaction can be classified into two categories: surface redox
mechanisms and associative mechanisms (Su et al., 2017). The
major difference between these mechanisms is whether the
dissociated H2 species is involved in the formation of the carbon-
containing intermediates, namely, formats, and carboxyls (Lin
et al., 2017).
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FIGURE 1 | Equilibrium composition of the RWGSR and CO2 methanation

(CO2:H2 = 1:1).

Surface Redox Mechanism
The alternative oxido-reduction of active sites on the catalyst
surface in the atmosphere of CO2/H2 feedstock is believed to be
a prerequisite for the sustainability of the RWGSR. For Cu-based
catalysts, e.g., the reactionmechanism can be described as follows
(Chen et al., 2000; Xu and Ge, 2016):

CO2(g)+ 2Cu0(s) → CO(g)+ Cu2O(s) (3)

H2(g)+ Cu2O(s) → H2O(s)+ 2Cu0(s). (4)

In these reactions, Cu0, the active site in the RWGSR, is involved
in the rate-controlling step, CO2 reduction. The CO2 oxidizes the
Cu0 to generate Cu+ and CO, while the H2 reduces the Cu+

to Cu0 to form H2O; thus, the reaction conforms to a redox
mechanism. When the whole catalytic process of the RWGSR is
considered in detail, the mechanism of the surface redox reaction
can be decomposed into the following basic steps (“∗” denotes the
vacancy sites) (Gines et al., 1997; Fornero et al., 2017):

CO2(g)+ 2∗ → CO∗
+O∗ (5)

CO∗
→ CO(g)+∗ (6)

H2(g)+ 2∗ → 2H∗ (7)

2H∗
+O∗

→ H2O
∗
+ 2∗ (8)

H2O
∗
→ H2O(g)+

∗ . (9)

The study of kinetics is an important tool for establishing the
redox mechanism of the RWGSR. Based on the Monte Carlo
method to approximately simulate the RWGSR process over
the Cu-based catalysts, CO2 dissociates immediately to give CO
and adsorbed oxygen species and is then reduced by H2 with
equivalent stoichiometric coefficients (Gines et al., 1997; Xu
and Ge, 2016). In this process, the dissociative adsorption of
CO2 on the Cu particles is the rate-determining step, and the
reduction of the adsorbed oxygen-containing species and surface

hydroxyls follows (Fujita et al., 1992; Wang et al., 2013b). Real-
time temporal analysis of the products confirms that a surface-
reduced Au/CeO2 catalyst can be reoxidized by exposure to
CO2 pulses and that the surface oxygen deposited in this way
can be reactively removed again, which is a prerequisite for
the redox mechanism in the RWGSR. Furthermore, neglecting
the changes in the hydroxyls and H2O on the surface imposed
by the presence of H2 in the feed, the activity for active
oxygen deposition is sufficient to make the redox mechanism the
dominant reaction pathway (Fornero et al., 2017). Realistically,
the RWGSR proceeds though a redox mechanism over Au/TiO2

catalysts in which the existing surface hydroxyls, surface Ti3+,
and oxygen vacancies can jointly participate in the formation
of a hydroxycarbonyl intermediate, which quickly decomposes
to CO (Bobadilla et al., 2018). According to Density Functional
Theory (DFT) calculations, the RWGSR on Cu@Mo2C (001)
is preferentially selective for CO via a redox mechanism, and
compared to the reaction via a COOH mechanism, the HCOO
mechanism is kinetically less favorable due to its higher activation
barrier in the rate-determining step, as shown in Figure 2. In
the same way as the redox mechanism, the RWGSR occurs
first by spontaneous dissociation of H2 to form H∗, second by
CO∗ and O∗ formation from the direct C-O bond cleavage of
molecular CO2, third by the reaction of H∗ and O∗ to produce
OH∗, fourth by the reaction of two OH∗ species to generate
H2O∗, and finally by the desorption of CO and H2O gas on the
Cu@Mo2C (001) catalyst. Notably, the step for OH∗ formation
rather than CO∗ formation in the redox mechanism, which has
a higher activation barrier of 1.4 eV, is the rate-determining
step (Jing et al., 2019).

Associative Mechanism
Formate Species
The RWGSR pathway involves a formate (HCOO∗) intermediate
that is formed by the initial CO2

∗ hydrogenation step and
subsequently undergoes an instantaneous dissociation reaction
to produce CO (Arunajatesan et al., 2007; Cao et al., 2016; Chen
et al., 2016; Wolf et al., 2016). The reaction is described by
the following steps (“∗” denotes the vacancy sites) (Chen et al.,
2017a,b):

H2(g)+ 2∗ → H∗
+H∗ (10)

CO2(g)+
∗
→ CO2

∗ (11)

CO2
∗
+H∗

→ HCOO∗
+

∗ (12)

HCOO∗(COOH∗)+∗
→ HCO∗(COH∗)+O∗ (13)

HCO∗(COH∗)+∗
→ CO∗

+H∗ (14)

H∗
+O∗

→ OH∗
+

∗ (15)

H∗
+OH∗

→ H2O
∗ (16)

H2O
∗
→ H2O(g)+

∗ (17)

CO∗
→ CO(g)+∗ . (18)

As indicated by the temperature-programmed desorption spectra
of H2/CO2 co-adsorbed on Cu/SiO2 and Cu/K/SiO2 catalysts,
the H atoms either associate with CO2-Cu to form formates or
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FIGURE 2 | Calculated potential energy profile of the most favorable redox (red line), HCOO (green line), and COOH (black line) mechanisms for the RWGSR on the

Cu@Mo2C (001) surface. The numbers in the figure are the activation barriers of the elementary steps. The numbers in red, green, and black circles are the activation

barriers of the rate-limiting steps in the redox, HCOO, and COOH pathways, respectively. Reprinted with permission from Jing et al. (2019). Copyright (2019) American

Chemical Society.

migrate to the surfaces of the interfacial sites, resulting in the
formation of K2O and CO by decomposition (Chen and Cheng,
2002; Chen et al., 2003). Regarding the chemical state of Cu in
the RWGSR, the Cu0 and Cu+ atoms are proposed to coexist
on the Cu-based catalyst surface, and their roles are possibly to
dissociate H2 and stabilize the formats, respectively (Chen et al.,
2000). Based on transient diffused reflection Fourier transform
infrared spectroscopy (DRIFTS), the appearance of interfacial
sites may result from an electron transfer from the Pt to the
neighboring O in the KOx species over the Pt/K/mutille and
Pt/K/L catalysts, which are responsible for the decomposition of
the formates to produce CO (Liang et al., 2017; Yang et al., 2017).
The in-situ DRIFTS also shows that when strong basic sites,
such as those of KOH, are introduced into Ni/Al2O3 catalysts,
the formates instead of the carbonates are strongly absorbed
on their surface, promoting the hydrogenation of CO2 to CO
via the RWGSR (Zhang et al., 2019a). For Cu/CeO2-nanorode
catalysts, in-situDRIFTS points to bidentate formate as the active
intermediates for the RWGSR because the preferential formation
of a high bidentate formate coverage on their surface may have
the surface geometry of a CeO2 (110) termination in which
the nearest surface oxygen distance is 2.71Å, which is a more
suitable spacing for the formation of bidentate formates and
could thus be the main reason for the excellent performance
(Lin et al., 2018a,b). The results from in-situ DRIFTS indicate
that the CO2 must first react with the surface hydroxyls on
Al2O3 to form bicarbonates, which subsequently react with the
adsorbed H on Ru or Au to produce adsorbed formates, most

likely at the metal/oxide interface, and then react rapidly with
the adsorbed H to form CO (Wang et al., 2016a; Bobadilla et al.,
2018). Based on a steady-state isotopic transient kinetic analysis,
the disappearance trend of the infrared signatures of H12COO∗

is consistent with the MS signals of 12CO products when the
feed gas is switched from 12CO2/H2/Ar to 13CO2/H2/Ar over
a Pd/Al2O3 catalyst, suggesting that H12COO∗ is the reactive
intermediate rather than a spectator, and the rate-determining
step for the CO formation is related to HCOO∗ (Wang et al.,
2017). DFT calculations demonstrate that a formate mechanism
is feasible for the RWGSR catalyzed by M1/W6S8 (M = Fe, Ru,
and Os). More concretely, HCOO∗ formation starts with the
most stable adsorption configuration of CO2

