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Abstract

The metabolism of individual organisms and biological communities can be viewed as a net-

work of metabolites connected to each other through chemical reactions. In metabolic net-

works, chemical reactions transform reactants into products, thereby transferring elements

between these metabolites. Knowledge of how elements are transferred through reactant/

product pairs allows for the identification of primary compound connections through a meta-

bolic network. However, such information is not readily available and is often challenging to

obtain for large reaction databases or genome-scale metabolic models. In this study, a new

algorithm was developed for automatically predicting the element-transferring reactant/

product pairs using the limited information available in the standard representation of meta-

bolic networks. The algorithm demonstrated high efficiency in analyzing large datasets and

provided accurate predictions when benchmarked with manually curated data. Applying the

algorithm to the visualization of metabolic networks highlighted pathways of primary reac-

tant/product connections and provided an organized view of element-transferring biochemi-

cal transformations. The algorithm was implemented as a new function in the open source

software package PSAMM in the release v0.30 (https://zhanglab.github.io/psamm/).

Introduction

Metabolism forms the basis for understanding cellular processes in all living organisms. It

comprises transformations of metabolites through biochemical reactions and can be viewed as

a network graph, where metabolites are represented as individual vertices and reactions are

represented as edges connecting the vertices. The reconstruction of metabolic networks can be

applied to targeted pathways, species specific genome-scale models (GEMs) [1,2], or to repre-

sent an ensemble of metabolic potentials from all organisms [3]. In any case, metabolic recon-

structions can quickly result in complex network topologies even for representing individual

pathways in the central metabolism. This is due to the presence of multiple reactants and prod-

ucts in typical metabolic reactions, and the existence of hub metabolites (e.g. ATP/ADP,

NAD/NADH, quinones, etc.) that are involved in a large number of metabolic processes.

Deriving biological meaning from these networks, either through visual inspection or by anal-

ysis with algorithms, becomes difficult due to these complexities.
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To facilitate the identification of biologically meaningful pathways, algorithms have been

developed for reducing the complexity of metabolic network topology [4–9]. For example, the

MetDraw algorithm [4] uses a heuristic approach where hub metabolites are identified as vertices

having a vertex degree above a user-specified threshold. These hub metabolites usually represent

common metabolites, such as energy currency compounds (e.g. ATP/ADP), cofactors, coen-

zymes, and small molecules (e.g. H2O), and they contribute to network complexity by creating

links between different metabolic processes. In the MetDraw graph representation, the identified

hub metabolites are shown as replicated vertices that associate with different reactions, hence

eliminating the cross connections between different metabolic processes. This approach can be

useful for providing an approximation of the traditional pathway diagrams, where the primary

reactant/product pairs are used for tracing out individual metabolic processes. However, the Met-

Draw algorithm relies on the arbitrary determination of a degree threshold and is not feasible for

visualizing the biosynthesis pathways of hub metabolites. A different approach is taken by other

software that visualizes the reactant/product transformations as diagrams based on manual or

semi-manual curations (e.g. Escher [10]; Arcadia [11]; Cytoscape [12]; CySBML [13]; ReconMap

[14]; OptFlux visualization plugin [15]). These approaches are useful for making customized

annotation of reactant/product pairs, but the requirement of extensive manual curations suggests

that fully automated approaches are better suited for large-scale networks.

Examples of extensive manual curations of metabolic pathways are found in the KEGG [3]

and the MetaCyc [16] databases, where the pathway diagrams present a simplified view of the

pathways by leaving out some of the complexity of the network. The KEGG pathway maps are

composed of static images manually constructed by expert curators according to the biochemical

understandings of metabolite transformations. These diagrams often highlight the main chemical

conversions that are relevant to the conventional understanding of biochemical pathways. How-

ever, they overlook the importance of additional metabolites (e.g. the above-mentioned currency

compounds) in mediating the flux and directionality of metabolic reactions. In contrast, the path-

way diagrams in MetaCyc provide a more detailed view of metabolic reactions that illustrate all

participating metabolites. However, these pathway diagrams contain a focused view of individual

processes and their global connections to the overall metabolism is frequently missing.

Identification of element-transferring reactant/product pairs for individual reactions remains

as one of the fundamental challenges in detecting biologically meaningful network connections. A

number of approaches have been developed for the mapping of reactant/product pairs based on

the chemical structures of the metabolites [17–20]. The KEGG RPAIR database identifies ele-

ment-transferring reactant/product pairs based on the automatic recognition of common metab-

olite structures and the expert-guided curation of chemical transformation patterns in individual

reactions [18,21]. It provides extensive annotations of the reactions in the KEGG database and is

by far one of the most extensive reference data set available. The MetaCyc database contains

atom-mapping data for many reactions based on analyses of metabolite chemical structures

[16,17]. This provides another extensive reference set of element-transferring reactant/product

pairs. However, both the KEGG RPAIR and the MetaCyc atom-mapping annotations are

restricted to metabolic reactions within their corresponding reaction databases. The application of

these existing annotations to new metabolic reconstructions could be challenging as it requires

the mapping of new reactions and metabolites, e.g. from expert curated GEMs or from other met-

abolic databases like ModelSEED [22], to the KEGG and MetaCyc databases, respectively. Such

mappings are not always available and are often time consuming to construct.

