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Abstract

Transhumeral percutaneous osseointegrated prostheses provide upper-extremity ampu-

tees with increased range of motion, more natural movement patterns, and enhanced pro-

prioception. However, direct skeletal attachment of the endoprosthesis elevates the risk of

bone fracture, which could necessitate revision surgery or result in loss of the residual limb.

Bone fracture loads are direction dependent, strain rate dependent, and load rate depen-

dent. Furthermore, in vivo, bone experiences multiaxial loading. Yet, mechanical characteri-

zation of the bone-implant interface is still performed with simple uni- or bi-axial loading

scenarios that do not replicate the dynamic multiaxial loading environment inherent in

human motion. The objective of this investigation was to reproduce the dynamic multiaxial

loading conditions that the humerus experiences in vivo by robotically replicating humeral

kinematics of advanced activities of daily living typical of an active amputee population. Spe-

cifically, 115 jumping jack, 105 jogging, 15 jug lift, and 15 internal rotation trials—previously

recorded via skin-marker motion capture—were replicated on an industrial robot and the

resulting humeral trajectories were verified using an optical tracking system. To achieve this

goal, a computational pipeline that accepts a motion capture trajectory as input and outputs

a motion program for an industrial robot was implemented, validated, and made accessible

via public code repositories. The industrial manipulator utilized in this study was able to

robotically replicate over 95% of the aforementioned trials to within the characteristic error

present in skin-marker derived motion capture datasets. This investigation demonstrates

the ability to robotically replicate human motion that recapitulates the inertial forces and

moments of high-speed, multiaxial activities for biomechanical and orthopaedic investiga-

tions. It also establishes a library of robotically replicated motions that can be utilized in

future studies to characterize the interaction of prosthetic devices with the skeletal system,

and introduces a computational pipeline for expanding this motion library.
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1. Introduction

Universal Testing Machines (UTM) provide precise position/force control and measurement

for biomechanical testing. Advanced UTMs can move at physiologically relevant speeds, but

typically only in uni- or bi-axial configurations [1]. Alternatively, a robotic manipulator

equipped with a universal force-moment sensor provides precise force, position, or hybrid

control in all six spatial degrees-of-freedom (3 translations/rotations). Robotic manipulators

have been utilized in joint simulators that enable investigations of the shoulder [2–4], hip [5,

6], knee [7–9], ankle [10, 11], spine [12], and elbow [13]. The proliferation of joint simulators

has even warranted the creation of commercial software that enables their development from

generic hardware [14].

In a typical experimental scenario, one segment of diarthrodial joint is rigidly fixed while

the other is rotated and translated via the manipulator, although more complex designs exist

[14, 15]. Most simulator studies are conducted quasi-statically, but dynamic in-vivo joint kine-

matics have been replicated [10, 16]. In position control, the relative translations are typically

small (mm), and the angular velocity low (< 100 degrees/sec) [16]. If the desired loads at the

joint are known, e.g. derived from inverse dynamics, force control can be employed. However,

accurate force replication necessitates temporal scaling, leading to poor replication of load rate

[17]. While joint simulators extend biomechanical testing beyond the confines of a UTM, the

sub-physiologic speeds and load rates fail to reproduce the inertial environment necessary to

investigate bone-prosthetic interface biomechanics. These limitations prevent full mechanical

characterization of biologic systems where high-speed 3D kinematics are expected, such as

percutaneous osseointegrated (OI) implant systems (Fig 1).

Percutaneous OI systems have the inherent risk of proximal bone fracture due to the direct

skeletal endoprosthesis attachment. The cost of bone-implant interface fracture is severe,

requiring a revision surgery or worse, loss of the entire limb [18]. Although fracture is typically

associated with high energy trauma, transhumeral amputees could experience fracture as a

result of loads generated during moderate demand activities [19, 20]. To mitigate this risk, per-

cutaneous OI systems may be equipped with a compliant overload protection device to shield

against excessive loading [18, 21]. Because bone fracture loads are direction dependent [22],

strain rate dependent [23, 24] and load rate dependent [25, 26] it is desirable to mechanically

characterize the bone-implant interface utilizing in vivo 3D kinematics.

UTMs are not designed to test the bone-implant interface or overload protection devices

under the multiaxial, high-speed, dynamic motions experienced by the percutaneous OI sys-

tems in vivo. In contrast, force control of a robotic manipulator can mimic these physiologic

loads. The presented method compliments this strategy in two ways. First, it replicates both

the load and rate of load application, more closely mimicking physiologic loading conditions.

Second, it enables testing of a prosthesis equipped with a compliant overload protection device

colliding against a pliable obstacle (e.g. another human) where the load and load rate cannot

be accurately predicted. Prior investigations have replicated in vivo kinematics of adjacent

body segments using a robotic manipulator [10, 16, 27], and joint simulators can replicate

global kinematics of the lower designed [28, 29], but no studies have replicated high-speed

global kinematics of the upper extremity. This is challenging because of the high segment

velocities and accelerations arising from the kinematic contributions of the lower extremity

and torso.

Therefore, the purpose of this study was to create and validate a computational pipeline to

replay high-speed, dynamic in vivo human kinematics on a robotic manipulator. Specifically,

this study replicated humeral kinematics of advanced activities of daily living recorded via skin

marker motion capture [19] on a 6 degree-of-freedom serial industrial manipulator. Since no
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fixed standards exist on replication accuracy (especially when considering velocity and acceler-

ation), acceptable limits were derived from initial pilot data of replicating 3 jumping jack trials

and the error contained in skin-marker derived glenohumeral kinematics. The pilot data indi-

cated that 5% accuracy for position and 10% accuracy for velocity were attainable. Skin-marker

derived glenohumeral kinematics contain 3–15% error when compared to kinematics derived

from bone-pins [30]. Since error increases with successive differentiation, the goals of this

study were set to replicate position/orientation to within 5% accuracy, velocity to within 10%

accuracy, and acceleration to within 15% accuracy. The presented methodology can be applied

to other human joint systems, extended to function on parallel manipulators, and/or utilized

to improve upon existing joint simulators. Ultimately, the robotically replicated motions will

be utilized in future investigations to mechanically characterize a percutaneous OI prosthesis

system with a compliant overload protection mechanism.