∗, in which an H∗

is placed on the S site, and H∗ tends to attack the C atom of CO2

to form a C-H bond.When HCOO∗ is formed, it is hydrogenated
to form a HCOOH∗ intermediate with a relatively low activation
energy barrier, and the conversion will proceed to form the
final product, CO. In the overall process, the H2 dissociation on
M1/W6S8 (M = Fe, Ru, and Os) is the rate-determining step
(Zhang et al., 2018).

Carboxyl Species
The carbonyl species, the predominately active intermediate,
is selectivity produced through activation of the C-O bond
of the CO2 molecule followed by H-assisted formation of
COOH∗ (Tibiletti et al., 2004; Kim et al., 2012a,b). This
intermediate immediately decomposes into CO by two different
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FIGURE 3 | Energy profile showing the reactants, intermediates, transition states, and final products for the RWGSR on the Ni5/YSZ(111) interface (Color key: O, Zr,

Y, Ni, C, and H are represented by red, gray, cyan, blue, black, and white spheres, respectively. The yellow spheres represent the oxygen vacancies). Reprinted with

permission from Cadi-Essadek et al. (2018). Copyright (2018) American Chemical Society.

pathways, as shown below (“∗” denotes the vacancy sites)
(Chen et al., 2017a,b).

(I) H2(g)+2∗ →H∗+H∗ (1) (II) H2(g)+2∗ →H∗+H∗ (1)

CO2(g)+
∗ →CO2

∗ (2) CO2(g)+
∗ →CO2∗ (2)

CO2
∗+H∗ → (COOH∗)+∗ (3) CO2

∗+H∗ → (COOH∗)+∗ (3)

COOH∗+∗ →CO∗+OH∗ (4) COOH∗+∗ →HCO∗(COH∗)+O∗ (4)

H∗+OH∗ →H2O
∗ (5) HCO∗(COH∗)+∗ →CO∗+H∗ (5)

H2O
∗ →H2O(g)+

∗ (6) H∗+O∗ →OH∗+∗ (6)

CO∗ →CO(g)+∗ (7) H∗+OH∗ →H2O
∗ (7)

H2O
∗ →H2O(g)+

∗ (8)

CO∗ →CO(g)+∗ (9)

On the basis of in-situ Fourier transform infrared
spectroscopy (FT-IR) analyses, a Pt/TiO2 catalyst treated at
a high temperature and possessing reducible TiO2 sites but
no Pt sites is exclusively active for CO product, and thus the
carboxyl species formed on the reducible TiO2 sites are the
intermediates in the formation of CO in the RWGSR (Kim
et al., 2013). H/D isotopic substitution and kinetics and the
results of the in-situ DRIFTS experiments illustrate that the
CO formation proceeds via a mechanism in which H assists
the dissociation of the C-O bond and that a carboxyl is a

more plausible intermediate than is a formate. In addition, the
formates is still present on the Cu surface under the reaction
conditions, but a fraction of them can be considered spectators
of the reaction mechanism (Karelovic et al., 2019). The results
from transient DRIFT-MS steady-state isotopic transient kinetic
analysis analyses indicate that the characteristic exchange time
(defined here as the time at which the DRIFTS signal of the
intermediate decreases by 50% following the isotopic switch) of
the carboxyl species agrees with that of the CO product (defined
here as the time needed to achieve 50% exchange between the
two isotopes, e.g., 12CO(g) and 13CO(g) of the main reaction
product from MS measurements) when the feed gas is switched
from 13CO2/H2 to 12CO2/H2 over the Pt/CeO2 catalyst. These
data quantitatively demonstrated that, for the present catalyst
and conditions, the main reaction pathway is the formation
of CO from the carboxyl species at the oxygen vacancies over
the Pt-CeOx interface (Goguet et al., 2004a). DFT calculations
indicate that the formation of COOH∗ over Mo6S8-TM (TM =

Pd, Pt, Ag) nanoclusters by the binding of the H∗ atom to the
O atom of CO2∗ followed by its decomposition to CO is very
favorable. Note that the COOH∗ dissociation over Mo6S8-Ag
is the rate-determining step in the overall process, whereas
the rate-determining step of Mo6S8-Pd and Mo6S8-Pt in the
carboxyl pathway is the transition step of the H2 dissociation
(Zheng et al., 2017). Moreover, DFT calculations show that the
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RWGSR complies with a carboxyl mechanism over a Ni5/YSZ
(111) catalyst through the identification of the structures and
calculation of the energies of the intermediate state and two
transition states, as shown in Figure 3. It has been suggested
that one of the H∗ atoms migrates toward the nearest O atom of
the CO2

∗ to form the COOH∗ intermediate and subsequently
involves its protonation, allowing the formation of H2O∗

adsorbed on the surface and the CO∗ adsorbed on the Ni
cluster. This calculation also shows that the second transition
state for the dissociation of the COOH∗ intermediate is the
rate-determining step of the overall pathway and has an energy
barrier of 1.51 eV (Cadi-Essadek et al., 2018).

CATALYTIC SYSTEM

In recent decades, heterogeneous catalysts that promote the
RWGSR have been extensively studied because of the gradual
realization of their widespread application prospects for CO2

utilization. At the early stage, much research has focused on the
oxide catalysts due to their effluent oxygen vacancies sites, such
as CeO2, CuO, ZnO, Al2O3, Fe2O3, Cr2O3, In2O3, and MnO2

(Saeidi et al., 2017; Su et al., 2017; He et al., 2019). Although
the CO selectivities of these oxide catalysts are desirable in
RWGSR, their disadvantages of lower CO2 activation and
feasible poisons and sintering are hindering their extended
application. In order to address these issues, persistent studies
have concentrated on the fabrication of composite oxides
(i.e., CuO/ZnO/Al2O3, NiO/CeO2, ZnO/Al2O3, ZnO/Cr2O3,
CuOx/CeO2, CuO–CeO2/SBA-15, In2O3-CeO2, FeOx, etc.) (Liu
et al., 2015; Dai et al., 2018; Ronda-Lloret et al., 2018; Panarities
et al., 2020), spinel oxides (i.e., ZnAl2O4, ZnCr2O4, CuAl2O4,
CoAl2O4, etc.) (Joo and Jung, 2003; Bahmanpour et al., 2019,
2020), solid solution oxides (i.e., ZnxZr1−xO2−y, Ce0.5Zr0.5O2,
NixCe0.75Zr0.25−xO2, etc.) (Zonetti et al., 2014), and perovskite-
type oxides (i.e., BaZr0.8Y0.16Zn0.04O3, La0.75Sr0.25CoO3−δ,
La0.75Sr0.25FeO3, La0.75Sr0.25Fe1−YCuYO3, LaNiO3,
La0.9Sr0.1NiO3+δ, La0.9Sr0.1FeO3−δ, La0.9Sr0.1Ni0.5Fe0.5O3−δ,
La0.75Sr0.25Cr0.5Mn0.5O3−δ, SrCe0.9Y0.1O3−δ, etc.) (Yamazoe
et al., 1982; Ten Elshof et al., 1996; Klvana et al., 1999; Yang and
Lin, 2006; Radovic et al., 2008; Zhuang et al., 2019; Bogolowski
et al., 2020; Liu et al., 2020), which have the approvable
characteristics of both stable structure and reverse oxygen
storage capacity to increase RWGSR performance.

