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ABSTRACT

How far do H/ACA sRNPs contribute to rRNA
pseudouridylation in Archaea was still an open
question. Hence here, by computational search
in three Pyrococcus genomes, we identified seven
H/ACA sRNAs and predicted their target sites in
rRNAs. In parallel, we experimentally identified 17)
residues in P. abyssi rRNAs. By in vitro reconstitu-
tion of H/ACA sRNPs, we assigned 15 out of the 17)
residues to the 7 identified H/ACA sRNAs: one
H/ACA motif can guide up to three distinct pseu-
douridylations. Interestingly, by using a 23S rRNA
fragment as the substrate, one of the two remaining
) residues could be formed in vitro by the
aCBF5/aNOP10/aGAR1 complex without guide
sRNA. Our results shed light on structural con-
straints in archaeal H/ACA sRNPs: the length of
helix H2 is of 5 or 6 bps, the distance between
the ANA motif and the targeted U residue is of 14 or
15nts, and the stability of the interaction formed by
the substrate rRNA and the 3’-guide sequence is
more important than that formed with the 5’-guide
sequence. Surprisingly, we showed that a sRNA–
rRNA interaction with the targeted uridine in a
single-stranded 5’-UNN-3’ trinucleotide instead
of the canonical 5’-UN-3’ dinucleotide is functional.

INTRODUCTION

Conversion of uridine into pseudouridine (�) residues is
one of the most abundant post-transcriptional modifica-
tions of tRNAs, rRNAs and UsnRNAs (1). Compared
to U residues, � residues can form an additional hydrogen

bond at the N1–H position. Furthermore, the carbon–
carbon link between the ribose and the base limits the
flexibility of the ribose backbone of � residues, which
favours and stabilizes base-pair interactions (2). A role of
� residues in stabilization of the tRNA 3D structure has
also been well documented (3), and the functional
importance of � residues in U2 snRNA for the activity
of splicing complexes was demonstrated (4–7). Eukaryal
rRNAs contain a large number of � residues compared to
bacterial rRNAs and they are concentrated in rRNA
regions expected to play important functional roles, in
particular in domains IV and V, which are directly
involved in the peptidyl transferase activity (8–10).
Taken individually, pseudouridylations in rRNAs are
not essential for cell growth. However, the complete
abolition of � formation in rRNAs is deleterious for
ribosome assembly and activity (10–12). Recent data
suggest their possible involvement in: (i) subunit inter-
action (12–14), (ii) the translocation step (14,15),
(iii) translation termination (12,16) and (iv) folding of
23S rRNA in an active form at the peptidyl transferase
centre (PTC) (11,12,17). The large number of pseudour-
idylation sites in eukaryal rRNAs compared to bacterial
rRNAs is explained by the use of different catalysts: stand-
alone enzymes carrying both the RNA recognition
capability and the catalytic activity are used in bacteria
(10,18), whereas U to � conversions are catalyzed
by H/ACA snoRNPs in eukarya (19,20). The H/ACA
snoRNPs contain four proteins and an H/ACA snoRNA
that defines the targeted U residue by base-pair interaction
with the rRNA. Recent data revealed a similar RNA-
guided system in archaea (21–24). Most of the eukaryal H/
ACA snoRNAs contain two characteristic stem-loop
structures, with an internal loop (pseudouridylation
pocket), that is complementary to two nucleotide
stretches bordering the targeted U residue. Each of the
stem-loops is flanked by a conserved motif (H and

*To whom correspondence should be addressed. Tel: +33 3 83 68 43 03; Fax: +33 3 83 68 43 07; Email: christiane.branlant@maem.uhp-nancy.fr

� 2008 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/


ACA, respectively). In the following part of this manu-
script, one stem-loop structure containing a pseudouridy-
lation pocket flanked by one of the conserved 30 sequence
will be denoted an H/ACA motif. In the RNA duplex
formed between the H/ACA motif and the substrate
rRNA sequence, the targeted U residue and its 30

nucleotide are both single-stranded. The archaeal sRNA
counterparts of the snoRNAs have more diverse archi-
tectures. They are composed of one, two or three H/ACA
motifs (21–26). In addition, each archaeal H/ACA stem-
loop structure contains a K-turn or a K-loop which binds
protein L7Ae (22). The conserved 30-flanking sequence
is an ANA trinucleotide (most frequently an ACA
trinucleotide).
As successful reconstitutions of active H/ACA sRNPs

were achieved using an in vitro transcribed H/ACA sRNA
and the recombinant archaeal H/ACA sRNP proteins
(23,24), strong progresses were recently made in the
understanding of the H/ACA sRNP structure and
function. Like the eukaryal H/ACA snoRNPs, the
archaeal H/ACA sRNPs contain four proteins. Protein
aCBF5 is the RNA: �-synthase, aNOP10 is required
for aCBF5 activity, L7Ae binds the K-turn or K-loop
motif, and aGAR1 may facilitate the H/ACA sRNP
turnover (22–24). Both L7Ae and aGAR1 strongly
reinforce the sRNP activity (23). The crystal structures
of H/ACA sRNP protein complexes and of an entire
H/ACA sRNP were recently solved at high resolution
(27–31). The ANA sequence is needed for binding of
aCBF5 to the guide RNA (28,29,31). In the crystal
structure, aCBF5 also interacts with the pseudouridyla-
tion pocket, helix H1 and helix H2 of the H/ACA motif
(31). Recently a 3D structure obtained for an H/ACA
sRNP devoid of the L7Ae protein and bound to its RNA
substrate, revealed contacts between aCBF5 and the target
rRNA–H/ACA sRNA duplex (30). However, little is
known on the structural constraints required for forma-
tion of an active rRNA target–H/ACA sRNA interaction.
The two NMR structures established for a complex
formed between an H/ACA stem-loop structure and a
small target RNA revealed the capability of the two RNAs
to interact together, in the absence of protein, at the high
concentration used for NMR analysis (32,33). In these
structures, the heterologous helix formed by interaction
of the RNA target with the 30-guide element of the sRNA
is stacked on helix H1, while the heterologous helix
formed by interaction of the RNA target with the 50-guide
element of the sRNA is stacked on helix H2.
At present, in contrast to this extensive knowledge on

H/ACA sRNPs, little is known on the number and
location of � residues in archaeal rRNAs. Their presence
has only been investigated inHalobacterium halobium (34),
Haloarcula marismortui (35,36), Sulfolobus acidocaldarius
(37) and Archaeoglobus fulgidus (21). Unfortunately, the
search for putative H/ACA sRNA genes by computa-
tional analysis was made for other archaeal species:
Pyrococcus furiosus (22,24,38), Methanococcus jannaschii
(26) and Thermococcus kodakarensis (25). The utilization
of RNomics approaches for the search of H/ACA
sRNAs in archaea is even more scarce, it was only applied
to the A. fulgidus (21) and Sulfolobus solfataricus (39)

species: three H/ACA sRNAs and one single sRNA were
identified, respectively. For a better definition of the rules
that govern the H/ACA sRNP specificities and efficiencies,
it was of high importance to identify all the putative
H/ACA sRNAs of a given species as well as � residues in
its rRNAs and then, to try to assign the detected �
residues to the detected H/ACA sRNAs.

