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Refractive index (RI) is one of the most important optical properties of materials. Due to the high 
importance of this physical parameter, there has always been a demand to find a method that provides 
the most optimal estimation. In this research, we utilize experimentally measured RI values of 272 
inorganic compounds to build a machine learning model capable of predicting the RI of materials with 
low computational cost. Considering the significant relationship between the band gap and RI, we 
select this parameter as a predictor. In addition to the band gap, the atomic properties related to the 
building elements of the compounds form our data set in this work. To find the most optimal model 
and set of suitable predictors, we examine our data in four categories with 1, 5, 10, and 21 features. 
In addition, we compare the predicted RIs of 6 different independent regression methods, namely, 
ordinary least squares (OLSR), Gaussian process (GPR), support vector (SVR), random forest (RFR), 
gradient boosted trees (GBTR), and extremely randomized trees regression(ERTR). We notice that 
ERTR predicts RI with the highest accuracy compared to other regression methods. The prediction 
strength of our model excels in empirical relations and provides accurate results for a wide range of RIs. 
Thus, we demonstrate the high potential of machine learning methods for evaluating the RI, especially 
when it comes to providing an estimation of a desired physical quantity.

Refractive index (RI) is one of the most fundamental optical properties of materials that determines the 
propagtion velocity of electromagnetic waves1. It will be different depending on the type of symmetry of the 
inorganic compound and the wavelength of the light2. Knowing the RI of inorganic compounds for each specific 
wavelength is essential to understanding the behavior of these materials and is widely used for designing optical 
devices in industry3. For instance, knowing RI is vital in manufacturing optical devices like switches, filters, 
and modulators4. Therefore, many efforts have been made to find an empirical formula that expresses the RI in 
terms of other properties of materials5,6. Moreover, the accuracy and generalizability of the empirical formulas 
to obtain the RI have improved over time due to advances in measurement techniques and tools. However, these 
estimates still have their limitations. Attempts have been made to calculate RI since the mid-19th century, and 
several relations have been suggested. One of the first attempts is the Lorentz-Lorenz formula to evaluate the RI 
for different compounds. In this equation, the RI is estimated only based on the material density7,8:

	
n2 − 1

n2 + 1
=

4π

3
Nα,� (1)

where n is the refractive index, N is the number density, and α is the polarizability coefficient. This model does 
not include the band structure of materials and consequently leads to its failure in several cases. Considering the 
significant relationship between RI and band gap (Eg), numerous empirical formulas were introduced between 
Eg and RI such as Moss formula9:

	 n4Eg = 95 eV ,� (2)

and Ravindra formula10:

	 n = 4.084− 0.62 Eg.� (3)
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These empirical formulas have some weaknesses. For example, Eq.3 shows very large deviations for small 
(Eg ≤ 0.3 ev) and large (Eg ≥ 3.5 ev) band gaps. Moreover, this relation fails when n ≥ 4.111,12. Thus, the above-
mentioned equations often yield reasonable predictions only for specific materials and in a specific range of RI. 
As a treatment for this weakness, Herve et al. presented an alternative relation between RI and Eg taking into 
account the observed deviations in small and large Eg values11:

	
n =

√
1 +

(
13.6

Eg + 3.4

)2

.� (4)

This relation works well for many optoelectronic materials, but it shows low accuracy for materials from group 
IV-VI13,14.

In another work, Reddy12 proposed an additional empirical relation between RI and optical electronegativity(∆χ∗

) as follows:

	 n = − ln {0.102∆χ∗}.� (5)

Duffy15 earlier introduced a relation between Eg and ∆χ∗ using the following equation:

	 ∆χ∗ = 0.2688Eg.� (6)

Usually, a theoretically predicted RI is compared with experimental RI that is measured using interferometric, 
ellipsometric, spectroscopic, and methods using prisms16. The challenges in experimental evaluation of 
RI and the complexity of the problem require the use of new approaches to predict RI, assisted by growing 
computational resources and better algorithms. For instance, as an alternative to empirical formulas, machine 
learning (ML) provides a numerical approach to evaluate the physical properties of materials. As an instance, 
Lee et al. predicted the Eg of inorganic materials using different ML methods, namely ordinary least squares 
regression (OLSR), least absolute shrinkage and selection operator, and nonlinear support vector regression 
(SVR)17. Using a data set that consists of the Eg of 270 different compounds calculated using DFT (G0   W0) 
and, 18 fundamental information of constituent elements as predictors, they show that ML-assisted algorithms 
predict the Eg with reasonable accuracy.