So far only a limited number of studies have aimed at addressing the problem of mapping

element-transferring reactant/product pairs given only chemical formula information for large

reaction sets. The MapMaker algorithm proposed by Tervo and Reed [23] uses amixed integer
linear programming (MILP) approach to predict element transfers between reactants and
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products of individual metabolic reactions. Unlike the KEGG RPAIR and the MetaCyc atom-

mapping annotations, MapMaker does not rely on information of metabolite structures but

instead only requires the metabolite formulas. While the algorithm can potentially be applied

for identifying reactant/product pairs that transfer any elements, the authors mainly focus on

the application of the algorithm for predicting carbon-transferring pairs. The authors also cre-

ated a manually curated set of carbon-transferring reactant/product pairs in the Escherichia
coli GEM, iJO1366 [1]. This data set serves as an additional reference for evaluating new

approaches, with a specific focus on predicting the carbon-transferring reactant/product con-

nections. The MapMaker algorithm is applicable for analyzing any metabolic network with the

simple inputs of reaction equations and metabolite formulas. However, it is time consuming

to run for large-scale networks or reaction data sets, such as the reaction collection in the

KEGG [3] and the MetaCyc [16] databases.

To solve the problems with existing approaches, this study presents a new algorithm,

named FindPrimaryPairs, for predicting element-transferring reactant/product pairs with high

efficiency and accuracy. This algorithm accounts for the identification of both carbon-transfer-

ring and non-carbon transferring metabolite connections, and it was validated with the KEGG

RPAIR database [21], the MetaCyc atom-mapping database [16,17], and with manual annota-

tions by Tervo and Reed [23]. For simplification, the term “primary pairs” was used in this

study to indicate reactant/product pairs that carry elements from the reactant to the product.

The algorithm was implemented as a new function in the open source software package

PSAMM [24], which was applied to demonstrate primary reactant/product connections in the

visualization of central metabolic processes.

Materials and methods

FindPrimaryPairs: An algorithm for the prediction of primary pairs

The FindPrimaryPairs algorithm was designed to identify primary pairs from any given set of

metabolic reactions (e.g. all reactions in a GEM or in any metabolic pathway database). It

involves an iterative process of two major steps: (1) the identification of primary pairs for indi-

vidual reactions based on a scoring function, and (2) the global refinement of a probability dis-

tribution estimate that contributes to the formulation of the scoring function. A detailed

description of the FindPrimaryPairs algorithm is provided below and is illustrated with an

example in Fig 1 (See the Results section for more details).

Step 1: Identify primary pairs for individual reactions. Given a reaction Ri, a primary

pair is a pair of interconverting compounds defined based on the procedure below:

1. Identify (l1, l2, � � �, ls) and (r1, r2,� � �, rt) as lists of compound instances occurring respectively

as reactants and products of reaction Ri. These instances were expanded from sets of unique

reactants and products based on the stoichiometric value. Let c(x) of instance x be the type

of compound it was expanded from. The variables s and t indicate the number of com-

pound instances on the two sides of the reaction equation.

2. For every compound pair, (li, rj) with i 2 (1, 2, � � �, s) and j 2 (1, 2, � � �, t), calculate the

weighted Jaccard similarity based on the compound formulas using Eq (1):

Jli ;rj ¼
P

e2EðminðlðeÞi ; r
ðeÞ
j Þ �WeÞ

P
e2EðmaxðlðeÞi ; r

ðeÞ
j Þ �WeÞ

fori 2 ð1; 2; . . . ; sÞ and j 2 ð1; 2; . . . ; tÞ# ð1Þ

where E is the set of all elements in li and rj, x(e) is the count of element e in compound

instance x (x being either li or rj), andWe is a weight assigned to each element.
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Fig 1. Diagram showing an application of the FindPrimaryPairs algorithm to a metabolic model.

https://doi.org/10.1371/journal.pone.0192891.g001
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3. Perform a correction of the Jaccard similarity based on a value, ŷX;Y , which is a point estimate

of the distribution θX,Y that models the probability of a compound pair (X, Y) being a primary

pair in any reaction. The corrected score is defined in Eq (2), where X = c(li) and Y = c(rj):

Sli ;rj ¼ Jli;rj � ŷX;Y ; for i 2 ð1; 2; � � � ; sÞ and j 2 ð1; 2; � � � ; tÞ# ð2Þ

4. Pick a pair (l�, r�) with the highest Sl� ;r� among all pairs, and assign (X, Y) as a primary pair

where X = c(l�) and Y = c(r�). The transfer of elements between X and Y is defined as the

count of all elements that are shared between l� and r�.

5. Update the count of elements in formulas of l� and r� by removing the transferred elements

as defined in step 4 from each formula. Repeat steps 2 to 5 with the updated formulas until

the transfer of all elements between two sides of the reaction Ri has been accounted for in

the list of assigned primary pairs.

