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A B S T R A C T   

Population monitoring is a challenge in many areas such as public health and ecology. We propose a method to 
model and monitor population distributions over space and time, in order to build an alert system for spatio- 
temporal data changes. Assuming that mixture models can correctly model populations, we propose a new 
version of the Expectation-Maximization (EM) algorithm to better estimate the number of clusters and their 
parameters at the same time. This algorithm is compared to existing methods on several simulated datasets. We 
then combine the algorithm with a temporal statistical model, allowing for the detection of dynamical changes in 
population distributions, and call the result a spatio-temporal mixture process (STMP). We test STMPs on syn
thetic data, and consider several different behaviors of the distributions, to fit this process. Finally, we validate 
STMPs on a real data set of positive diagnosed patients to coronavirus disease 2019. We show that our pipeline 
correctly models evolving real data and detects epidemic changes.   

1. Introduction 

The rapid growth of health information systems has led to the 
availability of a real-time spatio-temporal follow up of patients affected 
by a given disease. A remaining challenge is to develop methods to use 
this data to improve public health strategies and to transform this 
observed data into actionable decision support systems. 

Spatial models are based on the characterization of individuals by 
their geographical location (place of birth, place at the time of diagnosis, 
place of residence, etc.). Taken together, these individuals form a pop
ulation. Concurrently the temporal component is essential in disease 
monitoring, therefore requiring consideration of the population distri
bution as evolving over time. The association of spatial and temporal 
components for a disease yields a spatio-temporal distribution. One 
actionable decision-aid support system that could improve health 
management using such data is real-time highlighting of new or 
evolving clusters of patients. To detect for example a specific sub-group 
of patients which will evolve differently, while the rest of the population 
remains stable. This would be particularly useful to rapidly identify a 
new contamination source for a transmissible disease, as soon as the first 
affected cases are present in health information systems. 

1.1. Related works and motivation 

1.1.1. Spatio-temporal statistical analyses in epidemiology 
Spatio-temporal statistical analyses are already present in research in 

epidemiology and are mainly based on statistical tests, coupled, or not, 
with space-time kernel density estimation, as presented by Kirby et al. 
[1]. Scan statistic methods proposed in [2,3] are reference methods for 
many studies. They propose to detect spatial and/or temporal clusters 
from aggregated data (discrete in space and time) using sliding windows 
to compare cases and reference populations. Another scan statistic 
method is proposed in [4] in the absence of population-at-risk. In both 
cases, these methods require to fix several parameters on the considered 
sliding window (e.g. minimal area and minimal temporal size). More
over, cases/controls studies are subject among other things to selection 
and expensive efforts to find a proper control group and are not feasible 
in all situations [5]. In addition, these studies are prone to several biases 
[6]. As it is usually difficult to sample a control group from a reference 
population distribution, the ensuing comparison between cases and 
controls is exposed to false differences due to inadequate sampling of the 
control group [6]. Another important issue is that these methods do not 
provide a statistical modeling of the population over the whole space 
and time. 
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1.1.2. Estimation algorithms for mixture models 
Different from looking at data in a sub window of the space, mixture 

models are another class of models to spatially model data in statistics. 
Mixture models come with strong advantages. First, they are flexible as 
one can set the probability distribution function (pdf) of each cluster 
depending on the type of observations (scalars, vectors, positive mea
sures, etc.). Second, the results are interpretable because subjects can be 
attributed to estimated classes a posteriori which enables one to distin
guish homogeneous groups in the whole set. Third, they do not rely on a 
population reference distribution estimation, unlike scan statistics 
methods: they only rely on cases distribution. Last, these mixture models 
are parametric and well understood. 

When data are multivariate real valued observations, the customary 
probability density for each cluster is the multivariate Gaussian distri
bution. This is particularly relevant when considering geographical data 
(mapped as lying on the real plane). The use of a multivariate Gaussian 
distribution inside a mixture model gives a Gaussian Mixture Model 
(GMM). 

To perform the estimation of Gaussian mixture parameters, given the 
number of clusters (i.e. classes), the classic algorithm is the Expectation- 
Maximization (EM) algorithm introduced by Dempster et al. [7]. The 
estimate obtained with the EM algorithm is deterministic and highly 
dependent on the initialization step. Moreover, the construction of the 
sequence ensures that the critical points are maxima, but could be either 
global or local ones. To avoid sensibility to initial values and selection of 
a wrong local maximum, several strategies rely on repetitions of a 
random initialization step or initialization with K-means algorithm [8]. 
Recently, Lartigue et al. introduced an annealing E-step to better stride 
the support and become almost independent from the initialization [9]. 
However, this method requires to set the temperature profile which may 
be time-consuming. 

Finding an optimal number of components K is not an objective 
directly included in the original EM algorithm. This objective is often 
based on a model selection step, which requires a collection of estimated 
models [10–12]. The well-known criteria for model selection are the 
Akaike Information Criterion (AIC) [10], and the Bayesian Information 
Criterion (BIC) [11]. They have been proved to be adequate for selecting 
K, but they are asymptotic criteria, and can select under- (for AIC) or 
over-adjusted (for BIC) models. Non-asymptotic approaches have been 
proposed, such as the slope heuristic criterion, introduced by Birgé and 
Massart [12] and implemented by Baudry et al. [13]. It provides an 
optimal penalty of the log-likelihood, and thus an optimal model, but 
also requires a linear behavior of the log-likelihood. On the other hand, 
Baudry and Celeux [8] proposed to introduce a recursive initialization 
which consists in using the K components solution to initialize the K + 1 
components mixture. However, their full process requires several GMM 
estimations, with a varying number of components K, leading to 
expensive computations. 

Subsequently, the last decade has seen the emergence of methods 
aiming to simultaneously overcome the need for a collection of models, 
find the optimal number of classes, and avoid bad local maxima 
[14–19]. Several methods rely on a minimum message length criterion 
[20,21] which penalises the cost function [15,19]. These methods force 
parameter space exploration to obtain several models. However these 
methods have to continue exploration and estimation until they reach a 
minimal number of clusters fixed in advance. This forced estimation of 
an internal collection of models is also present in [14], where Derman 
and Le Pennec combine the slope heuristic criterion for model selection 
[12] with a dynamical change of the number of components inside the 
EM algorithm. Another dynamical algorithm is the step-wise split-and- 
merge EM algorithm [16,17]. With split and merge criteria based on 
Kullback-Leibler divergence or correlation coefficient, these methods 
explore dynamically the parameters space by forcing clusters to merge 
together (or split apart). But they may rely on independent split and 
merge movements or several runs of the EM algorithms, implying 
computational issues. On the contrary, in the work of Yang et al. [18], 

the number of components is estimated in a single-run EM algorithm 
with a reasonably low computation time. This solution is named Robust 
EM algorithm. But this algorithm can reach incorrect local maxima as we 
will see below. 

The temporal component to monitor the population distribution is 
absent of these different procedures using EM algorithms, and the 
epidemiological models presented previously also cannot meet the 
criteria for estimating, monitoring and modeling population dynamics 
over time. As a consequence, these drawbacks prevent us from directly 
using the presented algorithms to obtain correct approximations of 
population dynamic and to monitor them. 