Generally, engineering new compounds and discovering materials with desirable properties has always been an 
important task for the scientific community18–20. Considering the number of elements in the periodic table, a 
huge number of compounds can be identified with their unique physical features and each of these properties 
is important for specific application purposes. An accurate and accessible machine learning (ML) model can 
greatly accelerate the identification of new functional materials21. Because providing an estimation for features 
of interest for a given structure using ML is numerically much less expensive compared to ab initio methods. 
Furthermore, ML has been successful in predicting the physical properties of materials and, we observe rapid 
advancements in data science and material informatics. Therefore, exploring machine learning methods to 
predict RI represents a promising step forward in this field. Moreover, providing an accurate estimation of the 
optical properties in general and specially RI of materials is very important for various applications including, 
but not limited to, laser optics, optical glasses, and optical fibers.

Recently, some efforts have been made in the prediction of RI using ML22–24. For example, Kang et al. 
used extreme machine learning (ELM) and multiple linear regression (MLR) algorithms to predict RI. The RI 
investigated in this research was in the range of 1.36 to 1.6 which covers a narrow window of RIs for optical 
materials. Focusing on organic compounds, Lightstone et al. also formed a data set including 527 unique 
polymers and estimated the RI of these compounds using the Gaussian process regression algorithm. This group 
examined polymers with RI in the range of 1.3 to 2. Aiming to cover both organic and inorganic materials, Zhao 
et al. developed a model using three machine learning models, Support Vector Regression (SVR), Random 
Forest Regression (RFR), and Gaussian Process Regression (GPR). In this work, a data set of materials with 
49,076 experimental RI values for 6,721 compounds has been studied. The results of these investigations were 
more accurate compared to other empirical formulas like Moss and Ravindra.

Despite this pioneering research, there is still much room for improving the results, and this goal can be 
achieved by choosing more suitable machine learning techniques and better and more accessible predictors. 
In this paper, we examine RI prediction models using OLSR, GPR, SVR, RFR, GBTR, and ERTR methods. 
Moreover, we prepare our data set aiming at inorganic materials from a broad range of RIs. Specifically, our 
data covers RI in the range of 1.3 to 4. By selecting physically relevant predictors, namely the band gap and 
elemental properties of constituent elements, and in spite of the fact that our data set includes only 272 inorganic 
compounds, we achieve a notably low error in predicting RIs and our model outperforms the empirical formulas.

Methodology
Machine learning models
Machine learning (ML) is a subfield of artificial intelligence technology and one of the most attractive and 
dynamic fields of modern research and application. ML methods are based on enabling computers to identify 
and infer patterns in data without being explicitly programmed and to build models with the ability to make 
predictions that do not explicitly follow predefined rules and models25–28. Regression is a supervised learning 
method that obtains a relation between a target attribute and predictors. For a given training data set, it is 
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necessary to select appropriate predictors and optimal ML methods. In this work, we select six ML methods to 
predict the RI of 272 different compounds. These methods are chosen from a wide range of ML methods based 
on their performance in the previous studies17,24,29:

As a simple, yet important ML method, OLSR is a method by which the norm of the cost function reaches 
its minimum value30:

	
L = min

w
∥Xw − y∥22 = min

w

n∑
i=1

(wTxi − yi)
2.� (7)

In this relation, w represents the vector of weights, xi is the observed input vector, and yi is the observed 
target value. In this method, the predictive function f (xi, w) = wTxi creates a hyperplane in the feature space. 
Therefore, minimizing the error of this method means minimizing the sum of squares of the difference between 
the actual value of yi and the predicted value, for all the points of xi relative to this hyperplane.