To this end, here, we used different experimental
approaches in order to define the target sites of the
putative H/ACA sRNAs that we identified by a computa-
tional analysis of the genomic sequences of three
Pyrococcus species. These three species, Pyrococcus
abyssi, Pyrococcus furiosus and Pyrococcus horikoshii,
are hyperthermophiles (optimal growth temperature
between 95 and 1008C). As a first step, we developed
and used various computational approaches to identify
all the putative H/ACA sRNAs of these species and their
putative target sites in rRNAs. Then, to test for the
presence of � residues at the predicted sites in 16S and 23S
rRNAs, we applied the RT-CMCT approach to large
segments of the P. abyssi 16S and 23S rRNAs that were
including the predicted pseudouridylation sites. Finally,
to confirm the role of the identified H/ACA motifs in
formation of the identified � residues, we tested the
activities of reconstituted H/ACA sRNPs on small rRNA
fragments containing the expected target U residues.
Finally, on the basis of the data obtained, we drew
conclusions on structural constraints to which H/ACA
sRNAs and the H/ACA sRNA–rRNA interactions are
subjected.

MATERIALS AND METHODS

Extraction of inter-coding-regions (ICR) from
Pyrococcus genomes

The sequences and annotations of the archaeal genomes
Pyrococcus abyssi GE5, Pyrococcus horikoshii OT3 and
Pyrococcus furiosus DSM3638 were downloaded in Fasta
and Genbank formats from NCBI ftp site, ftp://ftp.ncbi.
nih.gov/genomes/Bacteria. In each genome, the positions
of DNA sequences corresponding to ORFs or template
sequences of known stable RNAs (rRNA, tRNA, RNaseP
and 7S RNA) were listed in a table denoted ‘position
table’. Based on this table, the remaining segments of the
genomes were extracted automatically from the genomic
sequences, by using a script written in awk and perl
languages (ExtractICR). Only sequences exceeding 15 nts
were collected. ExtractICR flanks each of the linking
sequences by their two 15-nt long bordering sequences.
These exported sequences, denoted ICRs, were formatted
and assembled in data bases, using Readseq (ftp://
iubio.bio.indiana.edu/molbio/readseq) and Formatdb
(NCBI toolkit).

Selection of conserved ICRs and search for
H/ACA sRNA genes

A Blast version adapted for multi-aligment was used to
compare the ICR sequences. First, repeated elements
(more than 50-nt long segments repeated several times
in the genome) were removed by comparison of all the
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ICRs extracted from one given genome. Then, the ICRs
from one given pyrococcal species were compared to those
of the two other species. Based on a statistical analysis,
the criteria retained to consider that an ICR shows a
significant degree of conservation in the three species was
the presence of at least a stretch of 18 nts with an identical
sequence in these species or a 21-nt long sequence
with only one base-pair substitution in one or two of the
three species. The selected ICRs were then aligned using
Clustal-W (40). GeneMarks (41) was used for elimination
of the conserved ICRs corresponding to mis-annotated
ORFs. An RNAMOT (42) descriptor, that was designed
for C/D box sRNA gene detection, was used to identify
these genes in the conserved ICRs. Finally, another
RNAMOT descriptor was used to screen for the presence
of H/ACA sRNA genes. It was based on some of
the known structural features of the archaeal H/ACA
motifs: the presence of two helices H1 (at least 7 bps) and
H2 (at least 5 bps) flanking an internal loop (each strand
including 5 to 11 nts). The length of the apical loop
was allowed to vary between 8 and 35 nts. The descriptor
included an ACA trinucleotide flanking helix H1. Only
H/ACA motifs having at least one putative target site
in rRNAs or tRNAs that fitted to the rules defined for
H/ACA sRNA–rRNA interactions were retained. To this
end, RNAMOT descriptors were built for each putative
H/ACA motif as described in (25).

Search for H/ACA sRNA genes in entire genomic sequences

Then, based on the results obtained with RNAMOT, we
used the ERPIN (43) software for searches with higher
constraints in the entire Pyrococcus genomes. ERPIN
builds helix and single-strand lod score profiles from
sequence alignments and screens genome sequences for
occurrences of these profiles. The H/ACA sRNAs that
we identified by screening the conserved ICRs, together
with the H/ACA sRNAs identified experimentally in
A. fulgidus (21), were used to build the ERPIN profile as
described in (25). As above, for each new candidate
detected by this approach, RNAMOT was used to predict
target sites in rRNAs (25).

The nucleotide sequences of all the H/ACA sRNAs
detected in this study and the positions of their template
sequences in the archaeal genomes are accessible at http://
tagc.univ-mrs.fr/erpin/.

P. abyssi cultures

P. abyssi strain GE5 cells were grown as described (44) at
958C in Vent Sulfothermophiles Medium (20 g/l NaCl,
0.25 g/l KCl, 0.05 g/l NaBr, 0.5 g/l SrCl2-6H2O, 0.08 g/l
boric acid, 3 g/l PIPES, 1 g/l yeast extracts, 4 g/l peptone,
1 g/l Resazurine, 200 g/l MgSO4, 50 g/l CaCl2, 50 g/l
KH2PO4 pH 6.8). P. abyssi cell growth was stopped at
the end of the exponential phase.

Total RNA isolation

The P. abyssi cells were collected by centrifugation.
After washing in 1M sorbitol, 25mM Hepes, pH 7.0,
they were frozen and stored at �808C. The method
described by Chomczynski and Sacchi (1986) (45) was

used for extraction of total RNA. About 1010 cells were
dissolved in 4ml of solution D (4M guanidinium
thiocyanate, 25mM sodium citrate pH 7.0, 0.5% sarcosyl,
0.1M b-mercaptoethanol). The extracted RNAs were
recovered by phenol/chloroform extraction, followed by
ethanol precipitation using 0.3M sodium acetate. They
were dissolved in bi-distilled water and quantified.

Northern blot analysis

About 10 mg of P. abyssi total RNA and 50-end labelled
DNA size markers (100 bp DNA ladder, MBI Fermentas)
were fractionated in parallel on 6% denaturing poly-
acrylamide gel (8M urea, 0.5� TBE buffer). After electro-
transfer on a Hybond-N+ membrane (Amersham) and
by UV-crosslinking, a pre-hybridization was carried out
for 1 h at 588C in SSPE buffer (0.9M NaCl, 47mM
Na2HPO4-2H2O, 6mM EDTA pH 7.4, containing 1 g/l
Ficoll, 1 g/l polyvinylpyrolidone, 1 g/l BSA, 0.5% SDS).
Oligonucleotide probes complementary to the predicted
H/ACA sRNAs (Table S1 in Supplementary data) were
50-end labelled with [g-32P]ATP and T4 polynucleotide
kinase for 1 h at 378C. Hybridization was carried out at
588C for 16 h in the presence of 100 ng of the labelled
oligonucleotide. The membranes were washed four times
in SSPE buffer at 428C for 5min and the hybridization
bands were visualized on a Typhoon 9410 (Amersham
Biosciences).