1.2. Contributions 

In this paper, we propose a complete pipeline named spatio-temporal 
mixture process (STMP). This pipeline infers population distribution and 
highlights temporal population distribution differences as a first step 
towards a decision support and alert system for spatio-temporal 
analysis of the evolution of a population. STMP can be used to 
initiate a detailed analysis of the environment for example if the pa
thology may depend on environmental causes. The STMP can also allow 
to focus on effects of decisions in specific areas where changes are 
happening, as we have faced with the COVID-19 pandemic and suc
cessive lockdowns for example. Within the proposed STMP, we combine 
a mixture model with reliable estimation and temporal monitoring of 
this model. This pipeline will create a temporal process with two 
mixture models, one time-depending and one totally independent. The 
adequacy of population dynamic to either of these two models will 
determine if an alert should be raised or not. 

As a module to our STMP, we will introduce an adaptation of the EM 
algorithm [7] to take into account a temporal dependency during a 
mixture model evolution. Finally, we will also propose an improvement 
of the Robust EM algorithm [18]. We will suggest changes to obtain a 
more automatic algorithm to avoid overlapping components, observed 
with the Robust EM algorithm on real data tests. This modified version 
of Robust EM algorithm is compared to the original one (and other se
lection model criteria) to show that on synthetic data, there is no loss of 
performances and on real data we outperform the state of the art 
algorithm. 

To finish designing our STMP, we will perform experiments on 
synthetic data. And we will study the behavior of our pipeline in 
different situations to produce a robust monitoring. Applying our pro
cess to a dataset of COVID-19 cases from the Paris area, we will 
demonstrate the adequacy of a mixture model evolving over time and 
the consistency of the alert response to population epidemic changes. 

2. Notations and reminders on mixture models and estimation 
algorithms 

We assume for our future application in Sections 4 and 5 that the 
population is generated from a Gaussian Mixture Model (GMM). In this 
section, we first recall the GMM definition. Then we detail the Robust 
EM algorithm, one of the algorithms used to fit GMM. These methods are 
the basic elements on which we build our STMP pipeline described in 
Section 3. 

2.1. The Gaussian Mixture Model 

In order to describe a Gaussian Mixture Model, we consider a set of 
observations denoted x = (x1, …, xn) with xi ∈ ℝd. Let N d(⋅|μk,Σk) be the 
probability density function (pdf) of the Gaussian density of dimension 
d with mean μk and covariance matrix Σk. To write the GMM in its 
complete form we introduce latent variables (zi)i=1, …, n, such that each zi 
is following a categorical distribution of parameter π. This information is 
then encoded as a K-dimensional binary variable zi for each i ∈ {1,…,n} 
with zi

k = 1 if data xi belongs to cluster k, 0 otherwise. 
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Then the complete model writes: 
{

zi ∼ C ategorical(π1,…, πk),

xi∣zk
i = 1 ∼ N d(μk,Σk).

, (1)  

with θ = (π1,…,πK,μ1,…,μK,Σ1,…,ΣK). The problem with estimation of 
GMM is twofold. The first challenge is to estimate the number of com
ponents K in the model. Then, given this estimated K, the second issue is 
how to estimate the vector of parameters θ, containing the Gaussian 
distributions parameters and the mixture proportions π. All this has to be 
performed from the observed data only. 

2.2. The Expectation-Maximization algorithm 

The EM algorithm [7] was introduced for the purpose of estimating 
GMMs and has remained the most popular choice. The general principle 
of this algorithm is to produce a sequence of parameters (θ̂

p
)p∈ℕ which 

converges towards an element of the set of critical points of the observed 
likelihood, which is for a GMM on a set of observations x: 

pθ(x) =
∏n

i=1

[
∑K

k=1
πkN d(xi|μk Σk)

]

. (2)  

The EM algorithm alternates between an expectation step, and a maxi
mization step which updates the mixture parameters, until a conver
gence criterion is met. The detailed equations are given in Appendix A.1. 

As the EM algorithm presents several drawbacks detailed in Section 
1, and that we expect our framework to have a single run to estimate the 
data distribution at a given time step, we turn to the more “dynamical” 
algorithms where estimation and selection of the model are performed 
at the same time [15–19]. 

In the next part, we will detail a recent dynamical algorithm pro
posed by Yang et al. [18], which answers almost all issues and is the base 
of our proposition. 

2.3. The Robust EM algorithm 

As mentioned previously, the unknown number of clusters in GMM is 
a main issue. The authors of [18] go deeper into looking dynamically for 
the best number of components in the mixture. Their Robust EM adjusts 
the EM mixture objective function, by adding a criterion based on the 
entropy of the mixture proportions πk. Non-informative proportions are 
given by a high entropy. Consequently, the penalty added to the likeli
hood is given by the negative entropy. Starting from the complete log- 
likelihood L (θ,x,z), the objective function to maximize in the M-step 
with this entropy-based penalty is therefore: 

L '(θ, x, z) =
∑n

i=1

∑K

k=1
τk

i log(πkN (xi|μk,Σk) )

+β
∑n

i=1

∑K

k=1
πklogπk,with β ≥ 0.

(3) 

With this new criterion to maximize, the update equation of com
ponents proportions π inside the EM algorithm becomes: 

π̂ (new)
k = π̂k,MLE + βπ̂ (old)

k

(

lnπ̂ (old)
k −

∑K

s=1
π̂ (old)

s lnπ̂ (old)
s

)

(4)  

with π̂k,MLE obtained by maximization of the original objective function 
(without penalisation) (see Section A.1 Eq. (9)), and π̂ (old)

k being the 
component weight estimate of previous iteration. The equations to es
timate the means μ̂k and the covariance matrices Σ̂k in Robust EM 
remain unchanged. These parameters are estimated at each maximiza
tion step by Eqs. (10) and (11) with the new component weights from 
Eq. (4). 

As we can see, a new hyperparameter β comes as a penalty weight in 
Eq. (3). It helps to control the competition between clusters. Acting on 
the evolution of proportions with β enables one to check at each itera
tion that all the components proportions are above a given threshold, 
and therefore to delete those of proportion πk < 1

n. This is the annihila
tion part in their process. A specific dynamic is imposed on β. This 
parameter is set to zero when the cluster number K is stable, i.e. not 
decreasing for a time period pmin. This is important to avoid oscillating 
parameters, and so to reach a maximum. A limitation is that they fixed 
this time limit to pmin = 60 iterations, without any attempt to adapt it to 
different use cases. This algorithm is however robust to initialization as, 
to start with, each data point is the center of its own component, which 
yields the initial number of class K0 to be n, the sample size. 

Although efficient, entropy-based penalisation [18] does not prevent 
from having several components with similar parameters, meaning that 
two cluster may be superimposed. In the Robust EM algorithm [18], 
competition and instability of component proportions do not avoid 
ending up with a local maximum of this type. The coefficient β is usually 
not high enough to trigger removal of one of the superimposed clusters. 
As the competition is not guaranteed at each iteration, we suggest im
provements of the Robust EM algorithm in the next section. We also 
present a temporal process which, combined with estimation algo
rithms, will provide efficient detection of population dynamical 
changes. 