Recently, considerable efforts have been devoted to the design
of metal-based catalysts (i.e., Pt, Pd, Au, Rh, Ru, Cu, Ni, Re, Co,
Fe, Mo, etc.) immobilized onto the metal oxide support material
(i.e., CeO2, TiO2, Al2O3, ZnO, ZrO2, SiO2, etc.) (Goguet et al.,
2004b; Wang et al., 2011; Liu et al., 2015; Álvarez Galván et al.,
2016; Ro et al., 2016; Nielsen et al., 2018) because they have
metal/oxide interfaces with high reducibility to facilitate CO2

activation in RWGSR. However, the CH4 may be easily produced
on these catalysts in the case of excessive hydrogenation of the
C-O bond of the CO2 molecule, which can be detrimental to
CO selectivity (Yeung et al., 2005; Sun et al., 2015; Wang et al.,
2016b; Kattel et al., 2017). In reality, an effective supported metal
catalyst must be capable of both the C-O bond scission of CO2

and the appropriate hydrogenation. Thus, the supported metal
catalysts must not only dissociate hydrogen relatively easily but
also allow it to migrate onto the adjacent oxygen vacancies, where
the adsorbed CO2 is further hydrogenated (Chen and Cheng,
2002; Wang et al., 2017). Furthermore, the details of the activity
and selectivity of some representative RWGSR catalysts under
reaction conditions are presented in Table 1.

Supported Metal Catalysts
The supported catalysts that can be seriously considered in
the RWGSR due to their bifunctional catalytic roles for CO2

activation and appropriate hydrogenation (Porosoff et al., 2016).
However, RWGSR is demonstrated to be structure sensitive
reaction; thus, the CO selectivity of which can be dictated
by tailoring the structure functionality of supported catalysts
through the SMSI effect, metal size effect, shape and crystal face
effect, bimetallic effect, and alkali promoter effect to boost their
concentrated activity.

Strong Metal-Support Interaction (SMSI) Effect
The importance of support has been increasingly recognized
in the decades following the discovery of SMSIs (Garin, 2001;
Diebold, 2003; Neophytides et al., 2005; Fu and Wagner,
2007; Liu et al., 2013). In addition to dispersing metallic
particles, the support also functions to influence the catalytic
properties of the supported metal catalysts through geometric
or electronic effects (Naito et al., 2006; Krstajić et al.,
2008; Delgado et al., 2011; Li et al., 2015). In this section,
the mechanisms by which SMSI effects provide catalytic
characteristics of supported catalysts for the RWGSR are
further elucidated.

The high electron donating property of metallic Pt in contact
with a Ti3+ ion site is caused by the SMSI effect, which
generates new Pt-Ov-Ti3+ sites for CO production over the
Pt/TiO2 catalyst (Kim et al., 2012a,b, 2013). Additionally, by
replacing the ZrO2 support by TiO2, the SMSI effect selectively
weakens the binding of the C-O bond and O-bond intermediates
at the PtCo-oxide interface, thus leading to the high selectivity
toward CO in the RWGSR (Kattel et al., 2016b). For TiO2-
supported Rh catalysts, an adsorbate-mediated SMSI (A-SMSI)
encapsulation state can be formed as a result of its treatment
in a 20CO2:2H2 environment at 250◦C. The high coverage of
the adsorbates (HCOx) on the support induces oxygen vacancy
formation, driving the migration of the HCOx-functionalized
support onto the metal. This A-SMSI encapsulation state is
more stable against reoxidation by H2O in the RWGSR process
compared with the SMSI encapsulation state formed as a result
of only H2 treatment, which modifies the reactivity of all the
remaining exposed Rh sites and appears to be comprehensive in
covering the Rh but permeable to reactants, due to its amorphous
properties. Consequently, formation of the A-SMSI state induces
a selectivity switch in the CO2-reduction reaction from the CH4

production on the bare Rh particles to the CO product in the
A-SMSI state, thus effectively rendering Rh less active for C-H
bond formation (Matsubu et al., 2017). For Ir/CeO2 catalysts,
the SMSIs can enable more oxygen atoms to be incorporated
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TABLE 1 | Summary of the reaction conditions with conversion to and selectivity for CO, when available, for selected RWGSR catalysts.

Catalyst Catalyst mass

(mg)

H2/CO2 ratio WHSV

(mL gcat−1 h−1)

Temperature

(◦C)

Pressure (MPa) Conversion (%) Selectivity (%)

2%Pt/CeO2 (Goguet

et al., 2004b)

40 4:1 300,000 290 0.1 21.7 ∼100

1%Ni/CeO2 (Wang et al.,

2013a)

50 1:1 120,000 400 0.1 ∼4.5 ∼90

5%Ru/CeO2 (Panaritis

et al., 2018)

50 1:1 120,000 350 0.1 ∼16 ∼31

RuNi/CeZr (Sache et al.,

2020)

250 4:1 24,000 350 0.1 53 93

FeNi/CeZr (Sache et al.,

2020)

250 4:1 24,000 350 0.1 13 60

5%Ru/Sm-CeO2

(Panaritis et al., 2018)

50 1:1 120,000 350 0.1 ∼16 ∼69

3.2%PtCo/CeO2 (Kattel

et al., 2016b)

N/A 2:1 N/A 300 0.1 9.1 92.3

PdNi/CeO2 (Porosoff

et al., 2014)

100 7:1 30,000 300 1.07 × 10−4 2.5 37.5

10%Co/CeO2 (Wang

et al., 2013b)

20 3:1 300,000 300 0.1 3.8 39.4

1%Pt/TiO2 (Kim et al.,

2012b)

500 1:1 12,000 300 0.1 ∼13 ∼100

3.2%PtCo/TiO2 (Kattel

et al., 2016b)

N/A 2:1 N/A 300 0.1 8.2 98.8

0.2%Rh/TiO2 (Matsubu

et al., 2015)

15 4:1 40,000 200 0.1 N/A ∼14.5

0.1%Ru/Al2O3 (Matsubu

et al., 2015)

50 3:1 720,000 400 0.1 ∼13 ∼80

1%Pt/Al2O3 (Kim et al.,

2012b)

500 1.43:1 12,000 300 0.1 ∼5.8 ∼100

Ni-Mo/Al2O3 (Kharaji

et al., 2014)

N/A 1:1 30,000 600 0.1 ∼35 N/A

Mo/Al2O3 (Kharaji et al.,

2014)