Mappingof pseudouridine ()) residues in theP.abyssi rRNAs

The N-cyclohexyl-N0-(2-morpholinoethyl)-carbodiimide
metho-p-toluolsulfonate (CMCT) RNA treatment was
adapted from Bakin and Ofengand (1993) (46), as
previously described (47). CMCT modifications were
performed on 5 mg of P. abyssi total RNA. Positions of
CMCT modifications were identified by primer extension
analysis, using the AMV RT (QBiogene, USA).
The sequences of the 50-end labelled primers that we
used are given in Table S1 (Supplementary data). RNA
sequencing was done on 20 mg of P. abyssi total RNA.

Recombinant protein production

The recombinant GST-L7Ae, GST-aNOP10, GST-
aGAR1, GST-aCBF5 proteins were produced in E. coli
BL21 CodonPlus cells (Novagen). The GST-tag was
cleaved by the precision protease in the course of
purification performed on Glutathione-Sepharose 4B
(Pharmacia), as previously described (23).

In vitro transcription of H/ACA sRNAs and
their rRNA substrates

The Pab19, Pab21, Pab35, Pab40, Pab91, Pab105 and
Pab160 sRNA sequences were PCR amplified from the
P. abyssi GE5 genomic DNA using a forward primer
containing the T7 RNA polymerase promoter and
a second primer complementary to the expected 30 end
of the sRNA (Table S1 in Supplementary data). The
amplified DNA fragments were cloned in the pTAdv
vector (Clontech) and sequenced. In vitro transcrip-
tions with the T7 RNA polymerase were performed as
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previously described (23). The H/ACA sRNA transcripts
were purified by gel electrophoresis.
Template DNA encoding the RNA targets derived

from P. abyssi rRNAs were obtained by annealing two
complementary oligonucleotides. In vitro transcription
was performed as previously described (23), in the
presence of 20 mCi [a-32P] NTP (800Ci/mmol), 0.13mM
of the same NTP and 4mM of each of the three other
NTPs. When using RNase P1 for the digestion,
[a-32P]UTP was used for labelling. When RNase T2 was
used, the identity of the [a-32P]NTP used was defined
by the residue located 30 to the targeted U residue. The
sequences of the in vitro transcribed substrates are given in
Table S2 in Supplementary data.

H/ACA sRNP reconstitution and test of their activity

As previously described (48), the unlabelled sRNA
(4 pmol) and [a-32P] NTP-labelled targets (150 fmol)

were mixed with the four L7Ae, aCBF5, aNOP10 and
aGAR1 recombinant proteins at a 200 nM concentration,
at room temperature in buffer D (150mM KCl; 1.5mM
MgCl2; 0.2mM EDTA; 20mM HEPES, pH 7.9). The
mixture was incubated at 658C for 80min. Then, forma-
tion of � residue was detected after either T2 or P1 RNase
digestion. The 30-mono phosphate nucleotides produced
by RNase T2 digestion or the 50-monophosphate residues
obtained after P1 RNase digestion were fractionated
by thin-layer chromatography (TLC) (mono or 2D) as
previously described, using the N1 buffer for 1D TLC and
N1-N2 or N1-R2 buffers for 2D TLC (48). The radio-
activity in the spots or the bands was quantified with a
phosphorimager, by using the ImageQuant software.
When digestion was achieved with RNase T2, the yield
of � formation (expressed in mol of � residue per mol
of target RNA) was estimated taking into account the
total number of residues located 50 to the incorporated
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Figure 1. The computational process used for the search of H/ACA genes in ICRs. Panel A: ICR definition. ICRs include 15 bps upstream and
downstream of the segments linking the ORFs or template sequences for known RNAs. Panel B: the helices H1 and H2, and loop size criteria used
to design the RNAMOT descriptor devoted to the search for H/ACA sRNA genes are shown. Panel C: Example of base-pair criteria used to search
for possible rRNA targets of the candidate H/ACA motifs. Panel D: the 5 computer based-steps used for the search of H/ACA genes: (1) sequences
and annotations were downloaded, (2) sequences of ICRs were extracted from the genomic sequences and assembled in databases, (3) after
elimination of ICRs containing repeated sequences, the ICR sequences from one species were compared to those of other species by using Blast, 119
conserved ICRs were selected, (4) protein-coding sequences and known C/D box sRNA genes were filtered out of the conserved sequences and (5)
RNAMOT descriptors were used for the search of H/ACA genes in ICRs, five putative genes were detected.
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labelled nucleotide. After P1 RNase digestion, we only
took into consideration the total number of U residues in
the target RNA.

RESULTS

Analysis of conserved ICRs in Pyrococcus identifies
five conserved putative H/ACA sRNAs

In order to make a link between H/ACA sRNAs and
pseudouridylation in rRNAs, in the P. abyssi species,
we first made a complete identification of H/ACA–sRNA
motifs in P. abyssi. This was done in two steps because,
when we started this study, only a limited number of
archaeal H/ACA sRNAs had been identified. As a first
step, we applied a phylogenetic approach to the
Pyrococcus genus. The idea was that DNA segments,
which link ORFs and/or template sequences for stable
known RNAs (rRNAs, tRNAs, RNase P, 7S RNA)
(Inter-Coding-Regions, ICRs) and that bear long stretches
of conserved sequences in three Pyrococcus species
P. abyssi, P. furiosus and P. horikoshii, may correspond
to genes for functional non-coding RNAs. Based on the
few H/ACA sRNAs known at that time (three from
A. fulgidus) (21) some characteristic features of H/ACA
sRNA motifs could be delineated. They were used to
build an RNAMOT descriptor for the search of H/ACA
sRNA genes. Then, RNAMOT profiles were built for
the search of the possible rRNA target sites of each
candidate H/ACA motif. By using this approach (see
the details in Materials and Methods), we detected five
putative H/ACA sRNA genes, that were common to the
three species. Four of them have been recently character-
ized in P. furiosus by the use of a computational approach
based on G/C content analysis, namely, the Pf1, Pf3,
Pf6 and Pf7 sRNAs (22,49). The counterparts that we
identified in P. abyssi and P. horikoshii are designated as
Pab21, Pab105, Pab35 and Pab40 sRNAs (P. abyssi) and
Pho21, Pho 105, Pho35 and Pho40 sRNAs (P. horikoshii),
respectively (Figure 2). The fifth common H/ACA sRNA,
which had not been characterized by other teams, is
denoted Pab91, Pfu91 and Pho91 in P. abyssi, P. furiosus
and P. horikoshii, respectively. We previously used it
to settle conditions for in vitro reconstitution of active
H/ACA sRNPs (23). Taking into account the numerous
compensatory base-pair mutations in the three species
studied and in T. kodakarensis, we could propose relevant
secondary structures for each of the five sRNAs
(Figure 2). Only for sRNA Pab21 and for motif 2 in
sRNA Pab40, it was difficult to make a choice between
two possible 2D structures that were both containing a
K-loop motif (Figure 2). Production of the H/ACA
sRNAs Pab21, Pab35, Pab40, Pab91 and Pab105 in P.
abyssi was verified by Northern blot analysis (Figure 3),
and two forms of Pab21 sRNA with or without the C/
D box motif were found to be present in vivo (Figure 3).