3. Method: spatio-temporal mixture model with efficient 
estimation algorithms for dynamical change detection 

In this section, we describe our general pipeline for temporal evo
lution modeling of a population including a distribution change detec
tion, named STMP. Then, we introduce modifications on the Robust EM 
algorithm to escape local maxima characterized by “overlapping clus
ters”. Finally, we detail another adaptation of the EM algorithm in order 
to constrain the estimation of GMM parameters. This enables to propose 
a close estimation of a given distribution, while taking into account new 
samples. The STMP pipeline and the estimation algorithms are generic 
enough to apply on different mixture models by using different esti
mation algorithms. 

3.1. A spatio-temporal mixture process (STMP) with dynamical change 
detection 

We consider that the time period is discretized and the time steps are 
given by t = 1, …, T. At each time step, denote the data vector X(t) =

(X1
(t),…,Xnt

(t)) with Xi
(t) ∈ ℝd. We assume that this data is sampled from 

a statistical time dependent model. We model the data at each time step t 
by a mixture of probability distributions, parametrized by a vector θ(t), 
characterizing the current model M(t). 

At each time t, we observe a new vector X(t), independent of the 
previous one X(t− 1). Given this new sample, we want to evaluate if the 
previous model M(t− 1), defined as a mixture model estimated on X(t− 1), is 
likely to fit the new set X(t). We make the assumption that the distri
bution of the underlying global population does not change over time. 
This is in line with the difficulties related to the use of reference pop
ulations presented in Section 1 and coherent with our targeted appli
cations. We design our model to monitor population evolution over time 
in particular for either short time period of time or longer period of time 
with aggregated data. Thus the model does not require any datasets 
other than the vectors X(t) for each time step t. 

However, as M(t− 1) depends on the data set at time t − 1, it suffers 
from estimation variability, which means that the true model is likely 
close to but not equal to M(t− 1). To deal with this uncertainty, we esti
mate a constrained model (or candidate model) M′ to fit X(t) where M′ is 
an adjustment of M(t− 1), given by θ′ close to θ(t− 1). Through this adap
tation of M(t− 1), we indirectly keep track of the estimated model at 
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previous time. However if at time t the data set X(t) is sampled from a 
very different distribution, M′ should not be able to fit X(t). In this sit
uation, we would like our process to detect this shift in population dy
namic, and propose an alternative model more representative of the new 
data. 

In order to do this, we propose to also estimate an alternative model, 
Ma only from the dataset X(t). We do not make any assumption on a 
previous time step dependence to estimate this model leading to a 
parameter vector θa only driven by X(t). 

With these two estimated models in hands, we are now able to track 
changes of the population distribution, and determine whether there is a 
modification in the population geographical spreading. Our proposed 
warning system is defined as follows. If at time t, the model M′, close to 
M(t− 1), is not adapted to describe X(t), we keep the independent model 
Ma as the new description of the current population and raise an alert. 
The aim is now to define the decision rule to select either model and to 
raise the alert or not as a result. 

A simple way to quantify goodness of fit of a statistical model to the 
data is its likelihood. The likelihoods of estimated mixture models M′

and Ma, given by pθ'(X(t)) and pθa(X(t)) respectively, are used to define a 
decision rule in our process, called the likelihood ratio or Bayes factor. 

As the alternative model is unconstrained, pθa(X(t)) is the maximum 
value of the likelihood of the data without constraint on parameters 
estimation. On the other hand, pθ'(X(t)) is the maximum value of the 
likelihood when the parameters θ′ are restricted to stay in a neigh
bourhood of (t− 1). In the case where the constrained model M′, fits well 
the new data set, the alternative model is likely to be similar and to have 
a similar likelihood. Therefore, the likelihood ratio will be close to one. 
On the other hand, if the new data set is sampled from a very different 
distribution from M(t− 1), then the constrained model will have a likeli
hood that is lower than the alternative model which by design will be 
able to better fit the new point cloud. Therefore, there should be a 
notification when this ratio is far above one. 

Finally, we define the ratio as follows: 

rt(M
′

,Ma) =
pθa
(
X(t) )

pθ'
(
X(t) ) . (5) 

In order to accept or reject the alternative model at time t, we define 
a threshold τ such that if rt(M′,Ma) ≥ τ, the alternative model is selected 
and an alert is raised. The detailed behavior of this likelihood ratio 
depending on the population evolution will be studied in Subsection 4.3. 
In particular, this empirical study allows us to set the threshold τ and 
highlight its properties in particular its low dependence w.r.t the sample 
size. 

With all these elements in hand, our space-time complete pipeline, 
named Space-Time Mixture Process (STMP), executes at each time t the 
following steps:  

1. Estimate models M′ and Ma based on respectively (M(t− 1), X(t)) and 
(X(t)),  

2. Compute likelihood ratio rt(M′,Ma) as in Eq. (5),  
3. If rt(M′,Ma) ≥ τ, raise an alert and set M(t) = Ma. Else set M(t) = M′. 

Note that this pipeline is very versatile with respect to the chosen 
distributions in the mixture model as well as the estimation algorithms 
used in first step. Depending on the dataset, the model is able to handle 
any type of pdfs. 

We now describe the two algorithms that we use to perform the 
candidate and alternative model estimations. 

3.2. The Modified Robust EM algorithm: tackling superimposed clusters 

In Section 2, we have highlighted two weaknesses of the Robust EM 
algorithm by [18]. First, the minimal number of iterations (named pmin) 
before setting β = 0 is too small, which means that the algorithm is 

untimely stopped in its exploration. Then, the algorithm is stuck in local 
maxima as soon as the convergence condition (‖μ(p) − μ(p− 1) ‖< τ where 
τ > 0 is a threshold) is satisfied, which stops the algorithm too early, 
revealing aberrant clusters. These aberrant clusters are superimposed 
clusters, which means that at least two clusters are sharing very similar 
(or exactly equal) parameters values. This corresponds to local maxima 
which can be analyzed only by post-processing the results, and it is 
particularly observable on real and scattered data. 

To avoid this local maximum issue inside the estimation algorithm 
(and avoid post-processing analysis), we propose slight modifications of 
the Robust EM algorithm, by incorporating an online verification step of 
superimposed clusters. We consider that two clusters i and j are super
imposed if 

‖ μi − μj‖2 + ‖ Σi − Σj‖F < ε (6)  

for some small ε > 0, where ‖. ‖2 is the Euclidean norm and ‖. ‖F is the 
Frobenius norm. Note that requiring equality in Eq. (6) is numerically 
too strong and would rarely happen. We check Condition (6) when the 
algorithm has reached the convergence condition (Algorithm 2, line 1). 
As long as there are overlapping clusters we force the estimation to 
continue, as we will see now. 

Inside Algorithm 2, the “stop-competition” part is the moment in the 
algorithm where β = 0 if the component number is stable for at least 100 
iterations and if the actual iteration number p is greater than pmin (Al
gorithm 2, line 2). At that point in the algorithm, if we set β = 0 too 
early, it slows down the competition between clusters, and may prevent 
components from disappearing. If there are no overlapped clusters and 
stability conditions are fulfilled then we set β = 0. Otherwise, we pro
ceed as follows: we first increase pmin by increment of 50 iterations 
(Algorithm 2, line 3). By increasing pmin, the algorithm has more itera
tions to try to annihilate some components. Since increasing pmin 
indefinitely can lead to a “stable” configuration where β adopts a 
cyclical behavior and loops on it, we then check the proximity condition 
(6) again. If Eq. (6) is still true for some clusters, we merge these clusters. 
The weight of the fused clusters is the sum of the weights of the over
lapping ones. The means and covariance matrices being almost equal, 
this fusion of components does not change much the likelihood. This 
makes the algorithm jump to another configuration with almost the 
same likelihood and enables it to explore this new region of interest. 
Other steps of the algorithm stay identical to the original Robust EM, as 
presented in Subsection 2.3. The full modified Robust EM algorithm is 
summarized in Algorithm 2. 