Moreover, compared to OLSR, the Support Vector Machine (SVM) is a more advanced and powerful ML 
method. SVM is based on the theory of statistical and dynamical learning. The main idea of SVM was first 
presented in the 1960s by Vepnik et al.31. In the following years, this model was expanded to regression problems 
under the name Support Vector Regression (SVR)32. This method strikes a balance between model complexity 
and prediction error and performs well in high-dimensional data analysis. The function of SVR is based on 
creating a hyperplane with support vectors where optimization is done according to the support vectors and is 
independent of the input data dimensionality33. Additionally, the parameters controlling the regression function 
are obtained by solving the following optimization problem34:

	
Minimize :

1

2
∥w∥2 + C

l∑
i=1

(ξi + ξ∗i ) � (8)

	

Subject to : {yi − xiw − b ≤ ε + ξi} ,
{xiw + b− yi ≤ ε + ξ∗i } .

where ξi and ξ∗i  are slack variables (ξi, ξ∗i ≥ 0), C is regularization constant and the weight vector denoted by w. 
The optimization problem can be solved by constructing a Lagrange function from the primal objective function 
and solving the so-called dual optimization problem. Moreover, the parameters of the optimal function for the 
nonlinear regression of the support vector can be rewritten with the following relations:

	
f (x) =

l∑
i=1

(αi − α∗
i )k(xi, x) + b,� (9)

	
b = yi + ε−

l∑
i=1

(αi − α∗
i )k(xj, xi),� (10)

where k(xj, xi) represent the kernel function, and αi and α∗
i  represent the Lagrangian coefficients. The use 

of kernels is one of the most common approaches in the support vector method, because in this case, linear 
optimization is performed in the kernel space, and there is no need to create a high-order separating hyperplane 
in the input data space, which is a very complicated method. The kernel we use in this method is the Radial Basis 
Function (RBF) kernel:

	
k(x, x′) = σ2

fexp

(
− 1

2l2
∥x− x′∥2

)
,� (11)

where, signal variance σ2
f  and length scale l are two hyperparameters of this kernel35.

Considering the next ML method that we use in this paper, GPR is a non-parametric Bayesian method35–38. 
Gaussian process (GP) is a random process in the form of a set F  of random variables Fx1, Fx2, . . .. Each subset 
of these variables has a common multivariate Gaussian distribution37. In fact, GP is a generalization of the 
Gaussian probability distribution. Kernel is an important element in GP that determines its posterior and prior 
shape. By assuming a kernel, also known as the covariance function, similar data points should lead to similar 
target values. Choosing an appropriate kernel is based on assumptions such as the kernel’s consistency with 
expected patterns in the data. In this method, a GP is assumed, which can be shown using a mean function m(x) 
and covariance function k(x, x′):

	 f (x) ∼ GP (m(x), k(x, x′)),� (12)

where mean and covariance are defined as follows:

	 m(x) = E[f (x)]� (13)
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	 k(x, x′) = E[(f (x)−m(x))(f (x′)−m(x′))]� (14)

The kernel we employ in this work is the RBF kernel, which is one of the most common kernels used in GPR.
Ensemble methods are advanced machine learning techniques that enhance accuracy and robustness by integrating 
the predictions of multiple models, rather than relying on a single model. Notable examples of ensemble methods 
include Random Forest (RF)39, Gradient Boosted Trees (GBT)40,41, and Extremely Randomized Trees (ERT)42. 
Among these, RF is one of the most widely used and adaptable ML algorithms that is used for both regression 
and classification problems. Decision tree model, also called classification and regression tree (CART), is a non-
parametric model that was first introduced by Breiman et al. in 198443. CART is of interest due to its simplicity 
and low computational cost, as well as, interpretability and the possibility of graphical representation44. On the 
other hand, a decision tree is a model that possesses low predictive accuracy due to its inherent high variance. 
However, several CART models can be combined to create an ideal ensemble model, and hence it is called a 
“random forest”. More precisely, RF consists of several independent and uncorrelated decision trees, each tree 
alone implements a classification or regression algorithm according to the type of problem. In the classification 
method, the output of RF is the class that obtains the highest count of votes from the set of decision trees. As for 
the regression method (RFR), the final output is the mean of outputs of all decision trees45–47.