N/A 1:1 30,000 600 0.1 ∼15 N/A

Fe-Mo/γ-Al2O3 (Kharaji

et al., 2013)

5,000 1:1 N/A 400 0.1 ∼22 ∼100

Fe/γ-Al2O3 (Kharaji et al.,

2013)

5,000 1:1 N/A 400 0.1 ∼15.5 ∼100

PtCo/γ-Al2O3 (Porosoff

and Chen, 2013)

N/A 3:1 N/A 300 4 × 10−3 10 89.4

20%Cu-Ni/γ-Al2O3 (Liu

and Liu, 1999)

N/A 1:1 2,000 500 0.1 23.2 75.5

3.2%PtCo/ZrO2 (Kattel

et al., 2016b)

N/A 2:1 N/A 300 0.1 7.8 89.5

0.5%Pd/La2O3/MWCNT

(Kwak et al., 2013a)

50 3:1 72,000 400 0.1 ∼20 ∼100

0.5%Pd/MWCNT (Kwak

et al., 2013a)

50 3:1 72,000 400 0.1 0 0

10%Cu-0.3%Fe/SiO2

(Chen et al., 2004)

20 1:1 120,000 600 0.1 ∼12 ∼100

10%Cu/SiO2 (Chen et al.,

2004)

20 1:1 120,000 600 0.1 ∼8 ∼100

0.3%Fe/SiO2 (Chen et al.,

2004)

20 1:1 120,000 600 0.1 ∼2 ∼100

1%NiO/CeO2/SBA-15 (Lu

and Kawamoto, 2014)

2,000 1:1 1,500 450 0.1 ∼2.5 100

ZnO/Al2O3 (Zn:Al = 1:2)

(Park et al., 2001)

N/A 3:1 15,000 400 0.1 ∼3.4 ∼100

(Continued)
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TABLE 1 | Continued

Catalyst Catalyst mass

(mg)

H2/CO2 ratio WHSV

(mL gcat−1 h−1)

Temperature

(◦C)

Pressure (MPa) Conversion (%) Selectivity (%)

2D (δ)-MnO2 (He et al.,

2019)

30 1:1 40,000 850 0.1 50 100

ZnO (Park et al., 2001) N/A 3:1 15,000 400 0.1 ∼2.6 ∼100

Al2O3 (Park et al., 2001) N/A 3:1 15,000 400 0.1 0 100

1%Cu/β-Mo2C (Zhang

et al., 2016)

20 2:1 300,000 350 0.1 11 40

7.5%Co-Mo2C (Porosoff

et al., 2014)

100 2:1 36,000 300 1.07 × 10−4 9.5 ∼98.1

Mo2C (Porosoff et al.,

2014)

100 2:1 36,000 300 1.07 × 10−4 8.7 ∼93.5

into the metal surface, resulting in a weaker CO adsorption
strength over the partially oxidized Ir nanoparticles and giving
a near 100% selectivity toward CO compared with that over the
corresponding metallic Ir. Therefore, modulation of the chemical
state of the metal species by the SMSI is more important for
the regulation of the observed CO selectivity in the RWGSR (Li
et al., 2017). For the Cu/CeO2 catalyst, the Ce3+-Ov-Cu0 and
Cu0-CeO2−δ interface structures can be generated by the electron
transfer from Cu to Ce on its surface through SMSI effect,
which can boost the adsorption and activation performance of
reactant CO2 and H2 molecules for RWGSR (Zhou et al., 2020).
In the simulation of catalytic CO2 reduction by Pd-decorated
silicon-hydride nanosheets (Pd@SiNS), the direct SMSI between
the Pd nanoparticle and the Si nanosheet causes H transfer
from the Pd to the oxidized SiNS surface, which may occur
repeatedly by two mechanisms. First, an H atom adsorbed on
the Pd nanoparticle interacts with a surface Si-O-Si and creates
a Si-OH; second, another H from the Pd nanoparticle forms a
bond with the Si-OH, which leads to desorption of the H2O,
creating a surface radical, thereby enabling a catalytic cycle.
Furthermore, the strain induced in the SiNS by the Si-O-Si bonds
enhances the reactivity of the oxidized SiNS surface toward the
transformation of CO2 to CO under mild conditions (Qian et al.,
2019). In the context of Mo2C-supported Co catalysts, the SMSI
effect facilitates the formation of the amorphous CoMoCyOz

phase formed during the CO2 hydrogenation, in which the Co
with a positive charge is identified as the critical active site
that dissociates CH4 to CO. Therefore, the addition of 7.5%
Co to Mo2C leads to an increase in conversion from 8.7 to
9.5%, while the CO:CH4 ratio increases from 15 to 51 (Porosoff
et al., 2014). When Cu is added to the β-Mo2C support during
the preparation process, the SMSI effect not only promotes the
dispersion of supported copper and prevents the aggregation
of Cu particles but also enables a portion of the electrons to
transfer from Cu to Mo2C so that the Cu+ and Cu0 species
coexist in the Cu/β-Mo2C catalyst. Its modulated electronic
structure makes the highly dispersed Cu species more active
in the CO2 activation and accelerates the CO∗ desorption in
the following transformation reactions, which accounts for its
excellent activity in the RWGSR, as depicted in Figure 4 (Zhang
et al., 2016).

Metal Size Effect
The RWGSR is considered structure sensitive for supported
catalysts, of which the intermediate dissociation pathway
associated withH assistance is substantially dependent on the size
of the anchored metal active sties and thus exerts an influence on
the CO selectivity of the RWGSR (Chen et al., 2017a).

Multiple studies have been conducted to study the size effect
of metal sites relative to CO selectivity in supported noble metal
catalysts. The metal active sites (i.e., Pt, Pd, Ru) dispersed at an
atomic level contribute more to the CO product compared to
metal clusters at a 3D level. This phenomenon is a consequence
of the absence of larger metals clusters in which the initially
formed COad can be further activated during the continuous
reaction (Kwak et al., 2013a,b; Wang et al., 2016a; Chen et al.,
2017a). In addition, the Pd sites that slightly retain the CO surface
species formed from the formates and other intermediates are
more prevalent on the surface of the smaller Pd particles and thus
exhibit a higher selectivity toward the CO product. In contrast,
the larger Pd particles, due to a higher population of terrace sites
in which it is easier to form multi-bound CO and dissociated
H2 bound in the vicinity of CO, reveal a stronger interaction
with CO. These stable CO species are mainly in multi-bound
forms and act as the direct intermediates to CH4 (Wang et al.,
2015, 2017). Matsubu et al. have utilized DRIFTS with known
site-specific extinction coefficients to quantify the fraction of Rh
sites residing as atomically dispersed isolated sites (Rhiso), as
well as Rh sites on the surface of Rh nanoparticles (RhNP) for
a series of TiO2 supported Rh catalysts. The reaction condition-
induced disintegration of RhNP, which form the Rhiso active sites,
have been observed to control the CO selectivity of the RWGSR
(Matsubu et al., 2015). Furthermore, we have determined that the
difference between the desorption energy and dissociation barrier
of metal carbonyls is a critical factor for determining the CO
selectivity of the RWGSR by combining DFT calculations and
experiments, as shown in Figure 5. Specifically, narrowing the
size of the Ir active sites by decreasing the Ir loading over Ir/TiO2

catalysts can hinder the carbonyl dissociation but improve the
CO desorption, giving rise to CO selectivity (Chen et al., 2017a).