Screening of complete genomes with ERPIN identifies two
additional common putative H/ACA sRNAs in Pyrococci

Some H/ACA motifs may have escaped detection when
using the above comparative approach. Therefore,

we took advantage of the increased knowledge on
H/ACA sRNAs, which was brought by the 15 pyrococcal
H/ACA sRNAs that we identified, to develop another
computational approach based on the ERPIN software
(25,43). To this end, the sequences of the 3 known H/ACA
sRNAs from A. fulgidus and the 15 pyrococcal H/ACA
sRNAs were aligned by ERPIN, on the basis of their
proposed 2D structures and conserved sequence elements.
As recently described (25), by comparison of such a profile
with complete archaeal genomic sequences, ERPIN can
predict H/ACA sRNA genes with a high degree of
efficiency. By using different sets of constraints for the
lengths of the 30- and 50-guide strands of the pseudour-
idylation pocket, we detected two other putative H/ACA
sRNAs common to the three Pyrococcus species. One of
them was also recently detected in P. furiosus (sRNA Pf9)
by another approach (24). Its counterparts in P. abyssi
and P. horikoshii were denoted Pab160 and Pho160,
respectively (Figure 2F). The second H/ACA sRNA
identified (Pab19, Pfu19 and Pho19 in P. abyssi,
P. furiosus and P. horikoshii, respectively) had not been
detected previously, probably because of its extended
50-guide sequence (Figure 2). Nucleotide sequence con-
servation in the three species and secondary structure
conservation by compensatory base changes strongly
suggest the presence of a small 50 stem-loop structure
upstream from the H/ACA motif in sRNA Pab19. Note
that the Pab19 pseudouridylation pocket is larger than
usual due to the length of its 50-guide sequence (15 nts)
(Figure 2F). By applying the ERPIN search approach
with other kinds of relaxed constraints to each of the
3 Pyrococcus genomes, we did not find any other putative
H/ACA sRNA gene. Therefore, we concluded that
Pyrococcus species probably contain only seven H/ACA
sRNAs, which are highly conserved in this genus.
In addition, they are also conserved in Thermococcus
kodakarensis that belongs to the same order as the
Pyrococcus genus (25).

The seven pyrococcal H/ACA sRNAs are predicted
to target 21 sites in rRNAs

We used the RNAMOT software (25) to predict possible
target sites in rRNAs for each of the seven identified
putative H/ACA sRNAs, and this in the three species
studied. One up to four distinct target sites were predicted
for each putative pseudouridylation pocket (Figure 4).
Taken together, 14 and 7 target sites were predicted in 23S
and 16S rRNAs, respectively. Note that motif 1 in sRNA
Pab35 and sRNA Pab160 are both predicted to guide
modifications at position 922 in 16S rRNA and at position
2672 in 23S rRNA (Table 1). Only 8 of the 17 sites that we
predicted for the five previously identified P. furiosus
H/ACA sRNAs had been proposed (22). Strong con-
servation of the possibility to form the rRNA–sRNA
interactions are observed in the three species (Figure 4).
Note that in the non-canonical interaction proposed for
sRNA Pab19, two single-stranded residues are found 30 to
the targeted U residue (50-UGC-30) (Figure 4G). We veri-
fied that none of the seven identified H/ACA sRNAs can
act on tRNAs. In addition, no other putative H/ACA
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Figure 2. Sequences and proposed secondary structures of the seven pyrococcal H/ACA sRNA candidates. The sequences and proposed secondary
structures for the seven candidate P. abyssi sRNAs, Pab21 (A), Pab35 (B), Pab40 (C), Pab91 (D), Pab105 (E), Pab160 (F) and Pab19 (G) sRNAs, are
shown. The ANA sequence at the 30 end of the RNA and the K-turn or K-loop motif in the apical part of the H/ACA motif are boxed. Base
substitutions in the P. furiosus (P.f.), P. horikoshii (P.h.) and T. kodakarensis (T.k.) (25) sRNAs are shown. The two putative foldings, which can be
proposed for sRNA Pab21 and for motif 2 in sRNA Pab40, are shown (insets in panels A and C). Only the conformation shown in the entire
molecule turned to be functional.
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sRNA that may guide modification of a tRNA was
detected in any of the three species.

Experimental search for) residues at the
predicted target sites in rRNAs

We used the CMCT-RT approach (47) to test for the
presence of � residues at the rRNA positions predicted
to be targeted by the seven putative H/ACA sRNAs. To
this end, total RNA from P. abyssi was treated with
CMCT with or without further alkaline incubation.
Positions of the alkaline-resistant � residues were detected
by primer-extension analyses using a large series of
oligonucleotide primers (Table S1 in Supplementary
data). Altogether, the 16S and 23S rRNA segments that
were probed represented 20 and 27% of the entire
molecules, respectively. In particular, large parts of the
23S rRNA domains located at the peptidyl-transferase
centre (domains IV and V) were analysed. We identified
3 and 11 � residues in P. abyssi 16S and 23S rRNAs,
respectively, 8 of them are located in domain V of 23S
rRNA.

The experimental analysis confirmed � formation at 12
of the 21 predicted sites (positions 27, 891, 922 in 16S
rRNA, and positions 1932, 2549, 2554, 2588, 2672, 2685,
2697, 2794 and 2930 in 23S rRNA) (Table 1 and Figure 5).
In addition, the absence of � formation was clearly
demonstrated at six of the predicted positions (positions
892, 995 and 1122 in 16S rRNA and 278, 2250, and 2552)
(Table 1 and Figure 5). Note that three of these unmodi-
fied positions were previously proposed to be modified in
P. furiosus (22). Based on the present data, they are
unlikely to be modified in this species. For three of the
positions predicted to be modified in P. abyssi, the
experimental analysis was obscured by the presence of
an RT pause at the level of the stop expected after CMCT
modification (positions 1017 in 16S rRNA, 1377 and 2016
in 23S rRNA). Therefore, we could not determine whether
U to � conversion occurred at these positions. However,
for one of them (2016 in 23S rRNA), formation of a �
residue was detected at the corresponding position in
two other archaeal species: H. halobium (34) and
H. marismortui (35,36), and in nearly all bacterial and
eukaryal organisms which were studied up to now (10).
Interestingly, in the course of this analysis, � residues

were found at two positions that were not predicted to be
targeted by any of the identified H/ACA sRNAs (posi-
tions 2585 and 2603 in 23S rRNA). Even by relaxing the
constraints in the ERPIN search, we could not detect
putative H/ACA sRNAs for these positions. Therefore,
their formation may be sRNA independent.