Database
In the present study, a data set of 272 inorganic compounds is created by extracting data from independent 
scientific literatures2,12,48–66. This data set includes experimental RI and Eg values of inorganic compounds, along 
with additional information regarding their constituent elements. The range of RI values is from 1.3 to 4, with 
most falling between 1.5 and 2.5. The distribution of these RIs is illustrated in Fig. 1a.

Besides, these compounds with their RI and Eg values, can be found in the supplementary materials. 
Moreover, the characteristics of the constituent elements of the compounds used in the data set include period 
p within the periodic table, atomic number Z, atomic mass m, electronegativity χ, the first ionization energy 
I, atomic radius r, melting point TM , boiling point TB, density D, and conductivity σ. For a given compound, 
element-specific predictors are calculated in the form of mean, ⟨c⟩, and standard deviation, σc, as follows:

	
⟨C⟩ =

N∑
k=1

xkCk,� (15)

	
σC =

√√√√ N∑
k=1

xk (Ck − ⟨C⟩)2,� (16)

where Ck and xk are the values of the basic variables of each constituent element and the contribution of each of 
them in the compound, respectively. Also, N represents the number of elements in the compound. So, all these 
derived parameters form a set of 21 predictors which we use in the following sections to predict RI.

Results and discussion
In this section, we present our results for the prediction of RI using different regression methods as described in 
above. We show that using simple regression models can be useful, yet leads to low accuracy in predicting the 

Fig. 1.  (a) Distribution of refractive indices(RIs) in the data set, including 272 inorganic compound. (b) 
Correlations between predictors and refractive index(RI). Eg, ⟨χ⟩, σχ, ⟨I⟩, and σI  represent mean and standard 
deviation of electronegativity and the first ionization energy, respectively. The negativity of correlation indicates 
an inverse relation between the variables.
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target parameter. However, by using more advanced ML methods, we demonstrate a more accurate prediction 
of the RI for the compounds in our data set.

As the first step, we assess the relation between 21 predictors and the target parameter, namely RI. 
Considering the correlation between predictors and RI, the most correlated parameters to RI appear to be the Eg, 
the electronegativity (χ), and the first ionization energy (I) as depicted in the heatmap of Fig. 1b. Considering the 
first row, this figure shows that RI has a notable correlation (−0.82) with Eg and σχ. The negativity of correlation 
hints that RI should be related to the inverse of Eg and other predictors. Furthermore, we notice a higher 
correlation between RI and the standard deviation of predictors, namely σχ and σI , in comparison to their mean, 
⟨χ⟩ and ⟨I⟩. Also, we note high correlations among the predictors as well. For instance the correlation between 
⟨χ⟩ and ⟨I⟩ is 0.91. Concentrating more closely on the relation between RI and predictors, Fig. 2 depicts the 
relation between RI and Eg, I, and χ for all the compounds in our data set. In agreement with the heatmap of 
Fig. 1b, we see RI inversely depends on Eg, σχ, and σI . In addition, RI shows a weak correlation with ⟨χ⟩ and ⟨I⟩.

The results, demonstrate a significant association between RI and Eg. Moreover, there is a notable correlation 
between RI and both the electronegativity and first ionization energy. This collides with our physical intuition 
about importance of electronic excitation of materials in studying optical properties. Therefore, we generated 
3 groups of data sets; D1: Data set with only Eg as predictor. D2: Data set with 5 features including the Eg and 
the mean and standard deviation of the first ionization energy and electronegativity. D3: Data set including all 
21 features. In what follows, we compare the performance of ML models using these three different data sets. 
Clearly, we compare the accuracy of different models for each data set as well.

In this study, the performance of ML methods is assessed through evaluation of the mean absolute error 
(MAE), that is:

	
MAE(y, y′) =

1

n test

n test∑
i=1

|y − y′|,� (17)

where y is the observed target feature, y′ is the predicted target feature, and n test  is the number of test data.