2. Methods

2.1 Activities for robotic replication

Previously captured by Drew et al [19], the advanced activities of daily living (AADL) dataset

consists of 120 trials (40 subjects, 3 trials/subject) for: jumping jacks, jug lift, jogging, rapid

internal rotation, underhand toss, briefcase carry, and elbow fall (10.5281/zenodo.1040453).

Briefly, torso, humerus, forearm, and hand trajectories were captured using a 10-camera opti-

cal motion analysis system (Vicon Motion Systems Ltd., Oxford, UK). Humeral motion was

defined by a four-marker rigid cluster on a sleeve around the humerus and a single marker at

the lateral epicondyle of the elbow. Marker trajectories were recorded at 200 Hz, gap filled,

and low-pass filtered using a Butterworth filter with a cut-off frequency of 6 Hz. The humerus

was modeled as a 6 degree-of-freedom rigid body in relation to the torso and its kinematics

were derived from marker trajectories by utilizing Visual 3D (v5, C-Motion; Germantown,

MD).

Two criteria determined whether an activity would be robotically replicated: 1) the activity’s

utility in mechanically characterizing the bone-implant interface of a percutaneous OI system,

and 2) its utility in determining the limits of the computational pipeline. Considering the char-

acterization of the bone-implant interface, four of the seven activities were selected: jumping

Fig 1. Schematic of a percutaneous osseointegrated prosthetic system for transhumeral amputation. An

endoprosthesis placed in the residual humerus passes through the skin to support the exoprosthetic forearm and hand.

This system obviates the need for typical socket suspension that interfaces to the soft tissues of the residual limb.

Reprinted under a CC BY license, with permission from Motion Control Inc, a Fillauer Company.

https://doi.org/10.1371/journal.pone.0242005.g001
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jacks generated high axial forces and high bending and torsional moments (Fig 2); jug lifts gen-

erated the highest sustained bending moments; jogging generated the highest axial forces;

rapid internal rotations generated the highest torsional moments.

All 120 jumping jack and 120 jogging trials were included because they encompassed com-

plex, high-speed angular and translational kinematics that test the limits of the computational

pipeline. To properly simulate a jumping jack, high velocities and accelerations must be repli-

cated within a relatively compact region of space. To simulate a jogging motion, high velocities

and accelerations must be combined over a long distance. The jug lift and internal rotation tri-

als were ranked within each activity according to the primary humeral kinematic variable

affecting their kinetics, bending and torsional acceleration, respectively. The highest 5, middle

5, and lowest 5 trials yielding unique subjects for each motion were selected to represent the

entire population. For jogging, the motion between heel strike and maximum flexion of the

humerus relative to the torso encompassed the highest axial acceleration and was selected for

replication. Since this region contained a high initial and final velocity, a 4th degree constant-

jerk (jerk is the derivative of acceleration) polynomial—for both position and orientation—

was utilized to create an artificial ramp-up and slow-down period of 30 timepoints (0.15 s) for

the trajectory. For all other activities, the entire motion was replicated for each chosen trial.

2.2 Rigid body and robot kinematics

The pose of a rigid body can be fully parameterized using 6 generalized coordinates that deter-

mine its position (p1,p2,p3) and orientation (φ1,φ2,φ3) [31, 32]. A 4x4 homogeneous transfor-

mation matrix (T) encompasses these parameters using a 3x3 rotation matrix R, and a 3x1

translation vector, t. This nomenclature will be utilized to denote the pose of a rigid body as

measured in a reference frame, e.g. the humerus (H) in the lab (L). [32, 33]

LTH ¼

� � � �

� LRHð�1; �2; �3Þ �
LtL!Hðp1; p2; p3Þ

� � � �

0 0 0 1

2

6
6
6
6
4

3

7
7
7
7
5

ð1Þ

The transformation matrix can also map the pose of a rigid body from one reference frame to

another, e.g. the humerus pose mapped from lab frame to the thorax (T) frame:

TTH ¼ ð
LTTÞ

� 1
� LTH ð2Þ

The robot working envelope refers to the volume which can be reached by the end-effector,

and is a function of its link lengths, joint configurations, and joint limits. The forward kine-

matics of the robot, and the physical limits of its joints, completely define the envelope and

provide a mapping from the angular measurements of the robot (R) joints (q) to the pose of

the end-effector (EE), where K is the robot forward kinematics function [32].

RTEE ¼ KðqÞ ð3Þ

2.3 Robotic, optical tracking, and motion capture systems

A 6-axis industrial robotic manipulator (Fig 3) was utilized to replicate humeral trajectories

(M20iA, 20 kg payload, ±0.03 mm end-effector repeatability, FANUC America, Rochester

Hills, MI). An optical tracking system verified robot positioning (Optotrak Certus, 0.1 mm

accuracy, 0.01 mm resolution, Northern Digital Inc., Ontario, Canada). The Cartesian coordi-

nate systems at the base of the robot, optical tracking system, and motion capture systems are
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referred to as the robot frame (R), optical tracking frame (OT), and motion capture frame

(MC), respectively.