3.3. The Constrained EM algorithm: former parameter based estimation 

We name Constrained EM (C-EM) a slight variation of original EM 
algorithm [7] where the parameters are restricted to a neighbourhood of 
a given vector of parameters denoted θ0. In particular, we introduce 
constraints on the estimated components proportions (πk)1≤k≤K. More
over, when the cluster means are involved, restrictions are also put on 
these means. The initialization of our C-EM algorithm is given by the 
parameter vector θ0 as well. The idea behind C-EM algorithm is to obtain 
estimated parameters highly driven by the initial parameters vector 
θ0 but updated on data X. Because the parameters of our dynamical 
modeling are estimated empirically, the estimation suffers from the 
uncertainty given by the sampling. This means that the estimated pa
rameters at time t − 1 may not be the perfect description of the data set 
and a new independent sample from the same ground truth distribution 
will lead to a slightly different estimated parameter vector and a slightly 
different likelihood. Therefore, we consider that a newly independent 
estimated mixture and the given estimated one may both come from the 
same ground truth. For this reason, the C-EM enables us to give a chance 
to the previously estimated model to explain the data distribution. 
Otherwise, forcing the comparison of M(t− 1) with Ma will always be in 
favor of Ma. With this parameter dependency, the newly estimated 
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parameters could be incorporated in our temporal process as a time- 
dependent estimate. 

From now on, we propose the details of this algorithm for distribu
tions where the cluster means and covariances are to be estimated. This 
will be the case in our disease progression use case where the model is a 
mixture of Gaussian distributions. We now detail constraints we impose 
on parameter estimations inside an EM-like algorithm to estimate GMM. 
We name π̂c, μ̂c and Σ̂

c 
the constrained proportions, means and 

covariance matrices obtained through the C-EM algorithm. As in the 
original EM algorithm, π̂p and μ̂p vectors are estimated at iteration p of 
C-EM following Eqs. (9) and (10). We then add a third step in the esti
mation algorithm to obtain π̂c and μ̂c. 

The constrains in the C-EM algorithm continuously requires θ0 over 
iterations, the initial parameter vector at p = 0, as we want to restrict the 
parameters estimation. The initial parameter vector contains (πk

0)k, 
(μk

0)k and (Σk
0)k the covariance matrices providing information about 

the anisotropy we allow for the uncertainty on the means parameters to 
adapt locally. Components proportions are probability weights and live 
in [0, 1], so we simply constrain component proportion of cluster k, π̂p

k 
(at iteration p), to vary inside [πk

0 ± 0.1]. This means each proportion 
varies by at most 10%. We also avoid proportions to become null to 
avoid the artificial death of a cluster in the mixture. Constrained mean 
μ̂c

k of the component k at iteration p with the C-EM algorithm is a pro
jection of estimated μ̂p

k on a rectangular space centered on μk
0 and of 

length and width given by ellipse axis of the covariance matrix Σk
0 

(square roots of the eigenvalues of Σk
0). 

These constraints are written here for each iteration p: 
⎧
⎨

⎩

π̂c
k = min

(
max

(
π0

k − 0.1, π̂p
k

)
, π0

k + 0.1
)
,

μ̂c
k = P rect(μ0

k ,Σ
0
k)
(μ̂p

k).
(7) 

Note that the algorithm can converge to final parameters where one 
covariance matrix is singular, reflecting the aim of the algorithm to 
delete one component of the mixture model. In the original EM algo
rithm, implementations usually include a regularisation on the covari
ance matrices, in order to avoid singular ones. As we want to determine 
when the estimated candidate model does not correspond to the data, we 
remove this regularisation from the C-EM algorithm. Therefore, we raise 
an alert when one or more covariance matrices become singular. We add 
this condition as an alert in STMP detailed in Subsection 3.1, before the 
calculation of the ratio rt (Eq. (5)). 

In addition to this, as the covariance matrices are not constrained in 
the C-EM algorithm, we introduce a condition to check these parameters 
a posteriori. From the C-EM algorithm, covariance matrices are freely 
estimated, but they can evolve far away from initial covariances 
matrices Σk

0, thus missing the time link. We introduce an already 
existing similarity measure between final estimated Σ̂

c
k in C-EM and Σk

0 

the initial covariance matrices. We use the cosine similarity, also 
introduced as the correlation matrix distance by [22] on correlation 
matrices. We adopt their formulation and apply it on covariance 
matrices instead of correlation matrices. Bounded between 0 and 1, this 
coefficient measures orthogonality between two matrices and is useful 
to evaluate whether the spatial structure of the clusters have signifi
cantly changed. Low values reflect high similarity while high values 
reflect orthogonality, and so on dissimilarities. As Σ̂

c
k should be similar 

to Σk
0, we only tolerate a value of 0.1 or less, in order to introduce 

flexibility and sampling error tolerance inside STMP. For higher values, 
showing dissimilarities between Σ̂

c
k and Σk

0, we also raise an alert in 
STMP detailed in Subsection 3.1. 

In STMP, θ0 will be the estimated parameter vector from the previous 
time step t − 1 of the pipeline, which corresponds to θ(t− 1). We obtain at 
time t an estimated parameter depending on estimated parameter at 
time t − 1, but allowing some adaptation of the model to the newly 
observed data X(t). Finally, we should not forget that the C-EM is 

constrained by initial parameters θ0, including a fixed number of clusters 
K0. It is not possible in C-EM to merge clusters based on their properties, 
as this would violate the imposed constraints. If the model estimated by 
C-EM is not correctly fitting data X(t), this will be detected inside STMP. 

3.4. Application of the STMP on Gaussian Mixture Models 

To conclude this section, our new process is fully described in Al
gorithm 1, combining the temporal process described in Subsection 3.1 
with the C-EM to estimate M′ (Subsection 3.3), and the modified Robust 
EM to estimate Ma (Subsection 3.2) on GMMs. 

Algorithm 1. The spatio-temporal mixture process (STMP). 

As in the following applications we will only consider geographical 
data, in ℝ2, we use Gaussian Mixture Models to represent these data. The 
GMM parameters are estimated with the presented algorithms, and the 
likelihoods are computed with Eq. (2). Recall that the pseudo-code 1 
shows the STMP with all our propositions, which could be used with 
different mixture models. The adaptation of the estimation algorithms 
may also be used to fit with other distributions. 