The analysis of the MAE for ML models is illustrated in Fig. 3, where the vertical axis shows the MAE and the 
horizontal axis illustrates the size of the training data set. In Fig. 3a–d we implemented OLSR, SVR, RFR, and 
GPR models, respectively. For each model, we split the training (N ) and test (N′) sets randomly from 272 
compounds in each trial while keeping the ratio of train to test as three to one. Furthermore, we apply each 
model to above-mentioned data sets D1, D2, and D3 which include 1, 5, and 21 features, respectively. Each point 
in Fig. 3 represents an average of over 500 randomly chosen configurations of train-test splitting, and error bars 

Fig. 3.  Dependence of MAE on the number of training data (N ) using OLSR (a), SVR (b), RFR (c), and GPR 
(d) methods for three groups of data sets D1,D2, and D3. Error bars represent the standard deviation for 500 
different trials.

 

Fig. 2.  Relation between predictors and refractive index (RI). (a) Illustrates the relation between RI and Eg, 
while (b,c) show RI as a function of the mean and standard deviation of electronegativity (χ), respectively. (d,e) 
illustrate the dependence of RI on the mean and standard deviation of first ionization energy (I).
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illustrate the corresponding standard deviation. Clearly, this figure suggests that all ML models used in this work 
converge for a large enough training data set.

As can be seen in Fig. 3a, by using OLSR the error saturates very quickly for D1. By considering data set 
D2 with 5 predictors, we find almost the same trend with a lower saturated MAE. However, by using data set 
D3 which increases the predictors to 21, we see a slow reducing MAE trend a function of N  that gives rise to 
a slightly lower MAE in comparison to D2. Furthermore, the standard deviation falls rapidly by increasing the 
size of N . It is apparent that the OLSR method yields a minimum error of approximately 0.22 for D2 and D3. We 
also confirm that using principle component analysis leads to similar results. For the SVR model, we implement 
radial basis function (RBF) as the kernel and the results are depicted in Fig. 3b. Here, we observe MAE declines 
by increasing N  and this trend hints that MAE gets saturated for larger data sets. As shown in this figure, SVR for 
D1 and D2 leads to an MAE ≈ 0.17 for N = 200. Although using D3 gives larger MAE for small N , by increasing 
N  this data set surpasses D1 and D2 in giving lower MAE by having a larger slope. Exploiting the RFR method, 
we utilize 35 trees to predict RI and the outcome is presented in Fig. 3c. We employ the GridSearchCV technique 
from SciKit-learn to determine the optimal number of trees. Apparently, using only the band gap as a predictor 
does not give any satisfactory result. However, using D2 we notice a declining trend for MAE as a function of N . 
Furthermore, with all 21 features selected, MAE leads to an even more accurate prediction of RI. Obviously, the 
declining slope is not saturated and this promises better performance for larger data sets. In the GPR method, 
akin to SVR we use RBF for the kernel and show the result in Fig. 3d. Similar to RFR, the result for D1 is not 
promising. On the other hand, considering D2, MAE decreases as N  increases, and for D3, its declining slope is 
larger than the other two sets. However, for N = 200, using D2 still gives more accurate prediction compared to 
D3. Given that the data set used in this work is limited in size, we expect D3 to outperform D2 for larger data sets.

Obviously, MAE for the OLSR method saturates rapidly and does not lead to accurate prediction of RI 
compared to SVR, GPR, and RFR. Consequently, as illustrated in Fig. 4a, we compare the performance of these 
three methods using data set D3 which includes all 21 features we prepared for inorganic compounds in this 
work. All the methods share a declining trend for MAE by increasing N , resulting in a more accurate prediction 
for larger data sets. Moreover, the RFR method gives the best performance with MAE = 0.156. Therefore, we 
find the RFR method to be the optimum ML model for predicting RI among the models evaluated so far in this 
work.