2.4 Robot and humerus frame identification

A custom hemisphere rigid body comprised of 16 infrared markers was rigidly mounted to the

end-effector of the robot (Fig 3) and optical tracking software (6D Architect, Northern Digital

Inc., Ontario, Canada) was used to define its Cartesian coordinate system. A humerus, 3D

printed from a CT scan of a female arm, was rigidly mounted to the end-effector via a cylindri-

cal fixture. The centroid of a sphere fit of 100 points on the articular surface of the humeral

head, captured using the digitizing probe of the optical tracking system, defined the humeral

head center. This landmark, along with the medial and lateral epicondyles, were used to estab-

lish a humeral (H) coordinate system in relationship to the hemisphere (HS), HSTH, in accor-

dance to the AADL dataset [19].

To program a humerus trajectory onto the robot, the rigid body relationship between the

end-effector (EE) of the robot and the humerus (H), EETH, was necessary. This was computed

from the rigid body relationship between the hemisphere and the humerus, and the end-effec-

tor and the hemisphere:

EETH ¼
EETHS �

HSTH ð4Þ

To verify the trajectory replicated by the robot, a rotational transformation between the

optical tracking and robot frame, RROT, was needed. The translation component of the trans-

formation between the optical tracking and robot frame was superfluous (see Section 3.7).

Since the optical tracking system was mobile relative to the robot, RROT could change. There-

fore, an automatic robot reference frame identification procedure for obtaining both RROT and
EETHS (performed in under 2 minutes) was devised (see S1 Appendix [32, 34–36]). This was

performed at the beginning of an experimental session, or if the optical tracking system was

moved within a session.

2.5 Mapping of motion capture data to the robot joint space

The AADL dataset provided the rigid body trajectory of the humerus with respect to the

motion capture frame, MCTk
H , where the right superscripted ‘k’ denotes the kth timepoint. To

Fig 2. Schematic of the combined axial, bending and torsion loading modalities of the humerus. The humeral axis,

as defined by the International Society of Biomechanics and in the AADL dataset, is the vector from the midpoint of

the medial and lateral epicondyles pointing to the glenohumeral rotation center. Axial force is defined as the humeral

reaction force projected onto the humeral axis vector; torsional moment, as the humeral reaction moment projected

onto the humeral axis vector; and bending moment, as the humeral reaction moment projected onto the plane

orthogonal to the humeral axis vector [19].

https://doi.org/10.1371/journal.pone.0242005.g002
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program the humerus trajectory on the robot, it was necessary to map trajectories from the

motion capture frame to the robot frame. This mapping is mutable–it can and should change

from one trajectory to another. Also, in order to preserve the kinetic properties of the trajecto-

ries, this mapping could only be composed of a rotation about the gravitational axis and a

Fig 3. A 6 degree-of-freedom robot with optical tracking hemisphere rigid body and 3D printed humerus. The

rotational motion of the robot’s joints (J1-J6) is indicated by the blue arrows, and the Cartesian coordinate system of

the robot is shown at its base.

https://doi.org/10.1371/journal.pone.0242005.g003
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3-dimensional translation (4 parameters in total). Letting Rg(θ) represent a rotation about the

gravitational axis by θ, and RtMC!R represent the 3-dimensional translation from the motion

capture to the robot reference frame, the mapping can be expressed as:

RTMC ¼

� � � �

� RRg
MCðyÞ �

RtMC!R

� � � �

0 0 0 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð5Þ

Eq (5) can be utilized to obtain the desired (indicated by a left subscripted ‘D’) trajectory of the

humerus in the robot reference frame as shown in Eq (6):

R
DT

k
H ¼

RTMC �
MCTk

H8k ð6Þ

Utilizing the forward kinematics function of the robot and the rigid body relationship between

the humerus and the robot end-effector, the humerus trajectory can subsequently be mapped

to the robot joint space:

KðqðkÞÞ ¼R
D Tk

H � ð
EETHÞ

� 1
ð7Þ

Eq (7) is the basis for two non-linear optimization problems that were devised to map tra-

jectories from the motion capture frame to the robot joint space. Both problem formulations

optimize the robot joint space trajectory so as to minimize the robot’s joint velocity utilization

across the trajectory. Furthermore, both formulations utilize the four parameters of Eq (5), as

well as the robot joint and joint velocity limits, as constraints. The first method (see S2 Appen-

dix [31, 37–43]), termed the Derivative-Free Optimization Algorithm, relies on the con-

strained optimization by linear approximation (COBYLA) method [40] to optimize over the

initial joint angles of the robot, q(0). This formulation does not necessitate computing the gra-

dient of the objective function or (in)equality constraints. The second method (see S3 Appen-

dix [31, 37, 42–45]), termed the Gradient-Based Optimization Algorithm, employs the

Sparse Nonlinear Optimizer (SNOPT) software package [44] which utilizes a sparse sequential

quadratic programming algorithm to optimize over the entire joint space trajectory. This for-

mulation does not require, but is more computationally efficient when, the gradient of the

objective function and (in)equality constraints are computed.

Both algorithms optimized for the current pose of the humerus as attached to the robot,
EETH, i.e. the current tool frame of the humerus [32, 46]. An additional 35 virtual tool frames

were generated by programmatically rotating the humerus in 30˚ increments while clamped

within the cylindrical fixture at 3 positions: ~1” distal to the humeral head, ~1” proximal to the

midpoint of the epicondyles, and at midshaft. Each motion capture trial was optimized using

each of the 36 tool frames. A tool frame was considered a successful match for a particular trial

if the optimization converged and all constraints were satisfied. When robotically replicating a

particular trajectory, an attempt to physically match the desired virtual tool frame was made

by rotating and sliding the humerus within the cylindrical fixture. Since a perfect match was

impossible, the humerus was digitized once more when clamped in the desired position and

the optimization algorithm was re-run with the new physical humeral tool frame.

2.6 Program joint space trajectory onto robot

The humeral motion capture trajectory encompasses not only the pose of the humerus, but

also its velocity and acceleration, both linear and angular. Industrial robots generally only
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specify the position, not the velocity or acceleration of the tool frame at a programmed point.