4. Experiments on synthetic data 

This section is dedicated to the experimental validations therefore 
focused on synthetic data. First, we present comparisons of our Modified 
Robust EM with other EM-based algorithms and selection criteria. The 
comparisons are conducted on two mixture distributions from existing 
benchmarks. Second, we present all the experiments that are tested on 
our complete pipeline. We study the estimated likelihood ratio for 
different behaviors of the population distribution (characterized by the 
experiments) and the resulting performances of the pipeline. By 
analyzing these performances we can fix a threshold conditioning the 
raise of an alert in all situations. Then, we focus on the validation of 
STMP, given by Algorithm 1. Finally, we also present experiments on the 
number of points n in the data sample, and how it affects each step of 
STMP. 
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4.1. Comparisons of the Modified Robust EM with other EM-based 
algorithms and selection criteria 

We compare here our Modified Robust EM with several EM-based 
methods mentioned in Subsection 1.1.2. First, we run the original EM 
algorithm, which is based on the a priori knowledge of the number of 
clusters. As in practice we do not know the true number of components, 
we estimate several models and select the best one based on either 
Bayesian Information Criterion (BIC) [11] or Integrated Completed 
Likelihood (ICL) [23], two of the most commonly used criteria in model 
selection. Several mixture estimates are therefore obtained by running 
an EM algorithm for a range of values of K from Kmin to Kmax. The 
initialization issue is treated by starting from 10 random small K-means 
runs and then keeping the solution with the highest likelihood as the 
initialization of the EM algorithm. Second, we also compared our 
method with the original Robust EM algorithm (REM) [18] and Fig
ueiredo and Jain's method [15] (called FJ method from here). The FJ 
method requires to fix an initial number of clusters Kinitial. Originally 
Kinitial was “far from the true number of components” but not too high 
(around Kinitial = 30 in several experiments of [15]), but in order to 
approach the behavior of the Robust EM and Modified Robust EM we use 
Kinitial = n. The methods are computed on 100 different data sets 
generated for each of the defined mixture distributions. The methods are 
then compared based on their capacity to estimate the correct number of 
components and when this number is correct, to estimate the parameters 
of the mixture models. They are also compared in terms of the compu
tational cost given by the number of iterations, as iterations times are of 
the same order. 

First, we compare the different methods on their ability to estimate 
the correct number of components. From a first mixture given by Fig. 1a 
(with n = 400 points), REM was 95% successful in identifying the four 
components, close to the 99% of our method, against 51% for the FJ 
algorithm and 63 and 61% for EM-BIC and EM-ICL respectively. From a 
second mixture given by Fig. 1b (with n = 400 points), all methods had 
more difficulty in identifying the four clusters. EM-BIC and EM-ICL were 
the most performant with 52 and 54% of successful estimation of the 
number of components, against 46% for our method MREM, and then 
37% for the REM and 36 for the FJ method. 

Then, we compare the estimated parameter precision over runs with 
successful component estimation. For each of the two defined mixtures, 
we computed the relative distance between the true and the estimated 
parameters. From these mean relative errors (Tables 1 and 2), all the 
values are of the same range. It appears that FJ method, EM-BIC and EM- 
ICL have slightly lower errors than REM and MREM on the first mixture 
(Fig. 1a), but slightly higher errors than REM and MREM on the second 
mixture. This shows the importance of capturing the correct number of 
clusters, which is the goal of our algorithm. However, this implies for 
model selection criteria to have an average guess of the data heteroge
neity and to run the estimation algorithm for each of the possible 
number of components and for several initializations each time. 

Finally, we compare the mean number of iterations for executions 
with each mixture distribution. The mean number of iterations on first 
and second mixture is respectively of 83 and 137 iterations for REM, 
against 95 and 185 for our method, 170 and 222 for BIC/ICL which used 
Kmin = 2 and Kmax = 6, and 730 and 711 for FJ method. The number of 
iterations is slightly higher with our method than the REM one because 
we put a “soft” condition on convergence to stop the algorithm. The 
number of iterations is very high for the FJ method because of the initial 
number of components, which is high here. But it was originally fixed to 
a lower number by the authors of [15], and needed to be fixed 
arbitrarily. 

Note that we have provided a narrow range of values including the 
correct one for model selection criteria with BIC and ICL. The EM al
gorithm failed with higher number of components as the algorithm 
tended to remove one cluster by cancelling its proportion and degen
erating the covariance matrix. Our Modified Robust EM shows no loss of 

Fig. 1. Two Gaussian mixtures defined in [15,18].  

Table 1 
Mean (standard deviation) relative errors for the estimates parameters of GMM 
within dataset from Fig. 1a. The absolute-value norm is used for proportions, the 
Euclidean norm is used for means, and the Frobenius norm for covariances.   

REM FJ EM-BIC EM-ICL MREM 

π̂0 0.0851 
(0.0547) 

0.0670 
(0.0460) 

0.0683 
(0.0465) 

0.0683 
(0.0465) 

0.0870 
(0.0615) 

π̂1 0.0988 
(0.0740) 

0.0678 
(0.0513) 

0.0667 
(0.0514) 

0.0667 
(0.0514) 

0.0990 
(0.0737) 

π̂2 0.0937 
(0.0719) 

0.0741 
(0.0660) 

0.0742 
(0.0654) 

0.0742 
(0.0654) 

0.0935 
(0.0724) 

π̂3 0.0888 
(0.0749) 

0.0680 
(0.0689) 

0.0681 
(0.0682) 

0.0681 
(0.0682) 

0.0894 
(0.0731) 

μ̂0 0.0305 
(0.0230) 

0.0250 
(0.0206) 

0.0248 
(0.0205) 

0.0248 
(0.0205) 

0.0308 
(0.0231) 

μ̂1 0.0167 
(0.0111) 

0.0186 
(0.0120) 

0.0185 
(0.0119) 

0.0185 
(0.0119) 

0.0187 
(0.0129) 

μ̂2 0.0116 
(0.0082) 

0.0121 
(0.0078) 

0.0122 
(0.0078) 

0.0122 
(0.0078) 

0.0115 
(0.0082) 

μ̂3 0.0187 
(0.0122) 

0.0207 
(0.0123) 

0.0210 
(0.0123) 

0.0210 
(0.0123) 

0.0169 
(0.0104) 

Σ̂0 0.1052 
(0.0737) 

0.1030 
(0.0799) 

0.1030 
(0.0792) 

0.1030 
(0.0792) 

0.1062 
(0.0734) 

Σ̂1 0.7164 
(0.5245) 

0.4811 
(0.5133) 

0.4730 
(0.5117) 

0.4730 
(0.5117 

0.6087 
(0.5353) 

Σ̂2 0.1121 
(0.0777) 

0.1075 
(0.0725) 

0.1071 
(0.0719) 

0.1071 
(0.0719) 

0.1128 
(0.0786) 

Σ̂3 1.0568 
(0.8288) 

0.7403 
(0.8096) 

0.7275 
(0.8070) 

0.7275 
(0.8070) 

0.9110 
(0.8541) 

Bold numbers are superior results. 
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performances compared to the Robust EM on synthetic data, and solves 
Robust EM problems on real data as we will see later. 

4.2. Description of the experimental setups to calibrate STMP 

All the experiments are done on a two time steps configuration (only 
t = 0 and t = 1). We consider the following situation where we have a 
Gaussian mixture distribution with three clusters at initial time (t = 0). 
One cluster is isolated on the far right hand side of the x = axis (first 
dimension), and the two others are on the left hand side of the x-axis. 
This is the basic structure that all initial distributions (at t = 0) will 
follow. Different positions of left hand side clusters are represented in 
Fig. 3, for Setup F. (Far.), Setup M. (Moderate.) and Setup C. (Close.). 