The seven H/ACA sRNPs are active in vitro

To get experimental supports for the relationships that
we established between � residues in P. abyssi rRNAs
and the identified H/ACA sRNAs, we used the H/ACA
sRNP in vitro reconstitution method which was developed
in the laboratory (23). To this end, each of the seven
identified H/ACA sRNAs was transcribed, and the four
recombinant aCBF5, aNOP10, aGAR1 and L7Ae pro-
teins were produced. Assembly of individual proteins
and different combinations of them on the H/ACA
sRNAs was tested by electrophoresis-mobility shift assay
(EMSA). Each of the identified H/ACA sRNA could be
assembled into a sRNP (data not shown), which was a
clear demonstration that they were true H/ACA sRNAs.
Then, we measured the activities of the reconstituted
particles on all their predicted target sites. To this end, we
used small P. abyssi rRNA fragments containing from 18
up to 31 nts, most of them had a single target U residue
located in the middle of the molecule, except 3 substrates
that were containing 2 or 3 target U residues, because of
the close vicinity of these U residues in 23S rRNA
(see Table S2 in Supplementary data). Therefore, the
activity of one up to three distinct sRNPs was tested on a
given RNA substrate. This activity was measured by
the nearest-neighbour method as previously described
(23,48). T2 RNase digestion was performed on RNA
substrates labelled with [a-32P]ATP, CTP, GTP or UTP.
P1 RNase hydrolysis was done on [a-32P]UTP labelled
RNA substrates. Each RNA substrate was incubated
with the four core proteins (LCNG) at 658C as
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Figure 4. Predicted rRNAs target sites of the 11H/ACA motifs. Interactions between each H/ACA motif and its putative rRNA target sequences are
shown for the seven candidates sRNAs Pab21 (A), Pab35 (B), Pab40 (C), Pab91 (D), Pab105 (E), Pab160 (F) and Pab19 (G). The expected targeted
U residues are indicated by arrows and numbers giving their positions in the 16S or 23S rRNAs. The distance between the K-turn motif and the
pseudouridylation pocket is given in bps, the length between the ANA sequence and the pseudouridylation pocket is given in nts. The two possible
intermolecular interactions proposed for sRNA Pab21 and motif 2 in sRNA Pab40 result from the two possible alternative conformations of these
H/ACA motifs (Figure 2 Panels A and C). The interactions found to be functional in in vitro assays are indicated by (+), the inactive ones are shown
by (�).
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previously described, in the presence or the absence of the
H/ACA sRNA (23). Then, the RNAs were extracted,
digested, and fractionated by thin layer chromatography
(as described in Materials and Methods) (Figure 6).

Only 15 of the 21 predicted sites were found to be
modified by the reconstituted sRNPs and the rates of U to
� conversions were ranging from 30 to 100% (Figure 6
and Table 1). The rRNA segments predicted to be
modified by two distinct H/ACA motifs were in
fact modified by only one of them (motif 1 in sRNA
Pab35 modifies position 2672 in 23S rRNA and sRNA
Pab160 acts at position 922 in 16S rRNA). The data
obtained confirmed that each of the 11H/ACA motifs is
capable to guide pseudouridylation. Even the Pab19H/
ACA motif, which has a large internal loop and forms a
non-canonical interaction with its substrate, was active
(Figure 6D). Deletion of the additional single-stranded C
residue, which is located 30 to the 50-UN-30dinucleotide
(mutant S-C1019�) (Figures 4G and 6D), showed that the
Pab19 sRNP modifies the WT and mutated RNA
substrates at very similar rates. Among the two possible
conformations of motif 2 in sRNA Pab40, only con-
formation denoted a in Figure 2C is active in vitro.
Interestingly, this structure includes an additional stem-
loop in the 50-guide strand and a poorly stable helix
2 (Figure 2C). This may explain the low yield of U to �
conversion found for this H/ACA motif as compared to
the other P. abyssi H/ACA motifs (Figure 6C).

Some of the H/ACAmotifs can guide modification at more
than one position in rRNAs

Some of the H/ACA motifs can guide modifications at
two or even three distinct positions. For instance,
altogether, motifs 1 and 2 in sRNA Pab35 can guide U
to � conversion at positions 2672, 2930, 2549 and 2697 in
23S rRNA. Motif 1 in sRNA Pab105 only guides modifi-
cation at one position (2554 in 23S rRNA), while motif 2
in this sRNA can act at positions 1377 and 2794 in 23S
rRNA and 27 in 16S rRNA. Therefore, both sRNAs
Pab35 and Pab105 can guide modifications at four posi-
tions in rRNAs. Interestingly, we found that all the
H/ACA sRNAs that contain a single H/ACA motif
(Pab21, Pab91, Pab160 and Pab19) guide modification
at a unique position in rRNAs. Altogether, the 11 H/ACA
motifs of the 7 P. abyssi sRNAs can guide U to �
conversion at 15 sites in the P. abyssi rRNAs (Table 1).
Presence of � residue was detected at 12 of these sites
(Figure 5 and Table 1). As mentioned above, for technical
reasons, modification could not be tested experimentally
at the three other positions. However, the strong activity
measured in vitro at these three rRNA positions is a strong
argument for the occurrence of these modifications in vivo.