Some control over the velocity and acceleration can be exerted by specifying a maximum

velocity between two programmed points and a smoothness parameter [47]. The details of the

smoothness parameter and its implementation vary by manufacturer, but generally specify a

tradeoff between path versus velocity/acceleration accuracy (see S4 Appendix [47, 48]).

To implement the smoothness parameter, industrial robots utilize proprietary look-ahead

features that allow the controller to evaluate future timepoints in the trajectory to compute

joint torques that will produce the desired motion. However, the look-ahead feature can be

disadvantageous because it limits the speed of the robot as it assumes that the final look-ahead

point is the last timepoint in the trajectory. This is inconsequential with the sparse trajectories

of traditional industrial applications, but not for dense trajectories of motion capture data (up

to 200 Hz), where the resulting robot motion was much slower than desired.

To mitigate this issue, a non-uniform subsampling algorithm that took into account both

position and orientation (see S5 Appendix [36, 49]) was developed. All trajectories were sub-

sampled to keep only 20% of the original datapoints. The percentage was determined based on

robot manufacturer recommendation that programmed points should be approximately 24

ms apart. Since the motion capture data sampling period was 5 ms, a subsampling percentage

of 20% corresponded to points spaced 25 ms apart on average.

2.7 Verify robot motion

Each selected humeral trajectory was mapped from the motion capture reference frame to the

joint (and operational) space of the robot via the optimization algorithms (Section 3.5) to

obtain RTMC. The trajectories were then subsampled and programmed onto the robot (Section

3.6). The robot frame identification procedure (Section 3.4) was executed at the beginning of

each experimental session to obtain the rotational transformation between the optical tracking

and robot frame, RROT. The robot program was run and the pose trajectory of the hemisphere

was recorded by the optical tracking system: OTT1

HS; . . . ; OTTn
HS where n denotes the total num-

ber of timepoints. The humerus pose in the robot reference frame was obtained per Eqs (8)

and (9). The left subscripted ‘A’ denotes the trajectory achieved by the robot, and the right

superscripted ‘j’ denotes the jth timepoint.

RTOT ¼

� � � 0

� RROT � 0

� � � 0

0 0 0 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð8Þ

R
AT

j
H ¼

RROT �
OTT j

HS �
HSTH8j ð9Þ

For ease of interpretation both the desired and actual translations were normalized based off

the first waypoint in the trajectory. Translating every timepoint in a trajectory by the same

amount does not affect the kinetic properties of the trajectory, hence Eqs (10) and (11) are jus-

tified.

R
Dt

k
H ¼

R
D tkH �

R
D t

1

H 8k ð10Þ

R
At

j
H ¼

R
A tjH � R

A t
1

H 8j ð11Þ

Subsequently, all orientations were converted to the rotation vector formulation [31]. The
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achieved pose trajectory of the humerus was smoothed using a 8Hz fourth-order bidirectional

Butterworth filter, then differentiated once to obtain linear and angular velocity [43], and a

second time to obtain linear and angular acceleration. The achieved pose, velocity, and acceler-

ation of the humerus as actuated by the robot and tracked via the optical tracking system was

compared against the desired pose, velocity, and acceleration of the humerus as derived from

the AADL motion capture dataset [19]. Trajectories were temporally aligned by determining

the offset that produced the maximum cross-correlation between the desired and achieved

position and rotation vectors simultaneously. The pose of the thorax in the initial frame of a

trial was utilized as an intuitive reference frame for all metrics. The normalized mean absolute

error (MAE) between the achieved and desired humeral trajectories for pose, velocity, and

acceleration was computed for each trial for each anatomical axes of the thorax (Fig 4). Like-

wise, the normalized MAE between the achieved and desired humeral trajectories for the mag-

nitude of pose, velocity, and acceleration was computed for each trial. For all kinematic

variables the magnitude was computed by utilizing Euclidean distance. The normalization fac-

tor was the corresponding span of the desired (motion capture) data, e.g. the MAE of the linear

velocity in the inferior/superior direction was normalized by the span (maximum-minimum)

of the desired linear velocity in the inferior/superior direction [50].

2.8 Comparison of desired and actual kinetics

The desired and achieved humeral kinematics were utilized to calculate the loads (forces and

moments) at the 25% amputation level of the humerus via inverse dynamics. The 25% amputa-

tion level was chosen since the loads were highest due to the increased moment arm distal to

the resection [19, 52]. The prosthesis was modeled as a rigid body with the hand, forearm, and

the connection from the forearm to the residual bone each modeled as a cylinder (Table 1).

This simple model allowed comparison of the loads generated from the kinematics derived

from skin markers (desired) and reproduced via the robot (achieved). The elbow was set to 90˚

flexion for jogging and internal rotation motions, 135˚ for jumping jacks, and 180˚ extension

for jug lift motions. Standard inverse dynamics methods (recursive Newton-Euler algorithm

[37]) were utilized to obtain the loads. Normalized MAE was computed for the axial force,

bending moment and torsional moment of jumping jacks, bending moment of jug lifts, axial

force of jogging, and torsional moment of internal rotation trials. In addition, the normalized

absolute value of the difference between the desired and achieved load at the instance when

the maximum desired load is achieved, termed normalized error-at-peak, was calculated. Dif-

ferentiation and the composition of noisy signals via mathematical operations (inverse dynam-

ics) led to spikes for both the achieved and desired trajectories that are more likely a result of

noise than a true representation of the human motion [53]. The error-at-peak metric reduced

(although did not eliminate) the effect of the increased noise level.

2.9 Code repositories

The following repositories were created for the software and the supporting dataset:

• The derivative-free optimization algorithm: https://doi.org/10.5281/zenodo.3665788

• The gradient based optimization algorithm: https://doi.org/10.5281/zenodo.3665786

• The subset of trials from the AADL dataset pertinent to this investigation, as well as the

robot verification data from the optical tracking system: https://doi.org/10.5281/zenodo.