For supported non-noble metal catalysts, significant efforts
on Ni-based catalysts have also shown that smaller anchored
Ni active sites are beneficial to produce CO in the RWGSR
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FIGURE 4 | RWGSR rate and SMSI effect of Cu/β-Mo2C and reference catalysts. Reprinted with permission from Zhang et al. (2016). Copyright (2017) American

Chemical Society.

FIGURE 5 | Comparative CO and CH4 selectivities of the Ir1/TiO2, Ir5/TiO2, Pt5/TiO2, and Au5/TiO2 catalysts. Reprinted with permission from Chen et al. (2017a).

Copyright (2017) American Chemical Society.
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(Wang et al., 2013a,d; Lu and Kawamoto, 2014). The consecutive
pathway is favored on small Ni particles, which is attributed
to low H2 coverage on the Ni surface, thus leading to the
dissociation of the intermediates and high CO selectivity.
Whereas the RWGSR on large Ni particles may be controlled
by mixed consecutive and parallel pathways, it increases
the likelihood that the intermediates will be competitively
hydrogenated to CO or CH4 as part of a parallel reaction pathway
(Wu et al., 2015). Millet et al. reported on the activation of
CO2 on Ni single-atom catalysts that are synthesized using
a solid solution approach by controlled substitution of 1–10
atom % of Mg2+ by Ni2+ inside the MgO structure. The Ni
atoms are preferentially located on the surface of the MgO and,
as predicted by hybrid-functional calculations, favor the low-
coordinated sites, where they can reduce the strength of the CO2

binding and promote H2 dissociation. Thus, the Ni atoms are
active for CO2 conversion through the RWGSR but are unable to
conduct its further hydrogenation to CH4, for which Ni clusters
are needed (Millet et al., 2019).

Shape and Crystal Face Effect
RWGSR activities are also significantly depending on the
shape and exposed crystal face of catalysts because they can
determine the virtual adsorption energy and desorption energy
of intermediates in the reaction process (Liu et al., 2019).

Up to now, abundant efforts have been dedicated to study
the effect of surface structure of Cu-based catalysts on RWGSR
performance. Through the simulation of the adsorption of CO2,
H2, H, O, OH, CO, and H2O on the Cu(hkl) surfaces at
low coverage, it has been demonstrated that the trend in the
calculated activation barriers for the reaction is CO2 dissociative
adsorption (namely CO2,g COs + Os) follows the order of
Cu(110)<Cu(100)<Cu(111), suggesting that the most efficient
crystal surface for catalyzing RWGSR by copper is Cu(110),
and the more densely packed Cu(111) surface is the least active
among the Cu(hkl) surfaces studied here (Nakamura et al., 1998;
Wang et al., 2003; Wang and Nakamura, 2010). When the
Cu particles are doped onto the CeO2-Nanaorod and CeO2-
Nanosphere surfaces, respectively, which can be marked as
Cu/CeO2-NR(111) and Cu/CeO2-NS(110), by comparation, the
Cu/CeO2-NR displays the higher RWGSR activity. This is mainly
because that the CO2 dissociative activation and the formation
of active bidentate carbonate and formate intermediates over
CeO2(110) become more feasible (Kovacevic et al., 2016; Lin
et al., 2018b). Furthermore, self-assembled CeO2 with 3D hollow
nanosphere, nanoparticle, and nanocube morphologies are used
to support Cu particles, which can be denoted as Cu/CeO2-
hs(111), Cu/CeO2-np(111), and Cu/CeO2-nc(200), respectively.
Thereinto, the Cu/CeO2-hs(111) presents the best catalytic
RWGSR performance among these as-prepared catalysts due to
its high concentration of active oxygen vacancies sites (Zhang
et al., 2020). For PtCo/TiO2(110), ∗HCOO is formed as an
intermediate, which may eventually produce CO, whereas for
PtCo/CeO2(110), the aside from the route that proceeds via
∗HCOO, a pathway via a ∗CH3O intermediate is operating in
parallel, which likely leads to the formation of CH4. Moreover,
DFT calculation demonstrates that the adsorption of CO2 is

stronger at the Nin/YSZ(111) (n= 4–7, 10, and 20) interface than
on the clean YSZ(111) between the Ni clusters and the YSZ(111)
surface, which facilitates the transformation of CO2 to CO (Cadi-
Essadek et al., 2018). For Cu@Mo2C(001) and Cu4@Mo2C(001)
surfaces, although the dissociative adsorption of H2 on these
two surface is barrier-free and highly exothermic, the activation
barrier of carboxyl formation or C-O bond scission as a rate-
limiting step on the Cu4@Mo2C(001) surfaces is smaller, and
the desorption of CO at the Cu site needs less heat than Mo
site, thereby accelerating CO2 conversion in RWGSR (Chen and
Cheng, 2002).

Bimetallic Effect
The behavior of a catalyst is modulated by its interaction
with other catalyst components, such as a second metal,
which influences it through electronic interactions, generates
interfacial active sites, or is directly involved in the reaction
by bonding to reactants or intermediates (Liu and Liu, 1999;
Liu et al., 2015). Therefore, supported bimetallic catalysts
have been extensively used for the RWGSR due to their
tuning catalytic activity that may be achieved by two metals
working synergistically.

The existence of Mo in the structure of the Fe-Mo/Al2O3

catalyst enhances its catalytic performance for the RWGSR due
to the electronic effect, which transfers electrons from Fe to
Mo and leads to an electron-deficient state of the Fe species,
in which it is not helpful for CO adsorption and hence inhibits
the continuous hydrogenation of the intermediates (Kharaji
et al., 2013; Panaritis et al., 2018). It is reasonable for the Ni
species with the electron deficient state to possess high catalytic
performance for RWGSR when Ni is added as a second metal
component to the Mo/Al2O3 catalyst (Kharaji et al., 2014). As
for RuNi/CeZr catalyst, the addition of Ru enhances the Ni
reducibility and leads to greater Ni dispersion on the catalyst
surface, thus promoting overall activity and CO selectivity for
the RWGSR (Sache et al., 2020). Typically, MOF-74 plays a
role in helping adsorb and deliver electrons, whereas the low
amount of Au@Pd NPs in Au@Pd@MOF-74 results in the poor
photon adsorption strength of the Au@Pd active sites. Based on
this feature, the core-shell Au@Pd@MOF-74 nanostructure is
more propitious to generate CO than MOF-74 in the RWGSR
because CO generation is a two-electron reaction, while CH4

generation requires eight electrons; thus, it is more difficult
to produce CH4 (Han et al., 2019). Because of the functional
characteristics of Au@Pd nanoparticles, the Pt/Au@Pd@UIO-66
catalyst is synthesized to improve its catalytic activity in the
RWGSR, as shown in Figure 6. In this system, the core-shell
monodispersed Au@Pd nanosphere is encapsulated in the
UIO-66 to control its morphology and impart nanoparticle
functionality. Additionally, the microporous nature of the
UIO-66 assists the adsorption of the Pt nanoparticles, which
enhances the interaction between them, favoring the formation
of isolated and well-dispersed Pt nanoparticle active sites. This
advanced architecture results in excellent catalytic activity and
CO selectivity for the RWGSR, and the concept of inserting
nanoparticles into microporous MOFs will revolutionize future
industrial applications (Zheng et al., 2018). DFT calculations
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FIGURE 6 | Synthetic route for the production of Au@Pd NPs and other nanocomposites. Reprinted with permission from Zheng et al. (2018). Copyright (2017)