Constraints on the H/ACA sRNA structure and
H/ACA sRNA–target RNA interaction

Based on the above data, we tried to define rules for
H/ACA sRNA structure and interactions. In several of

Table 1. Predicted and experimentally identified target sites of the identified P. abyssi H/ACA sRNAs and comparison with P. furiosus

P. abyssi H/ACA Predicted targets RT-CMCT analysis In vitro activity P. furiosus counterparts Predicted targets

Pab21 16S rRNA 891 + ++ Pf1 16S rRNA 879
16S rRNA 892� � �

Pab35 motif 1: 16S rRNA 1122 � � Pf6
motif 1: 16S rRNA 922 + �

motif 1: 23S rRNA 2930 + ++ motif 1: 23S rRNA 2953
motif 1: 23S rRNA 2672 + ++ motif 1: 23S rRNA 2695
motif 2: 23S rRNA 2250 � �

motif 2: 23S rRNA 2549 + ++ motif 2: 23S rRNA 2572
motif 2: 23S rRNA 2697� + +++ motif 2: 23S rRNA 2720�

Pab40 motif 1: 23S rRNA 2588� + +++ Pf7 motif 1: 23S rRNA 2611�

motif 2: 23S rRNA 278� � �

motif 2: 23S rRNA 1932 + +
motif 2: 23S rRNA 2701

motif 3: 23S rRNA 2016� ? +++ motif 3: 23S rRNA 2039�

Pab91 23S rRNA 2685 + +++ Pfu91 23S rRNA2708
Pab105 motif 1: 23S rRNA 2552� � � Pf3

motif 1: 23S rRNA 2554 + ++ motif 1: 23S rRNA 2577
motif 2: 16S rRNA 995 � �

motif 2: 16S rRNA 27� + ++ motif 2: 16S rRNA 15�

motif 2: 23S rRNA 1377 ? +++ motif 2: 23S rRNA 1400
motif 2: 23S rRNA 2794 + +++ motif 2: 23S rRNA 2817

Pab160 23S rRNA 2672 + � Pf9
23S rRNA 922� + +++ 16S rRNA 910�

Pab19 16S rRNA1017 ? +++ Pfu19 16S rRNA 1005

The predicted target positions in 16S and 23S rRNAs are indicated for each of the candidates H/ACA motifs. Detection by CMCT-RT analysis of a
� residue at the predicted position in P. abyssi rRNAs is indicated by ‘+’ in the second lane. ‘?’ indicates the presence of an RT pause that obscured
the analysis. Detection of an in vitro activity of the reconstituted H/ACA sRNP at the predicted site is indicated by ‘+’,‘++’ or ‘+++’ in the third
lane. The number of ‘+’ is proportional to the rate of modification detected after a 80min incubation (25–50%, 50–80% and 80–100%, respectively).
Column 5 gives the name of the P. furiosus counterpart sRNAs (22,24). The target positions that were previously predicted for these P. furiosus Pf1,
Pf3, Pf6, Pf7 and Pf9 sRNAs (22,24) are indicated by an asterisk in column 2. Based on the rules that we established from our P. abyssi experimental
data, we predicted modification positions for both the previously identified P. furiosus sRNAs and the two additional sRNAs detected in this study
(column 6). The validated previously proposed modified positions are marked by an asterisk.
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Figure 5. Identification of � residues in the P. abyssi 16S (Panel A) and 23S (Panel B) rRNAs by the RT-CMCT method. The P. abyssi total RNA
was treated in the absence (�) or the presence of CMCT (+), for 2, 10, or 20min as indicated on the top of the lanes. The CMCT treatment was (+)
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ladder. Positions of residues in 16S or 23S rRNAs are given on the right side of the autoradiograms.
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Figure 6. In vitro activity tests of the seven reconstituted H/ACA sRNPs. H/ACA sRNP particles were assembled by using 4 pmol of in vitro
transcribed H/ACA sRNA, the four recombinant proteins L7Ae (L), aCBF5 (C), aNOP10 (N) and aGAR1 (G) (LCNG) (200 nM each) and 150 fmol
of radio-labelled in vitro transcribed RNA substrate as previously described (23). The putative target position in the RNA substrate is given on the
left side of the chromatograms. After a 80-min incubation at 658C, the RNAs were extracted and digested with T2 (Panels A and B) or P1 nuclease
(Panels C and D). The nucleotide 30 or 50 monophosphate, that are respectively released, were fractionated by 2D (Panel A, B and C) or 1D (Panel
D) thin layer chromatography. When RNase T2 was used for the digestion, the RNA template was labelled by incorporation of [a-32P] ATP, CTP,
GTP or UTP depending on the identity of the residue located 30 to the targeted U residue. When P1 nuclease was used for digestion, labelling was
achieved by [a-32P] UTP incorporation. 2D TLC on cellulose plates were performed using either the N1-N2 (Panels A and C), or the N1-R2 (Panel
B) buffers and the N1 buffer was used for 1D TLC. Positions of Ap, Cp, Gp, Up and �p or pU and p� in the chromatograms are indicated as well
as their numbers in the substrate RNAs. The � spots are circled. The indicated numbers of � moles formed per mole of RNA substrates were
calculated as explained in Materials and Methods.
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the predicted sRNA–target RNA interactions that turned
to be non-functional, helix H2 was too short (4 bps) or too
long (7 bps). The most frequent length in functional
interactions (14 out of 15) is of 6 bps. Some of the non-
functional interactions also showed too long or too short
distances between the ACA trinucleotide and the targeted
U residue (17 or 13 nts). The distance in the active interac-
tions is of 15 or 14 nts. Interestingly also, the base-pair
interaction established with the sRNA 30-guide sequence
is more important than that formed with the 50-guide
sequence. This is exemplified by the efficient modifications
at positions 2549 and 2672 in 23S rRNA, which are guided
by the H/ACA motifs 1 and 2 of sRNA Pab35, respec-
tively (Figure 4). In both cases, the 50-guide sequence
forms a weak base-pair interaction with the rRNA
substrate. On the contrary, in spite of a canonical length
of helix H2 (6 bps) and a canonical distance between the
ACA trinucleotide and the target U residue (15 nts), motif
2 in sRNA Pab105 did not guide modification at position
995 in 16S rRNA, probably because of the low stability of
the interaction formed with the sRNA 30-guide sequence
(4 bps including two G.U pairs). Therefore, the length of
helix H2, the distance between the ACA triplet and the
targeted residue as well as the stability of the base-pair
interaction established by the 30-guide sequence and the
rRNA substrate are essential criteria for activity. In
contrast, unexpectedly, the presence of the 50-UN-30

single-stranded dinucleotide between the two intermole-
cular interactions is not a strict rule.

One of the two orphan) residues in 23S rRNA can
be formed in vitro without guide sRNA

As we detected no guide H/ACA sRNA for residues�2585
and �2603 in P. abyssi 23S rRNA, and as the aCBF5/
aNOP10/aGAR1 complex can modify position 55 in
tRNAs in the absence of guide sRNA (50–52), we tested
the in vitro activity of this complex at these two 23S rRNA
positions. The assays were performed using two 20-nt long
rRNA fragments (Table S1) containing, respectively,
residue U2585 or U2603 (Figure 7). The aCBF5/
aNOP10/aGAR1 complex was active on the rRNA frag-
ment containing residue U2603 (46% yield) (Figure 7),
but not on that containing residue U2585. Interestingly,
we observed that the sequence containing the residue 2603
can be folded into a stem-loop structure showing some
similarity with the T�C stem-loop of tRNA (Figure 7).
We concluded that formation of residue �2603 may be
catalyzed by the free aCBF5-aNOP10-aGAR1 complex,
while an unidentified catalyst may act at position U2585.