3661595
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Fig 4. Thorax anatomical axes. The thorax coordinate system was the reference coordinate system for all presented

results. This system was defined in the input motion capture data and was unique to each subject in the data set based

on their anthropometrics and associated locations of skin markers. The humerus coordinate system is defined to

coincide with the thorax coordinate system when in neutral anatomical position [51]. The thorax bone model was

reprinted under a CC BY license, with permission from C-Motion Research Biomechanics.

https://doi.org/10.1371/journal.pone.0242005.g004

Table 1. Dimensions and masses of the segments constituting the prosthesis system model utilized for inverse dynamics.

Segment/Measurement Length (m) Diameter (m) Mass (kg)

Arm Connection 0.75 � Arm Length 0.060 0.50823 (kg/m) � 0.75 � Arm Length + 0.3

Forearm 0.2540 0.0762 1.013

Hand 0.1524 0.0540 0.416

Jug 0.2500 0.1500 3.800

Note: The Arm Length variable was derived from the motion capture dataset and is dependent on the anthropometrics of the subject.

https://doi.org/10.1371/journal.pone.0242005.t001
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• Remainder: https://doi.org/10.5281/zenodo.3665790, https://doi.org/10.5281/zenodo.

3665780. These repositories include the following procedures and algorithms:

�. Artificial ramp-up and slow-down trajectory generation

�. Robot reference frame identification procedure

�. Non-uniform subsampling algorithm

�. FANUC motion program generator

�. Comparison of robotically replicated trajectories against motion capture trajectories

3. Results

3.1 Mapping of motion capture data to the robot joint space

In practice, the derivative-free optimization proved to be more effective than the gradient-

based optimization for initial trajectory optimization. It consistently converged to an optimal

solution even when the initial seed was simply the robot home position. The gradient-based

optimization was useful when the virtual humeral tool frame was substituted with a physical

one. In this instance, given a joint space trajectory that was optimal for the virtual tool frame,

the gradient-based optimization quickly determined a joint space trajectory that was optimal

for the physical tool frame.

The optimization algorithms found suitable joint space trajectories for 119 jumping jacks (1

was omitted due to motion capture artefacts), and all 15 jug lifts. A suitable joint space trajec-

tory that satisfied the robot joint velocity limits for the internal rotation trial with the single

highest torsional acceleration could not be found. However, a joint space trajectory for the

next 5 internal rotation trials with the highest torsional accelerations was found, as well as for

the middle 5 and lowest 5 trials. Six jogging trials were excluded because the section of the trial

between heel strike and maximum flexion of the humerus was not present in the capture. One

jogging trial was excluded due to motion capture artefacts. Out of the remaining 113 jogging

trials, a suitable joint space trajectory was found for 105 trials but 8 trials could not satisfy the

robot joint velocity limits. All 119 jumping jacks, 15 internal rotations, and 15 jug lifts were

replicated using a single humeral tool frame. Jogging trials were replicated using 4 humeral

tool frames: 65 were replicated utilizing the same tool frame as other motions, 20 in a tool

frame rotated ~60˚ about the humeral axis, 17 rotated ~120˚, and 3 rotated ~150˚.

3.2 Verify robot kinematics

For all activities, the median pose normalized MAE was smaller than the median velocity nor-

malized MAE, which was smaller than the median acceleration normalized MAE. For all activ-

ities, the median normalized MAE of the position and orientation magnitude was under 4%,

and normalized MAE of the position and orientation magnitude for all trials was under 6%.

For all activities, the median normalized MAE of the linear and angular velocity magnitude

was under 10%. The normalized MAE of the linear and angular velocity magnitude for all trials

for jumping jacks, jug lifts, and internal rotation was under 15%, while for jogging was under

17%. The median normalized MAE of the linear and angular acceleration magnitude was

under 15% for jumping jacks, jogging, and internal rotation, while for jug lifts it was under

17%. The normalized MAE of the linear and angular acceleration magnitude for all jumping

jack trials was under 16%, and was under 24% for all jug lifts, jogging and internal rotation tri-

als (Fig 5). The normalization factors for all activities, metrics, and anatomical axes are pre-

sented in Fig 6.
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Trend plots for desired versus achieved pose, velocity and acceleration associate a visual

representation of performance with a normalized MAE value for a trial representative of

median performance for each activity and kinematic variable (S6 Appendix). A video of the

robot replicating a jumping jack and a jogging motion are also presented (S1 and S2 Videos,

respectively).

3.3 Kinetic analysis

The median normalized MAE for all activities and variables was under 10%, and the normal-

ized MAE for all activities and variables was under 20%. The median normalized error-at-peak

was under 12% for jumping jacks, 2% for jug lifts, 17% for jogging, and under 25% for internal

rotation. There was large variability in the highest normalized error-at-peak, ranging from

11% for the bending moment of jug lifts up to 50% for the bending moment of jumping jacks

(Fig 7). The normalization factors for axial forces, bending moment, and torsional moment for

all activities are presented in Fig 8.