The result of the above procedure is a list of predicted primary pairs for the reaction Ri. In

addition, each primary pair is associated with a formula indicating the predicted counts of ele-

ments transferred between the pair. The predicted primary pairs are used to obtain ŷX;Y , which

is a point estimate of θX,Y, as defined in the next section.

Step 2: Iterative refinement of θ̂X;Y . Given two compounds, X and Y, from the two sides

of a metabolic reaction, Ri, define:

MðRiÞX;Y ¼

(
1; if X;Y is a primary pair in reaction Ri
0; otherwise

# ð3Þ

Therefore,MðRiÞX;Y is an incidence ofMX,Y observed in the reaction, Ri.
Next, define

yX;Y ¼ PðMX;Y¼1Þ# ð4Þ

Hence, θX,Y is the probability of X and Y being primary pairs in any reactions. A beta distri-

bution is used to model θX,Y:

yX;Y � BetaðaX;Y ; bX;YÞ ð5Þ

where ŷX;Y is estimated with the mode of the beta distribution:

ŷX;Y ¼
aX;Y � 1

aX;Y þ bX;Y � 2
# ð6Þ

Given a prior distribution, y
ðpriorÞ
X;Y , and a prediction of primary pairs,m*X;Y , in a set of reactions:

y
ðpriorÞ
X;Y � Betaða

ðpriorÞ; b
ðpriorÞ
Þ

m*X;Y ¼ MðRiÞX;Y ji 2 NX;Y
� �

;MðRiÞX;Y 2 f0; 1g

In the above representation, NX,Y is the set of reaction indices that reference reactions with

compound X on one side and Y on the other. Let nX,Y be the total number of reactions in NX,Y,

and let yX,Y be the number of instances whereMðRiÞX;Y ¼ 1; i 2 NX;Y . The value of yX,Y can be
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represented by Eq (7):

yX;Y ¼
P

i2NX;Y
MðRiÞX;Y# ð7Þ

The posterior distribution of θX,Y is estimated using the y
ðpriorÞ
X;Y andm*X;Y based on a binomial

distribution model for yX,Y:

y
ðposteriorÞ
X;Y � BetaðaðpriorÞ þ yX;Y ; b

ðpriorÞ
þ nX;Y � yX;YÞ

Then, a point estimate ŷX;Y is obtained using the mode of y
ðposteriorÞ
X;Y following Eq (6), which

corresponds to themaximum a posteriori (MAP) estimation.

The FindPrimaryPairs algorithm was applied to reaction sets by iteratively identifying pri-

mary pairs in individual reactions followed by a global refinement of the ŷX;Y parameter

according to primary pair predictions on all reactions (Fig 1). In each iteration, t, a MAP esti-

mate of y
ðtÞ
X;Y was obtained as described above, an updated assignment of*m

ðtÞ
X;Y

was then identi-

fied using ŷ
ðtÞ
X;Y following the analysis of individual reactions, and a new estimate, ŷ

ðtþ1Þ

X;Y , was

obtained based on*m
ðtÞ
X;Y

and y
ðtÞ
X;Y . This iterative procedure continued until the point estimate,

ŷX;Y , was stabilized for all compound pairs, as indicated in the following:

jŷ
ðtÞ
X;Y � ŷ

ðtþ1Þ

X;Y j < �# ð8Þ

where ŷ
ðtÞ
X;Y and ŷ

ðtþ1Þ

X;Y were point estimates of the posterior distributions from two successive

iterations, and � was a number close to zero (e.g. � = 10−5). For the first iteration, the value of

ŷ
ð0Þ

X;Y was set to 1. An example of applying the FindPrimaryPairs algorithm is illustrated in Fig 1

and described in the Results section.

Parameter optimization

Optimized parameters of the FindPrimaryPairs procedure, including the weights of individual

elements (We) and the prior parameters of the beta distribution (α(prior) and β(prior)), were iden-

tified based on analyzing the reactions in the KEGG database (Release 70.1). The RPAIR anno-

tation for each reaction of the KEGG database was used to evaluate the prediction of both

carbon-transferring and non-carbon transferring primary pairs. A confusion matrix was estab-

lished for evaluating the predictions. The Matthews Correlation Coefficient (MCC) was used

to measure the accuracy of predictions and was calculated as shown in Eq (9), where the num-

ber of true positive (TP), false positive (FP), true negative (TN), and false negative (FN) pairs

were obtained from the confusion matrix.

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p # ð9Þ

The weights of individual elements (We) were assigned with the consideration that carbon

elements form the backbone of organic molecules and hence a similar number of carbon ele-

ments would indicate that two molecules are likely to be structurally similar. The hydrogen ele-

ments, in contrast, are peripheral to the molecule structure and are therefore less likely to

predict structural similarity. Given this rationale, each carbon element was assigned a weight

of 1, each hydrogen element was assigned a weight of 0, and all other elements (such as nitro-

gen, oxygen, phosphorus, etc.) were assigned a weight (Wother) between these two extremes. A

grid search was performed using the RPAIR annotations of the KEGG database as a reference

dataset to identify the optimal values of parameters α(prior), β(prior), andWother. The range of

Predicting element-transferring reactant/product pairs in metabolic networks
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Wother was assigned to decimal numbers between 0 and 1, with 51 steps of constant increments

of 0.02, and the ranges of α(prior) and β(prior) were assigned to integers between 1 and 50. For

each grid point, a confusion matrix was mapped based on the reference dataset and the param-

eters that resulted in the maximum MCC value were selected.