From this initial Gaussian mixture, various changes are done at time 
t = 1 considering: 

• (Case I.): no evolution at t = 1, clusters are properly distinct (cor
responds to Setup F. at t = 0 and t = 1).  

• (Case II.): the emergence of one new cluster leading to a distribution 
with four clusters at time t = 1.  

• (Case III.): the disappearance of one cluster among the existing three 
initially present.  

• (Case IV.): the movement of one initial cluster, which corresponds to 
moving centers and changing proportions and covariances.  

• (Case V. and Case VI.): no evolution at t = 1, as Case I., but here the 
two left hand side clusters are slightly interfering (Setup M.) for Case 
V., and finally these two clusters are very closed and barely identi
fiable without enough samples (Setup C.) for Case VI.  

• (Case VII. to Case IX.): from initial Setup F. or Setup M. at t = 0, there 
is a spatial convergence of the two left hand side clusters, charac
terized by Setup M. or C. at t = 1. 

We denote Ktrue
(0) the number of components in the mixture distri

bution at t = 0, Ktrue
(1) in the mixture distribution at t = 1. A case is 

finally characterized by its mixture parameters at t = 0 and at t = 1 and 
we represent all cases in Table 9. In addition, Figs. 2 and 3 give a simple 
representation of Cases I. to IV. and of Setup F., M. and C. involved in 
Cases V. to IX. 

Table 2 
Mean (standard deviation) relative errors for the estimates parameters of GMM 
within dataset from Fig. 1b. The absolute-value norm is used for proportions, the 
Euclidean norm is used for means, and the Frobenius norm for covariances.   

REM FJ EM-BIC EM-ICL MREM 

π̂0 0.1427 
(0.1393) 

0.1665 
(0.1795) 

0.1645 
(0.1775) 

0.1645 
(0.1775) 

0.1430 
(0.1605) 

π̂1 0.1281 
(0.1399) 

0.1650 
(0.1694) 

0.1628 
(0.1676) 

0.1628 
(0.1676) 

0.1472 
(0.1452) 

π̂2 0.0405 
(0.0364) 

0.0709 
(0.0501) 

0.0704 
(0.0495) 

0.0704 
(0.0495) 

0.0600 
(0.0479) 

π̂3 0.1477 
(0.0991) 

0.1461 
(0.1053) 

0.1468 
(0.1040) 

0.1468 
(0.1040) 

0.1268 
(0.030) 

μ̂0 0.0761 
(0.1174) 

0.0669 
(0.1720) 

0.0661 
(0.1697) 

0.0661 
(0.1697) 

0.0391 
(0.0236) 

μ̂1 0.0368 
(0.0265) 

0.0455 
(0.0356) 

0.0458 
(0.0351) 

0.0458 
(0.0351) 

0.0650 
(0.1150) 

μ̂2 0.0589 
(0.0325) 

0.0603 
(0.0224) 

0.0626 
(0.0261) 

0.0626 
(0.0261) 

0.0561 
(0.0300) 

μ̂3 0.0117 
(0.0071) 

0.0141 
(0.0063) 

0.0140 
(0.0063) 

0.0140 
(0.0063) 

0.0121 
(0.0067) 

Σ̂0 3.7634 
(2.1204) 

1.9392 
(2.4028) 

1.8895 
(2.3888) 

1.8895 
(2.3888) 

1.4402 
(2.019) 

Σ̂1 0.7021 
(0.3135) 

0.4211 
(0.3314) 

0.4139 
(0.3297) 

0.4139 
(0.3297) 

0.3611 
(0.3156) 

Σ̂2 0.1213 
(0.0611) 

0.1253 
(0.0620) 

0.1277 
(0.0627) 

0.1277 
(0.0627) 

0.1102 
(0.0469) 

Σ̂3 0.3597 
(0.1584) 

0.3640 
(0.1616) 

0.3582 
(0.1631) 

0.3582 
(0.1631) 

0.3460 
(0.1855) 

Bold numbers are superior results. 
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We obtain Gaussian mixture distributions with parameters (0) and 
θ(1) from described cases. For each case I. to IX., given the two distri
butions, we can sample n0 = n1 = n points, which form our data sets X(0) 

and X(1). The sampling step, for any of the cases presented above, is 
executed S times and followed by execution of our STMP on each set of 
sampled data. It produces S different resulting processes, for each 
experiment (see Table 9). This enables us to analyze the behavior of 
STMP and likelihood ratio across runs and evolution cases. 

4.3. Estimation of the alert threshold in STMP 

As motivated in Subsection 3.1, the likelihood ratio is a good indi
cator of how well the alternative model Ma at time t is fitting data X(t) 

against the model M′. In case of no evolution of the distribution from t =
0 to t = 1, both Ma and M′ should fit the data correctly, leading to a 
likelihood ratio around one. Of course, as said previously, due to the 
sampling of the distribution, it cannot be equal to one exactly. Thus the 
goal of the following study is to introduce an empirical threshold of 
adequacy, over which the alternative model Ma is definitely considered 
as the best model explaining current data and an alert is raised. With all 
the experiments above, we study the behavior of our STMP according to 

the alert threshold τ involved in Algorithm 1. It is important to fix this 
threshold in order to raise meaningful alerts and reach a correct 
performance. 

As said previously, we run S sampling steps for each case distribu
tions, here fixed to S = 100 runs. We obtain S pairs of datasets (X(0), 
X(1)). For each pair we compute the theoretical likelihood ratio 

r*
1

(
M(0) ,M(1) ) =

pθ1
(
X(1) )

pθ0
(
X(1) ),

implying the true parameters of models M(0) and M(1). This provides a 
“theoretical” value of r, only depending on the observation sets. We then 
account for the number of wrong alerts, depending on the value of the 
likelihood ratio threshold τ. Fig. 4 presents this behavior, with one curve 
by case explained in Subsection 4.2. As the dataset X(1) is sampled from 
the truth model M(1), the theoretical likelihood ratio should be almost 
one modulo the variability of the data if M(0) = M(1). In contrary, this 
theoretical ratio should quickly diverge from one if X(1) is not corre
sponding to the model M(0). This explains that we obtain 100% of correct 
alerts on the majority of the case experiments (Fig. 4), as the computed 
theoretical likelihood ratios are really higher than tested values of the 

Fig. 3. Gaussian mixture distributions for Setups F., M. and C. involved in Cases presented in Table 9 with an example of sampled data sets. Blue crosses correspond 
to μk and ellipses to covariance matrices Σk. Orange points are samples. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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threshold. The cases which are critical for the choice of the threshold are 
Case VII. and Case IX (Fig. 4). They imply slight differences of the dis
tributions between t = 0 and t = 1, so the theoretical likelihood ratio 
values stay relatively close to one. Therefore correct alerts are not raised 
for a threshold over about 1.06 when considering experiments with 
datasets of size n = 400 points (Fig. 4a) for these two cases. With n = 100 
points, we clearly see that theoretical likelihood ratios are globally 
lower. For a same value of the threshold the number of false negative 
alerts increases (Fig. 4b). This provides us an intuition on the level of 
variations that our model can detect. 