DISCUSSION

Application of the various computational approaches
that we developed for the search of H/ACA sRNAs in
archaeal genomes turned to be highly efficient, since two
of the seven sRNAs detected in P. furiosus were not
found by other approaches previously applied to one
of this species (22,24). Our blind detection of C/D box
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sRNAs in conserved ICRs allowed the detection of 45 out
of the 49 known C/D box sRNAs which are conserved
in the three pyrococcal species. This finding illustrates the
efficiency of our ICR-based approach for the search of
non-coding RNAs of unknown structural characteristics.
Up to now, computational predictions of the H/ACA
sRNA–rRNA targets were not reliable. This is illustrated
by the numerous corrections that we made in previous
predictions. Our experimental search for � residues in
P. abyssi rRNAs, together with the use of the H/ACA
sRNP reconstitution and activity assays, turned to be
essential to identify the sites which are really targeted by
the identified sRNAs. However, by using the structural
rules that we established for functional sRNA–rRNA
interactions, computational predictions will be more
reliable.

A high number of) residues in P. abyssi rRNAs as
compared to other archaea

Based on experimental analysis of � residues in rRNAs
and reconstitution of H/ACA sRNPs, the P. abyssi rRNA
regions that we studied (20 and 27% of the 16S and 23S
rRNAs, respectively) probably contain 17 � residues.
These rRNA regions were selected because they contain
the highest number of post-transcriptionally modified
residues in all living organisms (10). However, we cannot
exclude the possibility that some additional � residues are
formed without the use of guide RNA, in P. abyssi rRNA
segments located outside of these regions. Up to now, 17
� residues is the highest number of � residues found in
archaeal rRNAs. Only three and four � residues were
found upon complete analysis of the H. marismortui,
H. halobium 16S and 23S rRNAs, respectively (34–36). Six
� residues were detected in domains II, IV and V of the
S. acidocaldarius 23S rRNA and five � residues were
found in A. fulgidus rRNAs when looking for H/ACA
sRNA target sites (21,37). Interestingly, the two halophile
species, H. marismortui and H. halobium, which have the
smallest number of � residues, grow at 50 and 428C,
respectively. S. acidocaldarius and A. fulgidus grow at
80 and 838C, respectively, whereas P. abyssi optimally
grows at 988C. Therefore, as already proposed for
archaeal 20-O-methylations (53), there may be a correla-
tion between the number of � residues in archaeal rRNAs
and the growth temperature of the organism. Confirma-
tion of this statement requires further analysis on a
larger number of archaeal species growing at different
temperatures.

) residues inP.abyssi23SrRNAareconcentratedat thePTC

Interestingly, 2 and 8 of the 13 � residues expected to be
present in P. abyssi 23S rRNA are located in the
functional domains IV and V, respectively (Figure 8).
Noticeably, residue 2016 in domain IV corresponds to one
of two highly conserved � residues in stem-loop structure
69 (SLS69). Its conservation is probably explained by
the high functional importance of SLS69: (i) it contacts
both the 16S rRNA and the tRNA bound at the acceptor
site (A site) (12,14), (ii) it is located at the subunit
interface and, (iii) it was proposed to play a role in tRNA

translocation (9,54,55) and in translation termination
(12,16). Formation of two � residues in the terminal
loop of SLS69, including the P. abyssi �2016 counterpart,
was found to confer a growth advantage in S. cerevisiae
(12,17).
Eight � residues are concentrated in domain V of the

P. abyssi 23S rRNA. This domain is expected to be
directly involved in the catalytic activity of the PTC.
Interestingly, these 8 � residues are all located in helical
segments (Figure 8). They may stabilize the conformation
of this 23S rRNA region at the high growth temperature
of P. abyssi. A cooperative effect of � residues in
stabilizing RNA conformation, was previously proposed
(10). A need for this cooperative effect may explain the
presence of 4, 2 and 2 � residues in close vicinity in helices
89, 90 and 93, respectively. Only three of these eight
� residues were detected in several eukarya, including
S. cerevisiae (Figure 8) (34,56).
Altogether, four pseudouridylation sites in P. abyssi 23S

rRNAs are highly conserved in the large eukaryal rRNAs
(positions 2016 in domain IV, 2549, 2588 and 2603 in
domain V) (Figure 8). In addition, residues �2930
detected in domain VI is also present in mouse and
human rRNAs. Position 2698 in P. abyssi 23S rRNA
corresponds to a frequently pseudouridylated position
in eukarya. Instead of U2698, U2697 is converted into
a � residue in P. abyssi. Altogether, this comparison of
P. abyssi and eukaryal pseudouridylation in rRNAs
suggests that conserved pseudouridylation sites in the
large rRNA may have appeared early in evolution.
Interestingly, one of the conserved � residues in domain
V (�2603) is not guided by an H/ACA sRNA in P. abyssi.

A base substitution in sRNAPab40 may generate a different
specificity as compared to sRNAs Afu4, Pf7 and Pho40

Like the P. abyssi Pab40 sRNA, the Afu4, Pf7, and Pho40
sRNAs contain three H/ACA motifs. The target sites
proposed for motifs 1 and 3 in Afu4 and Pf7 sRNAs
(21,22) are identical to the ones determined experimentally
for motifs 1 and 3 in Pab40 sRNA, respectively. In
contrast, whereas motif 2 in the Afu4 and Pf7 sRNAs were
proposed to guide modification at positions 2601 and 302
in the A. fulgidus and P. furiosus 23S rRNAs, respectively
(corresponding to positions 2647 and 278 in P. abyssi 23S
rRNA, respectively), we found that motif 2 in sRNA
Pab40 is active at position 1932 in P. abyssi 23S rRNA.
A difference of specificity between motif 2 in Pab40 and
motifs 2 in Afu4, PFf7, and Pho40 sRNAs can be
explained by a point mutation in the K-turn motif (a G
to U substitution at position 85 as referred to the Pab40
numbering, Figure S1). Indeed, this base substitution
modifies the secondary structure of motif 2 and its guiding
specificity (Figure S1). Nevertheless, the target sites
previously proposed for motifs 2 in Afu4 and Pf7
sRNAs are not in agreement with the structural rules
that we established for active H/ACA sRNA–rRNA
interactions. According to these rules, positions 2632 in
the A. fulgidus 23S rRNA and 2701 in the P. furiosus
23S rRNA, that both correspond to position 2678 in
P. abyssi 23S rRNA, are expected to be the true target
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sites (Figure S1). U 2678 is not converted into a � residue
in P. abyssi, however, this is the case in H. marismortui
(35,36), H. halobium (34), Drosophila melanogaster
and Mouse musculus (10) (Figure 8). The absence of
modification at position 2678 in the P. abyssi 23S rRNA
shows how a single point mutation can dramatically
modify the specificity of an H/ACA motif.