The primary pair prediction was applied to analyze metabolic reactions in the MetaCyc data-

base and in a complete GEM, iJO1366, of the organism E. coli. The prediction was evaluated

through the calculation of MCC values as defined in Eq (9), where the confusion matrix was

constructed by comparing the primary pair predictions to the reference reactant/product pairs

in the reference datasets [16,23]. Synthetic reactions like the biomass reactions were not consid-

ered in the evaluation because they represent artificial formulations of cellular processes. Since

the iJO1366 reference data set included only pairs that transfer carbon, only primary pairs that

were predicted to transfer at least one carbon element were compared to this dataset. In con-

trast, the comparison to the MetaCyc atom-mapping data considered all primary pairs.

Software implementation

The FindPrimaryPairs algorithm was implemented as a function in the open source PSAMM

software [24] and can be applied for analyzing GEMs or any given set of biochemical reactions.

This function can be accessed with the “primarypairs” procedure of the “psamm-model” com-

mand by specifying the option “—method = fpp”. The new “primarypairs” procedure were

made available from release v0.30 of PSAMM at https://zhanglab.github.io/psamm/.

As a comparison, an implementation of theMapMaker algorithm [23] was also included in

the “primarypairs” procedure and can be accessed using the option “—method = mapmaker”.

TheMapMaker method relies on solving an MILP problem implemented on the linear pro-

gramming solver framework of PSAMM. Multiple solvers, including the IBM ILOG CPLEX

Optimizer, the Gurobi Optimizer, and the GNU Linear Programming Kit (GLPK), are com-

patible with this procedure. Specifically, in this study theMapMaker operations were per-

formed using the CPLEX solver version 12.6.3.

Visualization of a subnetwork of a genome-scale model

Metabolic networks analyzed in this study were visualized using a representation of bipartite

graphs, where two sets of vertices were used to represent the compounds and reactions, respec-

tively, and directed edges between the compound vertices and the reaction vertices were used to

indicate the interconversion of compounds through reactions. Only carbon-containing com-

pounds were included in the network visualization, and two different strategies were applied in

the formulation of the network graphs. In a first strategy, each reaction vertex was represented

only once in the graph and was associated with all carbon-containing reactants and products of

the reaction. In a second strategy, reaction vertices were replicated to represent the connections

within subsets of carbon-transferring reactant/product pairs identified based on the primary pair

predictions. The visualization of pathway graphs was created in Cytoscape version 3.4.0 [12]. The

compounds and reactions in conventional representation of the TCA cycle were laid out in a cir-

cular view and were presented with the same positioning of compound vertices. The remaining

vertices in the graph were laid out using the spring-embedded approach in Cytoscape [12].

Results

Application of the FindPrimaryPairs algorithm

Fig 1 illustrates the application of the FindPrimaryPairs algorithm to the E. coli GEM, iJO1366

[1]. The algorithm follows an iterative process with the correction coefficient ŷ
ðtÞ
X;Y updated in

Predicting element-transferring reactant/product pairs in metabolic networks
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every iteration until convergence (Materials and Methods). The two main steps of the iterative

procedure are represented in the two gray boxes in Fig 1. The upper box demonstrates the

identification of primary pairs from individual reactions, showing an example of the glucose

kinase reaction, HEX1. The bottom box demonstrates the estimation of ŷ
ðtþ1Þ

X;Y from ŷ
ðtÞ
X;Y and

the formulation of a beta distribution, using an example of the reactant/product pair, ATP and

ADP, and their primary pair assignments among all reactions of iJO1366.

The initial coefficient, ŷ
ð0Þ

X;Y , was set to a fixed value of 1 in the implementation of the Find-
PrimaryPairs algorithm. This value was used for predicting the initial primary pair assign-

ments, *m
ð0Þ
X;Y

, in all reactions, and the*m
ð0Þ
X;Y

in turn determined the estimate, ŷ
ð1Þ

X;Y , for the next

iteration (Materials and Methods). Values in the upper gray box of Fig 1 show an example of

the calculations made with ŷ
ð1Þ

X;Y , for identifying primary pairs in the reaction, HEX1, and the

lower gray box shows an example of obtaining an updated estimate, ŷ
ð2Þ

ATP;ADP , based on the

ATP–ADP pairing in all reactions of the iJO1366 model. Primary pairs in the reaction HEX1

were identified based on a five-step procedure described in Materials and Methods, which

resulted in the assignment of four primary pairs that accounted for all element transfers from

reactants to productions of the reaction (Fig 1, blue boxes). The same procedure was applied

to each individual reaction in the iJO1366 model, and then the collection of all primary pairs

from all reactions was used for determining ŷ
ðtþ1Þ

X;Y for every compound pair that was present in

the model (Fig 1, purple box). The iterative procedure continued until the value ŷ
ðtþ1Þ

X;Y con-

verged for every compound pair in the model (Materials and Methods).