While the best possible performance would be obtained with a 
threshold at 1.05 (Fig. 4a) if we only consider theoretical ratios results, 
the study of the threshold involving the estimated models M′ and Ma is 
less optimal. The computation of the likelihood ratio in the complete 
pipeline implies uncertainty on sampled data and on estimated param
eters θ′ and θa. This estimated ratio is defined by Eq. (5) between M′ and 
Ma at t = 1. We study the performance of the pipeline with these esti
mated ratios values, by accounting for the number of wrong alerts over 
S = 100 runs as before. The corresponding results, with these estimated 
likelihood ratios, are given in Fig. 5. In Table 10 we retrieve the number 
of alerts per case for different threshold values and for different dataset 
sizes. For Case I., Case V. and Case VI., the population distribution is the 

same at t = 0 and t = 1, but Ma and M′ are not estimated by the same 
algorithm, and the likelihood ratios are depending on the sampled data. 
However, the model M′ should still be accepted as the two mixture 
distributions are very close. From Fig. 5, we observe that a threshold of 
1.0 is not appropriate, as a high number of alerts is raised for these cases, 
where we should have zero alert. Increasing the threshold allows for 
model and data variability to be taken into account, and avoid false 
positive alerts. 

On the other hand, if we set a too high threshold τ, there is a risk of 
not detecting all important changes. We clearly see for Cases II., III., IV., 
and VIII. that the number of true positive alerts is affected by a too high 
threshold. If we go above τ = 1.2 we see an important decrease for Case 
IV., and later for the Cases II. and III., Case VIII., which corresponds to a 
move from Setup F. to Setup C. is affected earlier by the likelihood ratio 
threshold, as the proximity of two clusters (Fig. 3c) affects the estima
tion of mixture parameters and so on the likelihood ratio. It leads us to 
set a threshold relatively closed to one. As on the theoretical likelihood 
ratio study, we observe here that slight movements corresponding to 
Case VII. and Case IX. lead to incorrect alerts for a threshold over one. 
The estimated likelihood ratio values stay relatively close to one because 
the model M′ can adapt to data X(1). The evolving distributions are not 
detected. 

Therefore when applied to a specific problem, one has to know that 
the relocation of one cluster may be detected if it relates to the variance 
of the estimated clusters. Otherwise, these displacements may be 
considered as normal variability of the discretization of the distribu
tions. Note that this alert criterion may be adapted given a specific 
problem with the constrains that are imposed to the candidate model. 
Finally, we see from analysis of the theoretical ratios and the estimated 
ratios that we need to make a compromise. The optimistic theoretical 
likelihood ratios would lead us to take a threshold very close to one. But 
the obtained values with the estimated models contain more uncertainty 
that we cannot ignore and require to select a larger threshold. To obtain 
good performances of our pipeline we fix the threshold to τ = 1.1. We 
obtain a balance between false negative and false positive alerts, that we 
want to maintain as low as possible, considering all possible situations. 

4.4. Performances of STMP on synthetic data 

4.4.1. Performances of the Modified REM algorithm within STMP 
We present here results of the estimation of GMM parameters with 

the Modified Robust EM algorithm at t = 0 and t = 1 in STMP experi
ments on synthetic data. All experimental frameworks described in 

Fig. 4. For each Case is presented the number of false alerts (positive or 
negative) on theoretical likelihood ratios, over S = 100 runs according to the 
considered threshold τ. The filled black vertical line is the final selected 
threshold. Note that except for Cases IX. and VII. the other curves are super
imposed for a threshold superior to one. 

Fig. 5. For each Case is presented the number of false alerts (positive or 
negative) depending on estimated likelihood ratios given by (5), over S = 100 
runs according to the considered threshold τ. Datasets are of size n = 400. 
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Subsection 4.2 are tested, with n0 = n1 = n = 400 points. 
For each run of each experiment, we check if the number of esti

mated clusters at t = 0 or t = 1 with Modified REM is correct. We report 
the correctly estimated K rates in Table 3. We consider that our STMP 

correctly estimates K over time if and only if K̂
(0)

= K(0)
true and K̂

a
= K(1)

true, 

with K̂
(0)

and K̂
a 

estimated by Modified Robust EM at t = 0 and t = 1 
respectively. In brief, the correctly estimated K number is given by the 

intersection of correctly estimated K̂
(0)

and K̂
a
. 

Cases I. to IV. give high rates, explained by the correct separation of 
the clusters as seen in Fig. 2. On experiments with configurations 
bringing closer two clusters (Cases V. to IX.), we obtain high rate (over 
90%) for static and well-enough separated clusters (Setup F., Setup M.). 
This score is also high for displacement from Setup F. to Setup M. (Case 
VII.). 

When we consider moving clusters which are getting too close this 
score decreases. The global score of STMP executions involving at least 
one Setup C. distribution is affected by the superposition of two clusters. 
The correct proportions are not bigger than 54%. By looking at esti

mated K̂
(0)

and K̂
a 

in Table 3, the Modified REM algorithm estimates at 

least 30 over 100 times two classes with samples from Setup C. distri
bution. Although these estimates are incorrect, they lead to under
standable results, as samples from the two left hand side clusters can be 
confused (see Fig. 3c). An example of wrong estimated parameters for 
Setup C. is presented in Fig. 6a, which confirms the interpretability of 
the results. 

Thereafter, we compute estimation errors for means and covariances 
matrices on experiments with correctly estimated number of compo
nents K (see Table 4). It confirms that these estimated Gaussian mixtures 
are correctly estimated by the Modified Robust EM inside our pipeline 
STMP. We also notice a poorer average estimate of GMM parameters for 
datasets from Setup C. As said previously, this parametrization implies 
that two clusters are mixed up. Estimates of Setup C. models present a 
slightly higher average Euclidean distance between the true means and 
the estimated ones. For covariance matrices errors, computed with 
Frobenius norm, the average errors are less contrasted, but we observe 
the highest error for Ma estimate in Case VIII. (two clusters are closed to 
each other at t = 1). 

4.4.2. Performances of STMP as an alert system 
We have defined in the previous subsection the threshold to alert the 

user that there may be a population dynamical change between two 
given time points. As explained in Subsection 3.3, there is also an alert 
when a component tries to disappear (leading to degenerated covariance 
matrix) when estimated by the C-EM. And when covariance matrices 
estimated by the C-EM are too different from the previous step ones. 
With these warning systems, we defined a whole pipeline, named STMP, 
to monitor the dynamic of the population and raise alerts when 
reasonable changes occur. We are now demonstrating the performances 
of STMP. Using an alert threshold of τ = 1.1, we obtain the following 
alert rates, that we can retrieve in the Fig. 5. For Case I., Case V. and Case 
VI. we obtain 98% true negative alerts respectively. For Cases II. to IV. 
we obtain a true positive alert rate of 100%, detecting all changes in 
population distribution with our STMP. 

STMP does not raise an alert when the distributions differ barely in 

Table 3 
Proportion of correctly estimated number of components among S = 100 runs. 

At each execution, the estimation is correct iff: K̂
a
= K(1)

true and K̂
(0)

= K(0)
true. 

Configurations are described in Table 9.  