Note that two other proposed target sites in P. furiosus
rRNAs (corresponding to positions 892 in 16S rRNA and
2552 in P. abyssi 23S rRNA and which were expected
to be guided by sRNAs Pf1 and Pf3 respectively, Table 1),
are invalidated by our experimental rules. In addition,
some bona fide target sites were not previously predicted
in P. furiosus rRNAs (Table 1). Altogether, these data

Figure 8. Location of � residues in domains IV (A) and V (B) of the P. abyssi 23S rRNA. The secondary structure of the P. abyssi 23S rRNA is
adapted from one of the Thermococcus celer 23S rRNA (M67497) (Gutell website, www.rna.icmb.utewas.edu). Numbering of residues is that of
P. abyssi 23S rRNA. The � residues detected in this work are indicated by � symbol. The one in domain IV, which could not be detected in 23S
rRNA because of an RT pause but was formed in vitro, is marked by an asterisk. Positions of pseudouridylation in E. coli, B. subtilis, D. radiodurans,
T. thermophilus, Z. mays chloroplasts, H. marismortui, H. halobium, A. fulgidus, S. acidocaldarius, S. cerevisiae, D. melanogaster, M. musculus and
H. sapiens are indicated by arrows marked by E, B, O, U, Z, L, A, F, S, Y, D M and H, respectively. Archaeal species are shown in grey.
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strengthen the importance to verify experimentally the
proposed H/ACA target sites.

Poor conservation of pseudouridylation sites between
archaeal orders

Except for motif 2 in sRNA Pab40, H/ACA sRNAs and
their target sites are conserved in the three Pyrococcus
species studied as well as in the phylogenetically related
T. kodakarensis species (25). In contrast, conservation
of � positions is poor between species of different orders.
Only one of the three � residues found in the H. halobium
and H. marismortui 23S rRNAs and only one of the six
� residues found in the S. acidocaldarius 23S rRNA are
conserved in P. abyssi (Figure 8). A. fulgidus is more
closely related to Pyrococcus species than Sulfolobus,
Halobacterium, and Haloarcula species. Accordingly,
our experimental data show that three of the six �
residues detected in the A. fulgidus 23S rRNA are
conserved in P. abyssi as well as one modified position
in 16S rRNA.

The four) residues detected in 16S rRNA are
located in functional areas of the 30S subunit

The location of � residues in the bacterial and eukaryal
SSU rRNAs is rather variable from one species to the
other. Interestingly, two of the four � residues that we
detected in the P. abyssi 16S rRNA (positions 27 and 891),
are located within or very close to the essential central
pseudoknot of the 16S rRNA (57). They may play a role
in its formation or stability. This central pseudoknot is in
close vicinity of the P site (58). Residue �922 also belongs
to a 16S rRNA segment located at the P site, and residue
�1017 belongs to a segment involved in A site formation.
Hence, the four � residues present in the P. abyssi 16S
rRNA are located at or very near the A and P sites.
Noticeably, no � residue was detected in the 16S rRNA
from H. volcanii while S. solfataricus 16S rRNA was
estimated to contain five � residues based on mass
spectrometry analysis (59).

The aCBF5/aNOP10/aGAR1 complex may
act on rRNAwithout guide sRNA

Among the small P. abyssi rRNA substrates that we used
to test the activity of reconstituted sRNPs (Table S2), only
that containing residue U2603 was modified in the
absence of H/ACA sRNA (Figure 7). Therefore, the
aCBF5/aNOP10/aGAR1 complex may be a specific
catalyst for this position in 23S rRNA. The stem-loop
structure formed by the small RNA substrate used in the
assay is not the one expected to be formed in the 50S
subunit (Figures 7 and 8). However, we cannot exclude
the possibility that it is formed at some stage during 23S
rRNA synthesis or 50S subunit assembly. Although a
stable stem-loop structure could also be formed by the
small substrate containing residue U2585 (Figure 7),
the aCBF5/aNOP10/aGAR1 complex did not modify it.
No activity was detected with the recombinant
Pus10 enzyme (data not shown). Two other RNA:
� synthases are expected to be present in archaea,
the E. coli TruA and TruD (Pus7) homologues (60).

The implication of Pus7 is unlikely, since residue 2585 is
not located in a sequence that fits the consensus sequence
recognized by this enzyme (RSUN�AR (R=purine, S=
G/C, N= any nucleotide) (61 and our unpublished data).
Therefore, it would be interesting to test the activity of the
TruA homologue at position 2585 in P. abyssi 23S rRNA.
In agreement with the absence of E. coli RluE, RluB

and RluC homologues in P. abyssi, the pseudouridylations
at the three positions modified by these enzymes in E. coli
are catalyzed by one H/ACA sRNA, Pab35.

Structural determinants for H/ACA sRNA specificity

Our data shed light on structural determinants of the
sRNA-rRNA interaction that will be useful for the
identification of new H/ACA sRNAs and their target
sites. They can be explained taking structural data into
account: (i) NMR analysis of the H/ACA snoRNA–
rRNA interaction showed that the P1S and P2S inter-
molecular helices formed with the 30- and 50-guide
sequences, respectively, can be coaxially stacked on helices
H1 and H2 of the sRNA (32,33), and in this structure,
the substrate is folded into a U-shape, with the targeted U
residue protruding in the middle (32), (ii) based on the
sRNP crystal structure, the H2-P2S pseudo-helix likely
interacts with protein L7Ae bound to the K-turn or
K-loop (22–24) and to a lesser extent with aNOP10 and
aCBF5 through helix H2 (31), (ii) the various X-ray
structures which have been established show that several
interactions are formed between the aCBF5 and aNOP10
proteins (27–31) and the L7Ae and aNOP10 proteins (31)
and (iv) finally, the H1-P1S pseudo-helix is expected
to interact with protein aCBF5 bound to the ACA triplet
(23,24,30,31). Therefore, it is highly conceivable that
variations of the distances that separate the ACA box
and the targeted uridine residue on the one hand (14 or 15-
nt long in archaea, versus 16-nt long in eukarya) (62), and
the K-turn and targeted U residue on the other hand (5 or
6 bps), disturb the positioning of aCBF5 relative to the
targeted U residue and/or prevent some protein–protein
interactions in the core protein structure (23,51). Impor-
tantly, we noticed that helix H2 never contains more than
one bulged nucleotide.
Noticeably, for the first time, we show a greater

importance of the rRNA interaction formed with the 30-
guide sequence (P1S), compared to that formed with the
50-guide sequence (PS2). This difference can be explained
by the close contact of aCBF5 with the 30-guide sequence,
compare to its limited contact with the 50-guide sequence
in the sRNP 3D structure (30). Remarkably, also the
minimal length of the overall rRNA–sRNA base-pair
interaction seems to be shorter in archaea compared to
eukaryal system. This decreased stringency in archaea
may explain why, in archaea but not in eukarya, a given
H/ACA motif can guide � formation at up to three
different positions in rRNAs.
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