Grid search and selection of optimal parameters

A grid search was performed for assigning the three parameters used in the FindPrimaryPairs
procedure, including the weight of non-carbon, non-hydrogen elements (Wother), and the val-

ues of prior parameters, α(prior) and β(prior) (Materials and Methods). Fig 2 provides snapshots

of the grid search results, where each panel presents grids of two parameters at the optimal

setup of a third parameter. The MCC values were used in grid search for identifying optimal

parameters, and the KEGG RPAIR database [18,21] was used as a reference for evaluating the

primary pair predictions (Materials and Methods).

The reference annotations used in the grid search analysis included 7569 biochemical reac-

tions and 21174 reactant/product pairs that account for the chemical transformation of metab-

olites in the reactions. This reference dataset was created from the KEGG reaction database by

eliminating unspecified reaction entries: First, 1380 reactions were skipped from the parsing of

compound formulas because they involve compounds (549 out of 7827 compounds in the

KEGG database) that could not be processed due to the lack of formula annotation, a variable

number of elements in the formula, or a dot notation in the formula indicating complex chem-

ical compositions. Second, 479 reactions were not considered because they have unbalanced

non-hydrogen elements on the two sides of the reaction equations. Finally, 242 reactions were

removed either because they are missing from the RPAIR annotation (55 reactions) or they

involve at least one carbon-containing compound for which a pair is not identified in the

RPAIR annotations (187 reactions).

According to the grid search, the MCC values were close to or higher than 0.9 within the

tested range of all parameters (Materials and Methods). This indicated consistency of the Find-
PrimaryPairs procedure in predicting primary pairs even with varying parameter values. In

other words, the choice of parameter values within the range had no significant influence on

the final predictions. In searching for the optimal parameters, the MCC values appeared to

decline slightly when the weight of non-carbon, non-hydrogen elements (Wother) was above

Predicting element-transferring reactant/product pairs in metabolic networks
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0.88 or below 0.18, suggesting that an intermediate weight was favored for these elements. The

optimal MCC was reached when α(prior) approached 1. However, when both α(prior) and β(prior)

were set to 1 so that the beta distribution model of θX,Y became a uniform distribution, the

Fig 2. Heatmaps demonstrating pairwise relationships of the parameters, Wother, α
(prior), and β(prior), from a grid search of optimal values based on the

RPAIR annotations of the KEGG database. The MCC values are shown with color coding at each step of the varying parameters (see the color legend on the

upper right panel). The maximum MCC is marked with a black outline in each heatmap panel and labeled with its numeric value. In each heatmap, a selected

parameter was fixed at its optimum (indicated in the title of each panel) and the remaining two parameters were varied within a given range of the grid search (x-

axis and y-axis).

https://doi.org/10.1371/journal.pone.0192891.g002
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MCC value was lowest regardless of the setting ofWother (Fig 2, lower right panel). As a result,

the grid search identified an optimal MCC value of 0.929 when the parameters α(prior), β(prior),

andWother, respectively, approached 1, 43, and 0.82 (Table 1). These optimal parameters were

applied in the implementation of the FindPrimaryPairs procedure and were used as the default

parameters for our studies in the following sections.

Comparing FindPrimaryPairswith MapMaker algorithms

The FindPrimaryPairs algorithm was further evaluated through a comparison with theMap-
Maker algorithm [23]. To achieve this, an implementation of both algorithms was constructed

and applied to three reference datasets for evaluating the accuracy and efficiency of primary

pair predictions (Materials and Methods). The first dataset included manually curated carbon-

transferring reactant/product pairs of 2150 reactions in a complete GEM, iJO1366 [23]. The

second dataset included both carbon-transferring and non-carbon transferring reactant/prod-

uct pairs of the 7569 KEGG reactions annotated in the KEGG RPAIR database [18,21]. The

third data set contained both carbon-transferring and non-carbon transferring reactant/prod-

uct pairs of the 8452 MetaCyc reactions that had available atom mappings [16,17].

While both algorithms produced highly accurate predictions, FindPrimaryPairs achieved

higher MCC values than theMapMaker algorithm when predicting primary pairs in all three

reference datasets (Table 2). Of the 3688 carbon-transferring reactant/product pairs annotated

in iJO1366, over 98% (3626 pairs) were successfully identified by the FindPrimaryPairs algo-

rithm, while a slightly smaller fraction (3591 pairs; 97%) were correctly identified by theMap-
Maker algorithm. Of the 21174 reactant/product pairs in the KEGG RPAIR annotation, over

97% (20591 pairs) were correctly predicted by FindPrimaryPairs, while less than 95% (20113

pairs) were correctly predicted byMapMaker. Of the 23345 reactant/product pairs in the

MetaCyc dataset, around 96% (22400 pairs) were correctly predicted by FindPrimaryPairs,

Table 1. Parameter values applied in the default implementation of FindPrimaryPairs. The weight assignments of

carbon (WC) and hydrogen (WH) elements were determined based on the design of the algorithm. The weight assign-

ment of other elementsWother, and the prior parameters α(prior) and β(prior) were determined based on a grid search of

optimal parameters using the KEGG RPAIR annotations as reference data.