4. Discussion

The primary goal of this investigation was to robotically replicate in vivo humeral kinematics

of jumping jacks, jug lifts, jogging and internal rotation advanced activities of daily living on

an industrial manipulator to within 5% accuracy for position and orientation, 10% accuracy

for linear and angular velocity, and 15% accuracy for linear and angular acceleration. An

equally important objective was to provide a computational pipeline for mapping in vivo kine-

matics recorded via motion capture to a joint space trajectory for a robotic manipulator via

public code repositories (Section 3.9). The median normalized MAE for the magnitude of all

kinematic variables was generally within targeted accuracy, with the exception of angular

acceleration for jug lifts (17%). Considering each anatomical axis individually, the target accu-

racy goal was achieved for the median normalized MAE for all kinematic variables and across

all activities with the following exceptions. For jogging, the median accuracy goal was not

achieved for the anterior/posterior (AP) axis of orientation (5.6%). For internal rotation, the

median accuracy goal was not achieved for the mediolateral (ML, 6.4%) and inferior/superior

(IS, 6.2%) axes of position, the ML (8.5%) and AP axes (9.3%) of orientation, the IS axis of lin-

ear velocity (12.1%), and the AP axis of angular velocity (10.9%). Despite not meeting all accu-

racy goals, the robotically replicated trials are kinematically accurate to within the

characteristic error contained in skin-marker derived kinematics. These robotically replicated

motions improve upon UTM capabilities by providing multiaxial kinematics, and in contrast

to a typical joint simulator, allow researchers to more closely replicate the load rates experi-

enced by the humerus while permitting experiments into failure scenarios like collisions. Fur-

thermore, the methods presented herein provide an algorithmic pipeline for other joint

simulators and a starting point for future investigations to improve upon these results.

Although jug lifts had the lowest median angular acceleration of any activity (Fig 6), they

had the highest normalized MAE for the angular acceleration magnitude. This apparent anom-

aly is likely explained by their lower velocity and consequently lower signal-to-noise ratio as

compared to other activities. Even though the motion capture trajectories were smoothed,

double differentiation sharply increased the noise component, overwhelming the underlying

motion signal for jug lifts trials. This was especially evident in angular kinematic variables, for

which noise levels were inherently higher. Visual inspection of the trend plots for the kine-

matic variables of a representative jug lift trial (S6 Appendix) supports this interpretation.

Therefore, the replication accuracy goal was not met due to the lower signal-to-noise levels of

these trials rather than the capability of the computational pipeline or the robot. In the context
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of mechanically characterizing the bone-implant interface, the higher error associated with the

magnitude of angular acceleration for jug lifts is not concerning because over 90% of the bone

bending moment is generated by the gravitational force of the jug rather than inertial forces.

Investigation into the missed accuracy goals for jogging and internal rotation trials shows

that the MAE normalization factor, the span of the trajectory, was the culprit. For jogging and

internal rotation trials, the kinematic variable/anatomical axis combinations for which the

motion span approaches zero are precisely the combinations that display the most variability

Fig 5. Boxplots of normalized MAE for all activities and metrics. For each activity and kinematic variable, the normalized MAE in the mediolateral (ML), anterior-

posterior (AP), and inferior-superior (IS) direction of the thorax is presented. The normalized MAE of the magnitude of each kinematic variable is also presented and

denoted via the Euclidean norm (k�k). Gold bars represent the cutoff values proposed as acceptable limits of robotic simulation error.

https://doi.org/10.1371/journal.pone.0242005.g005
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in the normalized MAE and/or fail to meet the target accuracy goals (Figs 5 and 6). For jog-

ging, the position span for the ML axis varies between 24–681 mm (Fig 6). This anatomical

axis displays the greatest variability for the position normalized MAE, although on average it

does meet the target accuracy goal. Likewise, for jogging the orientation span for the AP axis

varies between 2.5˚-41˚. AP is the anatomical axis that displays the most variability for the ori-

entation normalized MAE and misses the target accuracy goal. For internal rotation trials, the

position span varies between 1–52 mm for the ML axis and between 1.5–23 mm for the IS axis.

Likewise, for internal rotation the orientation span varies between 1.3˚-19.4˚ for the ML axis

and 0.9˚-20.1˚ for the AP axis. Again, these anatomical axes display the most variability for the

orientation normalized MAE and fail to meet the target accuracy goal. The same analysis car-

ries over to the velocity kinematic variables for internal rotation trials.

For jogging and internal rotation trials, none of the kinematic variable/anatomical axis

combinations for which the accuracy goal was missed were the primary axes of motion. The

normalization factor for the MAE metric is induced by the reference frame selected for

Fig 6. Boxplots of motion span for all activities and metrics. For jumping jacks (JJ), jug lifts (JL), jogging (JO), and internal rotation (IR) trials the span

(max-min) of each kinematic variable in the mediolateral (ML), anterior-posterior (AP), and inferior-superior (IS) direction of the thorax is presented. The

span of the magnitude of each kinematic variable is also presented as the Euclidean norm (k�k).

https://doi.org/10.1371/journal.pone.0242005.g006
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analysis (thorax pose in the initial frame). This reference frame, especially for internal rotation

trials, magnifies errors associated with secondary axes of motion. Therefore, the higher than

desired normalized MAE were deemed acceptable in the context of this study and within the

characteristic error contained in skin-marker derived kinematics. Both objectively and subjec-

tively (trend plots) the lowest replication accuracy was observed for internal rotation trials–for

which the error associated with skin-marker derived kinematics is much higher (10–15% ver-

sus 3–15% [30]). Lastly, other authors have under scaled in vivo kinematics before robotic rep-

lication based on the fact that skin-marker kinematics overestimate range of motion [16]. This

approach was not taken in the present investigation because there is no validation that the

resulting kinematic trajectories are more accurate than the original motion capture

trajectories.

The normalized error-at-peak metric demonstrates that only a subset of the robotically rep-

licated trials should be used for biomechanical investigations, depending on the desired level

of accuracy in recreating maximal loading conditions. Although there is wide variability for

error-at-peak, 50% of the trials have a normalized value below 12% for jumping jacks, 2% for

jug lifts, and 17% for jogging (Fig 7). This is encouraging because it demonstrates that there

are still many trials in the dataset that are likely to accurately recreate the maximal loading con-

ditions at the bone-implant interface. As previously noted, part of the variability in the error-

at-peak stems from the noise in the signal. Although both the desired and actual raw signals

have been filtered, the optimum filtering frequency varies based on the target metric (velocity,

Fig 7. Boxplots of normalized kinetic MAE and error-at-peak. The relevant kinetic variables are grouped by activity.