We also assess the prediction strength of our trained models by calculating MAE using 10-fold cross validation 
for sets of 20 unseen compounds out of 272, as depicted in Fig. 4b. Here, D1 indicates performing the ML method 
for the data set with Eg as a predictor. Similarly, D2 and D3 represent the performance of the method for data 
sets with 5 and 21 features, respectively. Clearly, for the SVR and GPR method choosing Eg as the only predictor 
gives a reasonable result, and increasing the number of predictors does not lead to a significant improvement. 
In addition, SVR and GPR trained models show an over-fitting issue, since the MAE increases drastically by 
using D3 in comparison to D1. However, utilizing the RFR model for D3 shows a significant improvement for 
unseen data. Thus, the RFR model with 21 features can be introduced as a more successful model for predicting 
RI in contrast to other models examined so far. For the sake of clarity, Table 1 provides the predicted values of 
these 3 models for some unseen compounds. Furthermore, besides the MAE and to monitor the quality of these 
predictions, the mean percentage of absolute error (MAPE) for these predictions have been calculated as17:

	
MAPE (y, y′) =

1

n test

n test∑
i=1

∣∣∣∣
y − y′

y

∣∣∣∣× 100,� (18)

where y is the observed target feature, y′ is the predicted target feature, and n test  is the number of test data. As 
indicated in Tab. 1, we find that using tree-based method, gives the highest accuracy compared to other regression 
methods. A detailed table featuring 20 unseen compounds can be found in the supplementary materials.

The SHAP summary plot, Fig.5a illustrates the impact and importance of various features on the RFR 
predictions. The x−axis represents SHAP values, indicating the effect of each feature on the model output, 

Fig. 4.  (a) Dependence of MAE of the test set on the number of training data (N ) using SVR, RFR, and GPR 
models for the data set with 21 predictors (D3). Error bars represent the standard deviation for 500 different 
trials. (b) The prediction MAE of SVR, GPR, and RFR using 10-fold cross validation for sets of 20 unseen 
compounds. D1, D2, and D3 represent data sets with 1, 5 and 21 predictors.
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with positive values increasing and negative values decreasing the prediction. Features are listed on the y−axis 
in order of importance. Each dot represents a data instance, colored from blue (low value) to red (high value). 
Taking advantage of the 10 features with the highest impact on the prediction of RI, we discuss other tree-based 
regression methods in the following section.

Concluding remarks
Given that the RFR method exhibits lower error compared to SVR and GPR, one might think that tree-based 
models outperforms other regression methods in prediction of RI. To investigate this, we perform extra analysis 
by using more complex and advanced tree-based ensemble models; namely the gradient boosted trees regression 
(GBTR) and extremely randomized trees regression (ERTR). We need to indicate that, GBTR combines the 

Fig. 6.  SHAP force plot showing features impact on model prediction corresponding to ZnS which has the 
median RI value among unseen data (experimental RI: 2.35, prediction RI: 2.33).

 

Fig. 5.  (a) The top 20 features that impact the prediction of the RFR, arranged from highest to lowest 
importance. The horizontal axis shows SHAP values, indicating each feature impact on predictions. Features 
are ranked by importance on the vertical axis. Dots represent data instances, colored from blue (low) to red 
(high). (b) MAE of RFR, GBTR and ERTR methods for 10-fold cross-validation. D1, D2, D3, and D4 represent 
data sets with 1, 5, 21, and 10 predictors, respectively. (c) Refractive index (RI) predicted using empirical 
formulas and prediction method of this study(ERTRD4). The solid black line indicates x = y.
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models by weighing them based on their performance, instead of taking the average of the predictions of all 
individual trees. This boosting is typically done through gradient descent optimization and thus, GBTR is more 
complex and computationally more expensive than RFR40,41. Also, ERTR builds multiple trees like RFR, but with 
even more randomization in the tree-building process, which makes it often faster to train compared to RFR42.

Furthermore, considering that an increase in the number of features leads to overfiting for SVR and GPR, 
we evaluated model performance by increasing the number of predictors, one by one and according to SHAP 
analysis. Notably, the accuracy reaches its optimum when we keep 10 predictors and further increase in the 
number of predictors does not provide any higher accuracy. Accordingly, we select the 10 most influential 
features according to the SHAP analysis in Fig.5a. This data set is referred to as D4.