Parameter Value

WC 1

WH 0

Wother 0.82

α(prior) 1

β(prior) 43

https://doi.org/10.1371/journal.pone.0192891.t001

Table 2. Comparing the accuracy and efficiency of FindPrimaryPairs and MapMaker algorithms using annotations in the iJO1366, the KEGG RPAIR database, and

the MetaCyc atom-mapping data. The MCC values were calculated according to descriptions in Materials and Methods, and the running time (seconds) was calculated

based on the average time cost in seven independent runs of each algorithm on each reference set. TP–true positive; FP–false positive; FN–false negative; TN–true

negative.

Dataset Method TP FP FN TN MCC Time (seconds)

iJO1366 FindPrimaryPairs 3626 60 62 1577 0.946 13.9

MapMaker 3591 90 97 1547 0.918 70.9

KEGG FindPrimaryPairs 20591 804 583 17214 0.929 52.4

MapMaker 20113 1286 1061 16732 0.879 264.6

MetaCyc FindPrimaryPairs 22400 1544 945 24248 0.899 76.1

MapMaker 21977 1970 1368 23822 0.864 316.3

https://doi.org/10.1371/journal.pone.0192891.t002
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while approximately 94% (21977 pairs) were correctly predicted byMapMaker. The numbers

of false positive and false negative predictions generated by FindPrimaryPairs were also

reduced as compared to the predictions generated by theMapMaker algorithm (Table 2).

Hence, a combination of higher true positives and lower false predictions contributed to the

improved accuracy of the FindPrimaryPairs algorithm.

The FindPrimaryPairs approach also demonstrated significant improvement of running effi-

ciency (Table 2), with an average running time of 13.9 seconds for processing the 2150 reactions

in the iJO1366 GEM, 52.4 seconds for processing the 7569 reactions in the KEGG database, and

76.1 seconds for processing the 8452 reactions in the MetaCyc database. In contrast, it took the

MapMaker approach at least four times longer to process the reactions in all three datasets.

Using FindPrimaryPairs predictions for visualizing metabolic subnetworks

The FindPrimaryPairs algorithm was applied to reduce the complexity of network graphs. In

Fig 3, a prediction of carbon-transferring compound pairs was applied for visualizing a subnet-

work that represents the citric acid cycle (TCA cycle) and its metabolic contexts in a GEM,

iJO1366 [1]. The subnetwork was constructed by first selecting nine main compounds that par-

ticipate in the conventional representation of the TCA cycle (S1 Table) and then including addi-

tional reactions (S2 Table) and compounds (S1 Table) that are directly associated with these

initial compounds. Visualization of the subnetwork was achieved with bipartite graph represen-

tations using two different strategies (Materials and Methods), which was demonstrated with an

example of a single reaction (Fig 3A and 3B) as well as the entire subnetwork (Fig 3C and 3D).

A case study of the 2-Oxogluterate dehydrogenase reaction, AKGDH, was used to demon-

strate differences in conventional bipartite graph representation (Fig 3A) as compared to the

representation guided by primary pairs (Fig 3B). In the conventional bipartite graph, all partic-

ipating compounds of a reaction were connected to the reaction vertex with directed edges. In

contrast, subsets of compounds were identified in the primary pairs graph, and each subset

was associated with an independent instance of the reaction vertex. In the AKGDH reaction,

four primary pairs were identified using the FindPrimaryPairs algorithm (indicated with green

dotted edges in Fig 3B), and each pair represented specific element transfers through the reac-

tion (green labels in Fig 3B). The formulation of primary pair graph for AKGDH identified

that the connection within one primary pair, NAD–NADH, was independent from other pri-

mary pairs, and hence it was associated with another instance of the reaction vertex. Therefore,

the primary pairs graph effectively separated the representation of currency compounds (NAD

and NADH) from the representation of element transfers among the substrates and products

of a biochemical reaction.

The representation of a subnetwork associated with the TCA cycle was also constructed to

demonstrate the application of primary pairs in visualizing complex connections from the cen-

tral metabolism to other metabolic processes. In the conventional bipartite graph (Fig 3C), a

large number of edges were directed across the center of the TCA cycle, reflecting the complex

connections among different components of the subnetwork. This complexity was signifi-

cantly reduced in the primary pairs graph (Fig 3D), where the connections between primary

pathway compounds were isolated from the connections between currency compounds, such

as ATP and ADP (Fig 3D, inset). Several additional features emerge from the primary pairs

graph. For example, the compound 2-oxoglutarate (akg) was identified as an important hub to

the downstream metabolic processes via connections to L-Glutamate (glu-L), which is a pre-

cursor of many biosynthesis pathways. The glyoxylate shunt was also more visible in the pri-

mary pair graph (Fig 3D). Hence, the visualization of primary pairs enhanced the biological

interpretation of complex metabolic networks.
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Discussion

The complexity of metabolic networks prevents the identification of biologically meaningful

features in the graph representation of metabolic transformations. Among various challenges