Wiley-VCH.

indicate that the catalytic behavior of a Cu12TM (TM = Co,
Rh, Ir, Ni, Pd, Ag, Au) bimetallic nanocluster in the RWGSR is
dependent on the position of the d-band center. In general, the
closer the d-band center is to the Fermi level of these catalysts,
the greater is the CO2 adsorption energy, and the smaller is
the C-O bond dissociation barrier. Therefore, Cu12Co delivers
better catalytic activity for the RWGSR, with a TOF value
of 8.96∗10−13 s−1, than do the Cu13 and Cu12TM bimetallic
systems, due to its d-center value of −0.547 eV, which is higher
than that of the other two systems (Zhang and Guo, 2018).
Furthermore, for γ-Al2O3- and CeO2-supported Co catalysts,
with the addition of Pt as the second component, the values
of the d-band center move from the Fermi level toward more
negative values, which prevents the excessive hydrogenation of
the C-O bond of the CO2 molecule and thereby increases the
CO selectivity of the RWGSR (Porosoff and Chen, 2013). In
addition, the deposition of Mo onto Au/SiO2 catalyst generates
new Au/MoOx interfacial sites since it preferentially occurs
on undercoordinated Au sites. The heat of CO adsorption
(1Hads) for the Au/MoOx sites is 33 kJ mol−1, considerably
lower than that of the Au0 sites, indicating that these interfacial
sites are more selective than the Au0 sites for the RWGSR
(Carrasquillo-Flores et al., 2015). Similarly, the Cu/Fe interfacial

active sites are generated after introduction of additional Fe
into the Cu/SiO2 catalyst, on which the formation of the Fe-Cu
bond also prevents Cu from being sintered and oxidized during
the RWGSR (Chen et al., 2004). Moreover, the addition of
Cu to the Mo/FAU catalyst results in an improvement in the
reducibility of MoO3. Therefore, the Mo(0.8)Cu(0.2)/FAU
catalyst, which contains co-supported Mo-Cu at an atomic ratio
of 4:1, exhibits the higher CO yield of 18.5% and selectivity
of 99% compared with the supported Mo catalyst for the
RWGSR with the feed gas (H2:CO2 = 1:1) at atmosphere
pressure and 773K (Okemoto et al., 2020). The bulk Pt3Ni
intermetallic parent compound is formed selectively over the
Pt-Ni bimetallic catalysts supported on mesoporous silica, which
is related to the thermodynamics of the phase equilibria with
a metal silicate that precludes the formation of more Ni-rich
intermetallics during the operando conditions of the RWGSR,
as shown in Figure 7. This proposed intermetallic structure for
these ∼1 nm supported clusters, shows a surface/interfacial
speciation of the Ni in which only heterometallic Pt-
Ni interactions are present in an atomic arrangement
within the catalytically active bimetallic sites, which afford
exceptionally high activity and CO selectivity in the RWGSR
(Liu et al., 2018).
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FIGURE 7 | Schematic model of the PtNi/SBA-15 catalyst. Reprinted with permission from Liu et al. (2018). Copyright (2018) American Chemical Society.

Alkali Promoter Effect
For supported heterogeneous catalysts, alkali metal components
are typically introduced as promoters to increase the amount
of adsorption sites and mediate the adsorption strength of the
reactants and intermediates on the “inert support” (Li et al., 1998;
Gálvez et al., 2013; Obalová et al., 2013; Connor and Holland,
2017; Pacultová et al., 2017). For instance, the addition of alkali
metal promoters is crucial for industrial catalysts substantially
applied in the Fisher-Tropsch synthesis (Mirzaei et al., 2006;
Okabe et al., 2007; Feyzi et al., 2011; Cosultchi et al., 2012)
and ammonia synthesis (Shimoda et al., 2017; Lin et al., 2018a;
Jafari et al., 2019; Rogowski, 2019; Zhou et al., 2019). In the
field of RWGSRs, abundant studies have shown that K and other
promoter additives are essential for some supported catalysts to
acquire the expected CO product (Arunajatesan et al., 2007).

The highly K-promoted Fe/Al2O3 and Cu/SiO2 catalysts give
much higher CO formation rates than do their counterparts
in the RWGSR mainly because the addition of K introduces
abundant weak, medium, and strong basic sites, which helps to
adsorb/activate CO2 and further converts the CO2 to CO through
reaction (Choi et al., 1996; Chen et al., 2003). For the Ni/Al2O3

catalyst, carbonates are the main intermediates, decomposition
of which to CO is relatively difficult. However, via modification
of this catalyst with a strong base such KOH, the formates
rather than the carbonate forms as the main intermediate, which
strongly absorbs on the surface of the Ni-KOH/Al2O3 catalyst,
contributes to CO formation and hinders further hydrogenation
of the CO to CH4 through C-O bond scission (Zhang et al.,
2019a). Furthermore, it is demonstrated that the introduction of
alkali promoter (K, Mg) by co-impregnation technique enhance
the dispersity of Ni active species on the Al2O3, thus increasing
the RWGSR performance (Ranjabar et al., 2019). The addition of

K promoter leads to an electron transfer from Pt to O in KOx

species, resulting in the generation of interfacial active sites over
the Pt/mutille catalyst, which is proposed to be more responsible
for the production of CO (Liang et al., 2017). Similarly, the K
promoter acts as a reducing agent relative to the Fe metal, and
the observed increase in the ratio of the Fe2+/Fe3+ ions over the
BaFe-hexaaluminates after the K addition reflects the increasing
concentration of reduced Fe2+ ions in the hexaaluminate lattice,
which is accompanied by the appearance of oxygen vacancies due
to the cleavage of one of the neighboring Fe-O-M (M = Al, Ba)
bonds in the first coordination sphere of Fe ions. These vacancies
play a role in the sites for CO2 adsorption forming monodentate
surface carbonates followed by redox transformation evolving
CO and leaving the second oxygen bonded to the Fe3+ ion
(Wang et al., 2013b,c; Utsis et al., 2018). The results of DFT
calculations demonstrate that the K adatom greatly stabilizes
the adsorption of all oxygenate intermediates through direct
K-O bonding formation on K-modified Cu(111) and Cu(110)
surfaces, thus promoting CO2 dissociation in the RWGSR. In
general, the different promoting effects of alkali metals on CO2

dissociation are due to their electronegativities, which induce
different work function changes and surface dipole moments.
Correspondingly, the promoting effects on CO2 dissociation
induced by alkali metals increase in the order of Na < K < Rb
<Cs, while the electronegativity of various alkali metals decreases
in the order of Na > K > Rb > Cs (Wang and Wang, 2019). In
accordance with the above effects, the electronegative character
facilitates the electronic transfer from Cs to Mo and Fe and
leads to an electronically rich surface, which favors the selectivity
toward CO over the corresponding catalysts (Pastor-Pérez et al.,
2018; Zhang et al., 2019b). For the WC/γ-Al2O3 catalyst, the
addition of the K promoter not only has a structural effect
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to promote the dispersion of the WC species across the high
surface area support but also can serve as electronic promotion
to strengthen CO and CO2 adsorption while weakening H2

adsorption, which is therefore hypothesized to result in a lower
H2/Cox on the catalyst surface, thus inhibiting hydrogenation
activity for CH4 and accelerating the generation of CO via
the RWGSR (Morse et al., 2020). Specifically, our studies have
systematically investigated the effect of K promoter on the
activities and selectivities of zeolite L-supported Pt catalysts
for the RWGSR, as shown in Figure 8. This study concluded
that an additive K promoter not only alters the work function
of Pt through their interaction but also forms Pt-O(OH)-K
interfacial sites. In addition, the electronic properties of Pt-
O(OH)-K sites, with a charge transfer from the Pt surface to
the adjacent O in KOx, facilitate the formation of formate
intermediates and desorption of the CO. However, with excessive
addition of K, the access of the reactants to the Pt surface and
interface is tightly blocked. Thus, the activity of the RWGSR is
significantly promoted by the controlled addition of K promoter
(Yang et al., 2017).