The results of RI prediction based on different tree-based methods by using Di for i ∈ {1, 2, 3, 4} is 
summarized in Fig. 5b. Here, we illustrate the MAE of the 10-fold cross-validation for RFR, GBTR, and ERTR. 
First, we notice that selecting D4 data set gives rise to a notably higher accuracy for all tree-based methods and 
reduces the computational cost. Therefore, we find it more reasonable to use D4 instead of D1, D2, and D3. Next, 
by concentrating on D4, we observe that more complex methods of GBTR and ERTR provide higher accuracy 
in comparison to RFR. To be more specific, the 10-fold cross-validation for the RFR, GBTR, and ERTR method 
with the D4 data set yield the MAE of 0.147, 0.143, and 0.135, respectively.

In Fig. 5c, we compare the RI prediction strength of our ML model for unseen data with empirical well-
known relations. Here, we use ERTR since this model provides a more accurate prediction in comparison to 
other tree-based models. In this figure the horizontal axis represents the experimental RI, while the vertical 
axis stands for the predicted values. Consequently, the solid black line guides the eye for the best prediction and 
data points accuracy can be estimated by their distance to this line. Using the Ravindra formula to predict RI 
for unseen compounds, shows a large deviation from experimental values for RI ∈ (1.75, 2.30), but it gives a 
reasonable prediction for RI ∈ (2.5, 3.25). However, exploiting the trained ERTR model provides a much better 
prediction of refractive index for the whole range of RI in Fig. 5c. Also, Reddy, Herve, and Moss formulas give 
good predictions for RI ∈ (1.75, 3.25), though our ML-assisted prediction still outperforms all these empirical 
formulas. Also, Table 1 lists the predicted RI values using ML models and empirical formulas which exhibits the 
least MAE and MAPE for ERTR using D4.

Focusing on a specific compound, in Fig.  6 we provide a SHAP force plot for ZnS which highlights the 
key features driving the model prediction, demonstrating their importance and directional impact. For this 
compound using ERTR, we observe a good prediction, namely MAPE = 0.8%. As we see in this figure, the 
effect of Eg and σP  in evaluating RI is shown by blue color (directed from left to right) indicating negative 
relationship and accordingly reducing the predicted RI. This is particularly consistent with the heatmap in 
Fig. 1b for Eg, as we observe large negative correlation. On the other hand, for ⟨D⟩, ⟨χ⟩,⟨I⟩,σχ and σr we observe 
a positive relationship (directed from right to left) indicated by red color, meaning that these predictive features 
increase the target variable RI.

To conclude, in this work, we investigate six different machine learning regression models, namely ordinary 
least square(OLSR), support vector (SVR), Gaussian process (GPR), random forest (RFR), gradient boosted 
trees (GBTR), and extremely randomized trees regression(ERTR) to predict the Refractive Index (RI) of diverse 
inorganic compounds. To scrutinize these models more closely, four data sets comprising 1, 5, 10, and 21 features 
are considered, which include properties such as band gap energy (Eg), electronegativity, first ionization energy, 
and other fundamental properties of the constituent elements of the inorganic compounds.

By comparing the predicted RIs with their experimental counterparts, we evaluate mean absolute error as 
a measure of accuracy in prediction for unseen compounds in the learning process. Our results reveal that 
although OLSR performance is poor in predicting RIs, other regression methods implemented in this work 
provide reasonably accurate estimation of RIs. Furthermore, we observe that increasing the number of predictors 
from 1 to 21 for SVR and GPR gives rise to the problem of model overfitting. In contrast, using tree-based 
methods with 10 predictors leads to a lower mean absolute error for unseen compounds. We have to emphasize 
that the accuracy of RI prediction using SVR and GPR, with band gap as the only predictor, is still higher than 
empirical formulas, namely Reddy, Ravindra, Moss, and Herve. Furthermore, utilizing ERTR with 10 predictors 
gives the highest accuracy in predicting RIs.

Overall, this research demonstrates that using machine learning for various inorganic compounds, 
particularly regression models, provides a reasonable tool for prediction of optical properties. Specially, ERTR is 
efficient in terms of processing time and numerical cost. In addition, the accuracy of machine learning-assisted 
models can be enhanced by considering a larger number of training compounds.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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