Fig 3. Bipartite graph representation of AKGDH (panels a and b) and a subnetwork (panels c and d) of the GEM, iJO1366. The panels a) and c) were represented

using a conventional bipartite graph, where each reaction was shown as a single vertex connected with all compounds involved in the reaction. The panels b) and d)

were similarly represented as bipartite graphs but converted reaction nodes to multiple vertices to highlight different primary pairs that carried out independent

element transfers, e.g. as indicated with green dotted lines in panel b, where labels represent the predicted (no parentheses) or the annotated (in parentheses) element

transfers. Unless specified, in all panels reaction nodes were shown as blue rectangles, compound nodes were shown as orange ovals, and the edge directions were

assigned based on the annotation of reaction directions in the model. The edges with higher width indicated connections in the conventional representation of the

TCA cycle, and the edges in red (panel c) represented independent primary pairs that would be isolated from the main element flow in the primary pair graph. The

bordered compound nodes in red (panel d) highlighted network features visible in the primary pairs graph. Reaction abbreviations: AKGDH–2-Oxogluterate

dehydrogenase; PPCK–Phosphoenolpyruvate carboxykinase; SUCOAS–Succinyl-CoA synthetase; FE3DCITabcpp–Iron transport from ferric-dicitrate via ABC

system; ICL–Isocitrate lyase; MALS–Malate synthase. Compound abbreviations: akg–2-oxoglutarate; coa–coenzyme A; succoa–Succinyl-CoA; co2–Carbon dioxide;

nad–Nicotinamide adenine dinucleotide; nadh–Reduced nicotinamide adenine dinucleotide; adp–Adenosine 5’-diphosphate; atp–Adenosine 5’-triphosphate; icit–

Isocitrate; glx–Glyoxylate; mal-L–L-Malate; succ–Succinate; accoa–Acetyl-CoA. The suffix [c] indicated compounds located in the cytosol, and the suffix [p] indicated

compounds located in the periplasm.

https://doi.org/10.1371/journal.pone.0192891.g003
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the lack of accurate and efficient approach for detecting element-transferring reactant/product

pairs is hindering the simplification of complex network topology. In this research, the new

algorithm FindPrimaryPairs has been developed to perform automated prediction of primary

pairs that carry out chemical transformation and element transfers in biochemical reactions.

An implementation of the algorithm has been evaluated with the curated classifications of car-

bon-transferring pairs in a GEM, iJO1366 [1], and with the KEGG RPAIR and MetaCyc atom-

mapping annotations that provide a global mapping of all element-transferring reactant/prod-

uct pairs in biochemical reactions [16–18,21] Results from the evaluations have shown that

FindPrimaryPairs achieved slightly better predictions than an existing algorithm,MapMaker,
as indicated by their MCC values in mapping to reference datasets (Table 2). It is worth men-

tioning that the higher mapping accuracy is attributed not only to an increase in the number

of true positive mappings but also to a reduction of false predictions by the FindPrimaryPairs
algorithm. On all three reference datasets, the running time of FindPrimaryPairs has been

reduced by at least four folds as compared toMapMaker. Additionally, the efficiency of the

FindPrimaryPairs implementation could be further optimized by allowing parallel processing

of independent reaction entries within each iteration of the global optimization (Fig 1).

While FindPrimaryPairs demonstrated enhanced accuracy and efficiency, it has some limi-

tations similar to theMapMaker algorithm. First, both approaches rely on examining the simi-

larity of metabolite formulas and would fail when reactant/product pairs of the highest

formula similarity do not correspond to the biochemical mechanism of a reaction. For exam-

ple, the Transaldolase reaction in iJO1366, TALA, transfers a dihydroxyacetone moiety from

sedoheptulose 7-phosphate (s7p) to glyceraldehyde 3-phosphate (g3p), forming the products

erythrose 4-phosphate (e4p) and fructose 6-phosphate (f6p). From the comparison of metabo-

lite formulas, it appears that s7p should be paired with f6p and g3p be paired with e4p, but

from analyzing the biochemical mechanism, a correct mapping of the reactant/product pairs

should couple s7p with e4p, and g3p with f6p. Hence, the formula-based approach fails when a

chemical transfer occurs between two substrates of similar element compositions, e.g. in the

case of TALA, both substrates s7p and g3p are phosphorylated carbohydrates. However, these

special case studies are not a major part of metabolic reaction databases. Since metabolite for-

mulas are more readily available in metabolic databases than the interpretation of biochemical

mechanisms, the formula-based approach represented by FindPrimaryPairs andMapMaker
still provides significant advantage in analyzing large-scale metabolic networks.

Another problem that FindPrimaryPairs andMapMaker have in common comes from the

possibility of having multiple optimal predictions of the primary pairs in a reaction. In the

MapMaker algorithm, prediction of primary pairs is dependent on finding the solution of an

MILP problem, which can result in multiple optimal solutions that lead to different pairings of

the reactants and products. Only one solution can match the true mechanism of element trans-

fer in a reaction, but the algorithmic design is not guaranteed to provide the correct solution

in the presence of multiple solutions. Similarly, in the FindPrimaryPairs algorithm, multiple

reactant/product pairs may have the same scores in comparing similarities of their formulas.