Error-at-peak is represented by a solid line around the box.

https://doi.org/10.1371/journal.pone.0242005.g007
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acceleration, force, etc.) [54] and does not account for soft tissue artefact [55]. These signal-

processing challenges are demonstrated by the bending moment of jug lifts (Fig 7), which is

almost entirely dependent on the orientation of the prosthesis (and jug) with respect to gravity.

Sudden spikes in angular velocity and acceleration cause increased bending moments, intro-

ducing the outliers observed for the bending moment of jug lifts.

Increased noise only contributes partially to the MAE and error-at-peak, since robot limita-

tions have large contributions as well. Analysis of error-at-peak versus maximum desired load

resulted in a coefficient of determination (R2) of 0.51, 0.41, and 0.84 for jumping jacks axial

force, jogging axial force, and internal rotation torsional moment, respectively. All other vari-

ables showed a R2 < 0.2. Moreover, for internal rotation trials, the average normalized tor-

sional moment error-at-peak for trials with the lowest desired torsional acceleration was 8.5%,

while those with the highest desired acceleration was 32.3%. However, the optimization algo-

rithm converged to a solution that satisfied the joint velocity limit limitations for all analyzed

trials. Therefore, it is very likely that other undisclosed limitations (whether physical or at the

controller level) exist within the robot. The accuracy of the internal rotation trials could possi-

bly be improved by utilizing a fixture that changes the rigid body relationship between the

humerus and end-effector so as to increase the utilization of the sixth joint of the robot (J6). J6

has the highest joint velocity limit, and we surmise may also have the highest joint acceleration

limit. Such an investigation is beyond the scope of the present work because it is not generaliz-

able. If the accuracy of internal rotation trials cannot be improved, only the low and a subset of

the medium internal rotation trials will be utilized for mechanical testing.

Nevertheless, this investigation presents a method for replicating the physiologic conditions

at the bone-implant interface that mimics the load directionality, magnitude, and rate to

within reasonable error. The replication of kinematics can be used as a standalone test

Fig 8. Boxplots of load span for axial force, bending moment, and torsional moment. For jumping jacks (JJ), jug

lifts (JL), jogging (JO), and internal rotation (IR) trials the span (max-min) of the applicable kinetic variable is

presented.

https://doi.org/10.1371/journal.pone.0242005.g008

PLOS ONE Humerus robotic motion

PLOS ONE | https://doi.org/10.1371/journal.pone.0242005 November 9, 2020 16 / 23

https://doi.org/10.1371/journal.pone.0242005.g008
https://doi.org/10.1371/journal.pone.0242005


methodology or be paired with a force-controlled manipulator that more accurately replicates

load magnitude and direction. Although a prosthesis was not attached to the robot end-effec-

tor during this validation study, we do not foresee that it would appreciably affect the roboti-

cally replicated trajectories. The mass of a typical above-elbow prosthesis is ~1.8 kg, which

increases to ~5.6 kg when holding a gallon jug, so both fall well within the 20 kg maximum

load capacity for the robot. Load rate was not examined quantitatively in this investigation

because it would entail a third differentiation, greatly amplifying the noise in the original sig-

nal. However, qualitative analysis of trend plots, and the fact that the replicated activities are

on the same time scale as the original motion capture, indicate an acceptable replication of

load rate. This in contrast to other investigations that temporally scale in vivo kinematics by a

factor of 4 to 50 [14, 17, 28, 56], even for relatively slow tasks such as walking.

Overall, this investigation demonstrates the feasibility of utilizing an industrial robot as a

next generation UTM. These trials provide a motion library for investigations of bone and

prosthesis biomechanics, which will be instrumental in mechanically characterizing percuta-

neous OI prosthesis systems by replicating the dynamic multiaxial kinematic environment

that the bone-implant interface experiences during AADLs. The AADL motions selected for

robotic replication were derived from skin-markers because (to the authors’ knowledge) kine-

matic recordings of high-speed, upper-extremity activities from more accurate motion capture

technologies do not exist. Upper extremity kinematics datasets from biplane fluoroscopy [57,

58] or bone-pins [59, 60] are limited to slower movements and small capture volumes. Regard-

less, all algorithms presented in this study are motion capture technology agnostic. The same

algorithmic pipeline can be utilized with segment kinematics obtained from any motion cap-

ture input.

The robot reference frame identification procedure provides a quick (<2 minutes), auto-

matic method of obtaining a coordinate system transformation between an optical tracking

system and a robotic manipulator. It also determines the pose of a rigid body (e.g. humerus) in

the robot frame of reference. Although a seemingly simple task, determining the relationship

between the robot end-effector and an attached segment is complicated by the fact that the

end-effector reference frame cannot be visualized. For many joint simulators, segment coordi-

nate systems are determined by neutral alignment assessed via measured forces or approxi-

mate visual alignment [2–4, 7]. Other studies attach metal rods and pipe fixtures along

segment anatomical axes, which are then visually aligned against the robot frame axes [16, 61].

Van Arkel et al. acknowledge the general lack of detail in the literature regarding the establish-

ment of a segment coordinate system and present a method for aligning the femur and pelvis

against the robot frame axes by utilizing custom fixtures [62]. Although likely more accurate

than other manual methods, this procedure still results in up to 4˚ of misalignment, necessi-

tates custom fixtures, and still must be extended to other joints [62]. In contrast, the robot ref-

erence frame identification procedure presented herein can be applied to any segment of

interest and has precision of less than 1˚ and 1 mm.