Oxide Catalysts
Reducible transition oxides are intensively employed in RWGSR
catalysts due to their relative abundance and their OSC, which is
the ability to reversibly store and release oxygen while formally
switching the valence state of the metal ion in its own structure
under a CO2/H2 atmosphere (Reddy et al., 2010; Dong et al.,
2012; Yao et al., 2013). The O atom can be deprived of H2 in
the oxide lattice to generate surface oxygen vacancies, which
are much more favorable to the generation of CO rather than
CH4, because the oxygen from the C-O bond cleavage of
the CO2 molecule can be accommodated, but this leads to
unsatisfactory catalytic activity and thermal stability (Katta et al.,
2010; Ahn et al., 2012; Graciani et al., 2014). Normally, the
additional introduction of heteroatoms into the oxides leads
to the formation of spinel, solid solution, and perovskite-type
oxides, and their ultra-stable structure is conductive to reversible
oxygen donor-acceptor over oxygen vacancies sites, which thus
effectively overcome the disadvantages of pure oxides as RWGSR
catalysts (Ringuedẽ and Fouletier, 2001; Royer et al., 2005).

ZnO-based oxides are preferentially utilized to catalyze the
RWGSR during the CAMARE process due to its ease of
formation of metal composite oxides with high stability and
specific activity (Li et al., 2002; Schmale et al., 2013). Nonetheless,
ZnO-based oxide catalysts are vulnerable to the reduction
of ZnO to Zn metal and therefore the loss of ZnO active
components when exposed to high thermal reaction conditions,
which contributes to their catalytic deactivation (Park et al.,
2001). The formation of the spinel structure of the ZnAl2O4

phase by addition of Al2O3 to the ZnO catalyst can cause
resistance to its catalytic deactivation in the RWGSR (Joo and
Jung, 2003). Similarly, when Fe2O3 is substituted by ZnO over
the Fe2O3/Cr2O3 catalyst, the corresponding ZnCr2O4 phase
is formed and thus becomes stable (Park et al., 2000). In the
synthetic process of the ZnZrOx mixed oxide, the substitution of
the Zr in the first layers of the m-ZrO2 lattice with Zn causes the
formation of a surface solution (ZnxZr1−xO2−y), which generates

oxygen vacancies and improves its stability, reducibility, and
oxygen mobility, thus increasing the CO2 conversion in the
RWGSR (Silva-Calpa et al., 2016).

The widespread application of CeO2-based oxide in RWGSR
catalysts is mainly due to its high OSC, which is inextricably
correlated with the catalytic activity (Masui et al., 1997; Wang
and Liu, 2018). Both the manipulation of the CeO2 shape with
emphasis on tuning its fraction of reactive crystal planes and
the doping CeO2 with heterocations to alter its structure and
chemical properties are effective strategies to obtain a superior
OSC (Sun et al., 2012; Zhou and Li, 2012). Considering their
distinct morphologies (particles, rods, and cubes), the higher
activity of CeO2 cubes in the RWGSR is due to the superior
inherent reactivity of the CeO2 (100) crystal planes enclosing the
cubes, contrary to the less inherently reactive CeO2 (111) facets
enclosing the rods and particles in the RWGSR (Kovacevic et al.,
2016). The CeO2 lattice distortion caused by the incorporation
of heterocations such as Zn increases the oxygen vacancy defects
and thus accelerates the mobility of the oxygen ions, leading to a
higher OSC, thus markedly enhancing its catalytic activity in the
RWGSR (Lin et al., 2015; Wenzel et al., 2017). In addition, either
Ce0.75Zr0.25O2 or Ce0.75Zr0.5O2 solid solution can be formed by
the addition of Zr to the CeO2 lattice, increasing its ability to
generate oxygen vacancies and, more importantly, promoting its
thermal stability, which is a very promising aspect of catalytic
systems employed in reactions in which the RWGSR is one of
the steps in the processes that generate hydrocarbons from CO2

(Zonetti et al., 2014; Wenzel et al., 2018).
The adsorption of CO2 on In2O3 has an adsorption energy

of −1.25 eV, which is sufficiently exothermic and thus favorable,
so the O-C-O angle of the CO2 on adsorbed on the In2O3

is significantly distorted relative to the gas phase structure,
significantly increasing the activity of the CO2 in the RWGSR
(Ye et al., 2012; Sun et al., 2014). The oxygen vacancies are
increasingly created and stabilized on In2O3 with the presence
of CeO2 in the In2O3-CeO2 catalyst, on which the dissociated
H2 adsorption is enhanced and the amount of bicarbonate
species resulting from activated CO2 is increased, which thus
exhibits enhanced catalytic activity for the RWGSR (Wang
et al., 2016c). Cubic In2O3[denoted as c-In2O3(110)] exhibits
a higher RWGSR rate than the hexagonal In2O3[denoted as
h-In2O3(110)] at temperature below 350◦C due to its enhanced
dissociative adsorption of H2, facile formation of the oxygen
vacancies, and enhanced ability to adsorb and activate CO2

on the oxygen vacancies (Wang et al., 2020). DFT calculations
indicate that the oxygen vacancies sites on the In2O3 (110)
surface assist CO2 activation and hydrogenation and stabilize
the key intermediates involved in CO formation (Ye et al.,
2013). Furthermore, an In2O3−x(OH)y surface containing both
Lewis base hydroxide groups and Lewis acid In sites together
with oxygen vacancies can heterolytically dissociate H2 to form
a hydride bonded to In metal and a proton bonded to a
lattice O. This hydrogenated In2O3−x(OH)y surface facilitates
CO2 reduction by mediating the charge transfer between the
In2O3−x(OH)y surface and adsorbed reactants CO2 and H2

to form CO and H2O (Ghuman et al., 2015). Well-tempered
MetaD-biased AIMD simulations have been performed, taking
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FIGURE 8 | RWGSR over Pt/L catalysts with different K contents. Reprinted with permission from Yang et al. (2017). Copyright (2017) Elsevier.

FIGURE 9 | Overall proposed mechanism for the RWGSR on In2O3−x(OH)y at 20
◦C (pink line) and 180◦C (blue line). Reprinted with permission from Ghoussoub et al.