Which pair is selected from the tie of scores may ultimately determine which one of the dis-

tinct predictions is reported. By default, ties of the highest similarity scores were broken in the

PSAMM FindPrimaryPairs implementation by sorting the highest scoring pairs by metabolite

names and selecting the first pair in the sorted list. This provides a way to consistently arrive at

the same result when the FindPrimaryPairs algorithm is applied, but resolving the underlying

issue of multiple equivalent solutions still requires manual curations.

To evaluate the extent by which FindPrimaryPairs andMapMaker are influenced by these

uncertainties in their algorithmic design, extensive sampling was performed on the implemen-

tation of both algorithms to count the number of reactions for which an arbitrary decision
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could have been made (Fig 4). The results revealed both algorithms produce ambiguous pri-

mary pair predictions for a small subset of reactions in all three reference databases, iJO1366

[1], KEGG [18,21] and MetaCyc [16,17], which contain 2150, 7569, and 8452 reactions, respec-

tively. Compared to theMapMaker algorithm, FindPrimaryPairs demonstrated reduced level

of ambiguity (Fig 4). This was largely due to the iterative refinement of reactant/product simi-

larity scores based on the global assignment of primary pairs. It is worth mentioning that the

measurements of uncertainty in Fig 4 reflected an upper bound of prediction ambiguity for

the FindPrimaryPairs algorithm, because all reactions that had ties in top scores of metabolites

similarly were counted as ambiguous, while not all ties would result in different prediction of

primary pairs. For example, if a reaction has two reactants, A and B, and two products, C and

D, a tie could occur in the top scores of two potential pairs: A–C and B–D. However, because

these pairs do not represent a different mapping of reactants and products, the tie has no

Fig 4. Bar chart showing the number of ambiguous reactions in the MetaCyc, KEGG, and iJO1366 reference datasets, where the two algorithms,

FindPrimaryPairs and MapMaker, would potentially make arbitrary predictions of primary pairs. For FindPrimaryPairs, the reactions were counted for which the

algorithm encountered ties on the top scoring reactant/product pairs in the last iteration of the primary pair assignment. ForMapMaker, the reactions were counted for

which the MILP solver would provide more than one optimal solutions that result in different primary pair predictions.

https://doi.org/10.1371/journal.pone.0192891.g004
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influence on the primary pair prediction. In contrast, in Fig 4 the number of ambiguous cases

counted for theMapMaker algorithm reflected a true evaluation of reactions that had different

primary pair predictions in the sampling. Hence, the FindPrimaryPairs algorithm provides a

more stable approach that produces consistent predictions for a higher fraction of reactions in

the reference databases than theMapMaker algorithm.

The identification of primary pairs is useful for visualizing metabolic subnetworks of com-

plete GEMs (Fig 3). Compared to a conventional bipartite graph representation, the primary

pairs graph has advantages in revealing primary substrate/product connections and identifying

biologically meaningful network features. While previous studies rely on either the arbitrary

identification of hub metabolites using compound vertices degrees [4] or the manual curation

of individual metabolic pathways [10–15], The FindPrimaryPairs approach is both fully auto-

mated and avoids the drawback of making arbitrary decisions on the cutoff of vertices degrees

in identifying hub metabolites. Further, it also permits the visualization of chemical transfor-

mations across different metabolic processes in the global metabolism. The primary pairs

graph can be used on its own or combined with other graph layout algorithms, such as the grid

layouts proposed by [25] and [26], to further reduce visual clutters in complex metabolic net-

works. Since the predictions provided by FindPrimaryPairs also include transfers of elements

other than carbon, it can be applied to visually explore the flow of any other biologically

important elements, such as nitrogen, phosphorus or sulfur, in the global metabolic processes.
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14. Noronha A, Danielsdóttir AD, Jóhannsson F, Jónsdóttir S, Jarlsson S, Gunnarsson JP, et al. Recon-

Map: An interactive visualisation of human metabolism. Bioinformatics. 2017; 33: 605–607. https://doi.

org/10.1093/bioinformatics/btw667 PMID: 27993782

15. Noronha A, Vilaça P, Rocha M. An integrated network visualization framework towards metabolic engi-

neering applications. BMC Bioinformatics. 2014; 15: 420. https://doi.org/10.1186/s12859-014-0420-0

PMID: 25547011

16. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, et al. The MetaCyc database of met-

abolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids

Res. 2016; 44: D471—D480. https://doi.org/10.1093/nar/gkv1164 PMID: 26527732

17. Latendresse M, Malerich JP, Travers M, Karp PD. Accurate atom-mapping computation for biochemical

reactions. J Chem Inf Model. 2012; 52: 2970–2982. https://doi.org/10.1021/ci3002217 PMID:

22963657

18. Yamada T, Hattori M, Oh MA, Goto S, Kanehisa M. RPAIR: A Database of Chemical Transformation

Patterns in Enzymatic Reactions. Genome Informatics. 2005; Available: http://www.jsbi.org/pdfs/

journal1/GIW05/GIW05P021.pdf

19. Fooshee D, Andronico A, Baldi P. ReactionMap: An efficient atom-mapping algorithm for chemical reac-

tions. J Chem Inf Model. 2013; 53: 2812–2819. https://doi.org/10.1021/ci400326p PMID: 24160861
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