A similar procedure to our investigation was employed by El Daou et al. [46] to ascertain

the relationship between the femur and a robot end-effector. Both utilized an optically tracked

intermediate rigid body to determine the end-effector/bone relationship, but El Daou et al.

employed a nonlinear parameter estimation solution. Unfortunately, the authors did not pro-

vide details regarding the algorithm nor present data on its precision. The code and associated

data for executing, visualizing, and analyzing our algorithm are available with the hope that

future investigations can compare several algorithms to establish the efficacy of each one.

Future studies should also investigate how to establish the segment coordinate system with

respect to the robot end-effector from medical image data. This enhancement could be
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implemented by using a secondary rigid body attached to the bone of interest, and would per-

mit investigations that maintain the soft tissue structures associated with a segment.

Although the algorithms presented herein can be used with any motion capture system, the

method by which industrial robots are programmed must be modified in order to replicate in
vivo kinematics to the same accuracy as these technologies. Other studies have replicated in
vivo kinematics on a joint simulator [10, 16, 27], but to the authors’ knowledge no investiga-

tion has compared the velocity and acceleration of the replicated motions (achieved) against

the input kinematics (desired). As our results demonstrate, the disparity increases with each

successive differentiation between the replicated and motion capture kinematics (Fig 5). From

a signal-processing perspective, the increase in MAE with each successive differentiation is

expected [63]. However, most of the discrepancy, especially for velocity and acceleration, can

be attributed to the lack of robotic control over these metrics.

Current programming methods for almost all industrial robots sacrifice positional accuracy

for velocity/acceleration accuracy (see Section 3.6) [47]. In a typical industrial robot applica-

tion, the motion program is composed of waypoints at/near physical features of the object

being manipulated. The speed of the robotic tool can be specified between these waypoints,

however it is not critical to arrive at these waypoints with a particular velocity (unless a com-

plete stop is desired). Consequently, the velocity at a waypoint cannot be specified. Yet when

robotically recreating in vivo kinematics, it is desirable to specify not just the pose but also the

velocity and acceleration at waypoints. It is also desirable to input all timepoints in a motion

capture trajectory so that the robot controller can plan the corresponding motor torques. To

the authors’ knowledge, this elevated level of robot controller access is not provided by the 4

major industrial robot manufacturers (KUKA, Yaskawa Motoman, ABB, FANUC). Until it is

implemented by manufacturers, similar velocity and acceleration errors to the ones presented

here should be expected.

The need for increased control and ease of programming is widely recognized. ROS-Indus-

trial [64] is an open source project developed and maintained by the ROS-Industrial consor-

tium as an add-on to the popular Robot Operatic System (ROS) [65]. They recognize the need

for increased control and ease of programming for tasks other than “welding, material han-

dling, and dispensing” [66]. In fact, the FANUC ROS-Industrial software driver faces the same

limitations as our study: “dense trajectories . . . cause significant slowdown of the robot” while

“coarse trajectories lead to inaccurate motions” [67]. Thus, the need to balance accuracy versus

velocity led to the development of non-uniform subsampling to reduce the maximum error

due to subsampling and replicate the curvature of the original trajectory more faithfully than

uniform subsampling (see S5 Appendix). Ideally the need for this algorithm will diminish as

increased access to the motion planning modules is provided by industrial robot

manufacturers.

The presented algorithms for mapping a rigid body trajectory to a robot joint space trajec-

tory were purposefully written for ROS in anticipation of this increased access. One advantage

of the derivative-free optimization algorithm is its relative insensitivity to the number of time-

points in the capture because its optimization parameters are comprised of the robot joint

angles in the starting pose (e.g. optimization parameter space is 6-dimensional since a 6

degree-of-freedom robot was utilized). Another key advantage is the ability to determine a pri-
ori whether a given trajectory can be replicated on a robot given its physical limitations. In this

investigation, the robot joint velocity limits were known and utilized as inequality constraints

in the non-linear optimization problem. However, other constraints such as joint torques and

acceleration limits can be easily appended if known. Likewise, the optimization algorithms can

determine the feasibility and utility of various tool frames for the segment of interest. For
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example, by utilizing the derivative-free optimization algorithm, it was determined program-

matically that 4 humerus tool frames were necessary to replicate jogging trials.

Even if it were possible to robotically replicate a given kinematic trajectory with complete

accuracy, segment trajectories derived via skin-marker motion capture are subject to soft-tis-

sue artefact (STA). STA attenuation is challenging [55, 68] as it has the same frequency content

as the underlying bone motion [68], a large component of STA is rigid body transformations

[69, 70], and skin marker displacements are subject, task and location specific [70]. Although

it is possible to use different imaging modalities like biplane fluoroscopy [57, 58] or bone pins

[59, 60] to derive kinematics, these techniques are difficult to implement for most studies

because they are invasive, time consuming, expose patients to radiation, and require highly

specialized equipment. Therefore, further investigation in quantifying and attenuating STA is

necessary to increase the accuracy of robotically replicated human motion.

In conclusion, this investigation replicated in vivo humeral kinematics of jumping jacks, jug

lifts, jogging and internal rotation activities using an industrial manipulator to within the accu-

racy of the skin-marker motion capture technology that was utilized to derive these kinemat-

ics. The replicated motions will be utilized to characterize the bone-implant interface of a

percutaneous osseointegrated prosthesis system, but have numerous biomechanical applica-

tions. Several optimization and programmatic algorithms were developed, presented, verified

and shared via public code repositories. In particular, an algorithm for identifying the robot

reference frame and ascertaining the pose of a segment of interest via optical tracking motion

capture was presented. This procedure improves upon current methods and provides utility to

investigations employing joint simulators. Furthermore, a derivative-free and gradient based

optimization algorithm for mapping motion capture trajectories to the robot joint space were

developed as packages for the Robot Operating System. These algorithms will serve as a step-

ping stone in building the next-generation robotic universal testing machine that enables bio-

mechanics researchers to investigate bone and prosthesis biomechanics by utilizing in vivo
kinematics.
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