(2016). Copyright (2016) American Chemical Society.

the temperature into account, to probe the mechanism for the
RGWS reaction over the In2O3−x(OH)y surface at temperatures
of 20 and 180◦C, as shown in Figure 9, and the results show
that the reduction of gaseous CO2 is the rate-limiting step,
with no significant change resulting from increased temperature.
However, the energy barrier corresponding to the adsorption of
CO2 is slightly reduced at 180◦C compared to the that at 20◦C,
suggesting that the thermal effects may only be relevant to the
reaction step characterized by an adsorptive mechanisms and
that the increased thermal conditions may enhance the reactivity

by enabling the surface frustrated Lewis pairs to become further
spatially separated (Ghoussoub et al., 2016).

The perovskite-type oxides are represented by an ABO3

formula, where the A-site is typically occupied by lanthanides
or alkaline earth metals, and the B-site is usually filled with
transition metals (Yamazoe et al., 1981; Peña and Fierro, 2001;
de Lima et al., 2009). With multiple cation combinations possible
on each site, perovskite-type oxides can be easily customized to
achieve desirable properties, such as high oxygen mobility and
tunability, together with thermal stability at high temperatures
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without aggregation (Royer et al., 2005; Kae et al., 2014).
Therefore, these materials are attractive for application to the
RWGSR with chemical looping cycles (RWGSR-CL) that can
convert CO2 and H2 to separate streams of CO and H2O,
as depicted in Figure 10 (Ringuedẽ and Fouletier, 2001). The
combination of La and Sr in the A-site and metal in the B-
site enhances the formation of oxygen vacancies due to the
generation of a charge imbalance in the ABO3 structure caused
by the difference in their oxidation states (Daza et al., 2014).
Regarding Co-based perovskite type oxides (La0.75Sr0.25CoO3−δ),
under H2 flow conditions, their phases can change to metallic
cobalt and base oxides (Co/SrCO3/La2O3), which are then
reoxidized to a layered perovskite (CoO/LaSrCoO4−δ) with a
K2NiF4-type structure when exposed to CO2, thus producing
CO during this cycle. Additionally, the optimal isothermal
reduction and conversion temperatures for maximizing the
CO product rates of 113.9 µmole CO/g/min are 500◦C (of
400, 500, and 600◦C) and 850◦C (of 650, 750, and 850◦C),
presumably due to the formation of mixed oxides and metallic
cobalt crystalline phases (observed via X-ray diffraction) in
close contact under these conditions (Royer et al., 2005). Fe-
based perovskite type oxides [La0.75Sr0.25FeO3 (LSF)] have shown
the greatest promise in the RWGSR-CL process due to the
low energy barrier for oxidation-state transitions (Fe3+-Fe2+)
during the redox cycles (Peña and Fierro, 2001). Enhanced
oxygen self-diffusion, material recyclability, and therefore the
viability of LSF have been demonstrated for chemical looping

when supported by redox materials with more abundant
alternatives, such as CeO2, ZrO2, Al2O3, SiO2, and TiO2

(Li et al., 2011; Chen et al., 2014). In comparison, supports
such as TiO2 and Al2O3 demonstrate SMSIs, which often
result in some degree of LSF particle encapsulation, even at
low temperatures, thus hindering the CO2 adsorption on the
surface oxygen vacancies, whereas SiO2 demonstrates more
moderate interactions that are strong enough and suitable for
particle segregation yet weak enough to avoid deactivation
(Min et al., 2003; Hare et al., 2019). These behaviors occur
because the utilization of SiO2 as a support significantly reduces
the average LSF crystallite size and the extent of oxygen self-
diffusion retardation, and the CO generation yields of LSF/SiO2

surpass those of LSF alone by ∼200%, producing 2.6 mmol
of COgLSF

−1 at a peak rate of 0.8 mmol COgLSF
−1 min−1

(Hare et al., 2018). In addition, further modification of Fe-
based perovskite type oxides with transition metals helps to
increase the strength of the interaction of the active species
and support and thus stabilizes the unusual cationic oxidation
state in the RWGSR process (Nitarori et al., 1988). The
incorporation of Cu in La0.75Sr0.25Fe1−YCuYO3 perovskites
[Cu100∗Y (with Y = 0, 0.10, 0.25, 0.50, 0.75, and 1)] facilitates
the formation of oxygen vacancies at lower temperatures.
CO production is promoted in the Cu10 sample vs. Cu0
and Cu25, likely due to a combined effect of better CO2

dissociative chemisorption energies onmetallic Cu and decreased
thermodynamic stability of the oxygen-deficient perovskites

FIGURE 10 | Reverse water gas shift–chemical looping process. Reprinted with permission from Ringuedẽ and Fouletier (2001). Copyright (2018) American Chemical

Society.

Frontiers in Chemistry | www.frontiersin.org 15 August 2020 | Volume 8 | Article 709

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Chen et al. Heterogeneous Catalysts in RWGSR

(Daza et al., 2016). The enhanced crystalline structure stability
is aroused by the incorporation of Co in the La0.75Sr0.25Co(1−Y)
FeYO3 perovskite. Additionally, a computational investigation
using DFT calculations correlates CO2 adsorption strength,
generally a strong barrier in CO2 conversion, on the (100) crystal
facets on La0.75Sr0.25FeO(3−δ) to increasing the surface oxygen
vacancies (δ). Therefore, δ in the perovskite is the driving force
to break the CO-O bond and reoxidize the La0.75Sr0.25FeO3−δ

(Daza et al., 2015; Maiti et al., 2016).

CONCLUSION AND OUTLOOK

The large-scale conversion of CO2 to CO via the RWGSR
is a promising route with great potential for use in the
near future, provided a mature technology for commercial
production of renewable H2 is also available. The RWGSR
also achieves higher CO2 conversion than other relevant
technologies that meet the global CO2 emissions standards.
Because it is a slightly endothermic and pressure-independent
reaction, the current challenge for RWGSR employed in
fuel synthesis is the design of thermally stable materials
that can achieve high CO selectivity and high production
rates. Preferential strategies have recently been enacted to
address the existing problems either by modulating the
SMSI, size of the active metal, second metal composition,
and addition of alkali promoter for supported catalysts or by
dipping with additional heteroatoms or tuning their crystal
planes for oxide catalysts. Furthermore, the perovskite-
type oxides can act as the oxygen donor-acceptor for
the RWGSR-CL to not only circumvent thermodynamic
and kinetic limitations but also eliminate the possibility
of methanation as a side reaction because there is no
direct interaction between two feed gases and between two
product streams.

From this systematic introduction, the relationships between
the nature of the active sites and the main intermediates of
RWGSR catalysts are understood through the insights gained

from the molecular dynamic simulations and mechanistic work
under the operando reaction conditions, which is beneficial to the
development of state-of-the-art architecture of RWGSR catalysts.
However, even though several materials have been studied,
improvements are still possible, especially for commercial
development of RWGSR catalysts for laboratory and market
applications. If the RWGSR plays a major role in the reduction
of the atmospheric CO2 concentration, then designing catalysts
with earth-abundant materials will be necessary and desirable.
To develop supported metals, both Fe oxides and Ni oxides are
chosen to be investigated as representative substitutes for the
most commonly used reducible supports, such as CeO2, ZnO,
and In2O3, largely due to their oxygen vacancies with high
oxygenmobility and stability, which can activate CO2 more easily
by accommodating oxygen due to the C-O bond cleavage in the
RWGSR. Additionally, transition metal carbides are attractive
and convenient alternatives for industrial use in the RWGSR
because of their properties, which are similar to those of precious
metals, as well as their dual functionality for H2 dissociation
and C-O bond scission and their potential to behave similarly to
reducible oxides.
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