Experiment Proportion of right estimated number of components (% for K̂
(0)

= 2 
and K̂

a
= 2) 

Case I. 96% 
Case II. 98% 
Case III. 100% 
Case IV. 100% 
Case V. 92% 
Case VI. 42% (30%, 32%) 
Case VII. 99% 
Case VIII. 54% (0%, 34%) 
Case IX. 54% (0%, 37%)  

Fig. 6. An estimated GMM with K̂ = 2 ∕= Ktrue = 3 for a Setup C. distribution. 
The centers and covariances are represented in green. Orange points are sam
ples. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Table 4 
Mean (standard deviation) relative errors (expressed as a percentage) for the 
estimated means and covariance matrices within each case, over all runs having 
correctly estimated K̂ inside STMP. The Euclidean norm is used for means, and 
the Frobenius norm for covariances.  

Case M(0) Ma 

μ̂ Σ̂ μ̂ Σ̂ 

Case I. 1.5 (0.8) 15.4 (7.1) 1.5 (0.9) 14.3 (6.8) 
Case II. 1.5 (0.9) 14.4 (7.3) 1.7 (0.9) 16.4 (6.7) 
Case III. 1.6 (0.9) 14.3 (6.9) 1.2 (0.7) 11.0 (4.8) 
Case IV. 1.5 (0.8) 14.0 (6.7) 1.5 (0.8) 13.6 (5.8) 
Case V. 1.7 (1.2) 16.6 (12.2) 1.7 (0.9) 15.6 (7.8) 
Case VI. 4.2 (16.6) 22.8 (22.0) 3.2 (3.8) 23.6 (25.5) 
Case VII. 1.5 (0.9) 14.8 (6.6) 1.6 (1.0) 15.8 (7.8) 
Case VIII. 1.5 (0.9) 14.3 (8.2) 3.7 (4.6) 29.0 (30.3) 
Case IX. 1.7 (1.0) 16.2 (8.5) 2.9 (3.7) 24.8 (29.9)  

Table 5 
Average (and standard deviation) computation time of the different case ex
periments, with n0 = n1 = 400 points.  

Experiment Average computation time over S = 100 runs (std) 

Case I. 1.24 s (0.19) 
Case II. 1.14 s (0.18) 
Case III. 1.55 s (0.50) 
Case IV. 1.35 s (0.41) 
Case V. 1.33 s (0.14) 
Case VI. 1.45 s (0.32) 
Case VII. 1.23 s (0.10) 
Case VIII. 1.31 s (0.27) 
Case IX. 1.35 s (0.20)  
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time. This is due to our likelihood ratio threshold fixed to τ = 1.1. The 
true positive number of alerts is of 2% for Case VII. and 1% for Case IX. 
In contrary, the bigger movement in Case VIII. leads to a true positive 
number of 29%. This brings us to the problem that STMP cannot raise an 
alert when GMM are hard to estimate correctly, as here. This experiment 
involves the Setup C., which is complex to estimate for EM algorithms. 

Last but not least, our proposed method is computationally efficient 
with a very low computational time. All experiments on datasets of size 
n = 400 are performed with an average execution time of 1.33 s. We 
recover average execution time by case type in Table 5. Fast execution 
was also a criterion leading the construction of our method, and satis
fying for our future applications. 

4.4.3. Effects of the data set size on STMP 
In previous explained experiments on synthetic data, we fixed the 

data set size to n = 400. Afterwards, we study the impact of the number 
of points for Cases I. to IX. described previously, with n ∈ {100, 200, 
400}. With the same true distributions as in Figs. 2 and 3, we perform S 
= 100 runs of our process with data samples of size n = 200 and n = 100 
at each time step. 

As expected, decreasing n decreases the proportion of good estimated 
K̂ over the 100 runs and inherently the quality of estimation of pa
rameters K (Table 6). For n = 200 points and cases with Gaussian 
clusters not too close to each other the Modified Robust EM algorithm 
gives a high rate of correct estimation of K. For Cases I. to V. and Case 
VII., the rates are between 76% and 92%, allowing us to be confident in 
the estimates. For cases implying the Setup C. the estimated GMM are 
worse, because two true Gaussians are almost overlapping. With n =
100, it becomes complicated to properly estimate a GMM even with well 
defined clusters: the best alert rate is 61% and the worst is 8%. There
fore, we must be aware that decrease the number of samples decreases 
the proportion of good estimated K̂ and inherently the quality of esti
mation of parameters θ in our Modified Robust EM. But overall, the 
STMP performance is less affected than the Modified Robust EM by 
changes of data sets size (Table 10). As we saw in Subsection 4.4.2, we 
reach 98% true negative alerts for data sets of size n = 400. For data sets 
of size n = 200 we have 19 false positive alerts, and for n = 100 we have 
56 false positive alerts. For Cases II. to IV. the proportion of success is 
100% for all n values (Table 10). It even raises more alerts with fewer 
points on Case VII. to Case IX., due to overlapping Gaussian components 
which are estimated as one single component. For example if a t = 1 we 

are in Setup C. (Fig 3c), as two Gaussians components are hardly sepa
rable the pipeline will estimated one cluster for the two components, 
and raise an alert as it is evolving away from the estimated distribution 
at t = 0 (which could be Setup F. or M.). 

Even if the Modified Robust EM becomes less accurate with smaller 
data sets, our pipeline still produces interpretable and meaningful re
sults. The problem of decreasing performance on small dataset estima
tion should be solved directly on the Modified Robust EM. 

5. Application of STMP on a real life use case 

In this section we demonstrate the relevance of STMP with GMM on 
real epidemiological data from COVID-19 in Paris, France. 

5.1. Presentation of the data set 

AP-HP (Assistance Publique-Hopitaux de Paris) is the largest hospital 
entity in Europe with 39 hospitals (22,474 beds) mainly located in the 
greater Paris area with 1.5 M hospitalizations per year (10% of all 
hospitalizations in France). Since 2014, the AP-HP has deployed an 
analytics platform based on a clinical data repository, aggregating day- 
to-day clinical data from 8.8 million patients captured by clinical da
tabases. An “EDS-COVID” database stemmed from this initiative. The 
AP-HP COVID database retrieved electronic health records from all AP- 
HP facilities and aggregated them into a clinical data warehouse. The 
clinical data warehouse allows for a large set of data to be retrieved in 
real time to deeply characterize hospitalized patients, including their 
residential address. New patients who tested positive by polymerase 
chain reaction (PCR) as being infected by SARS-CoV-2 from the 24th of 
February to the 10th of May 2020 (weeks 9 to 19), in one of the AP-HP 
hospitals and living in Paris constitute the dataset for this study. During 
this time period, tests availability outside public hospital facilities were 
very limited, and therefore we can consider in this study that this sample 
constitutes a representative sample of patients having been positively 
tested during this period. To preserve privacy, residential addresses 
were extracted at the IRIS level, which is a geographical division in 
France of residential units of 2000 inhabitants on average. 

For each patient we have two pieces of information: the week they 
were diagnosed positive, and their place of residence at the IRIS level. 
We therefore use a week as a time step t in our process. Beginning from 
the first week (week 9), which corresponds to the beginning of the 
pandemic in France, we apply our STMP, keeping at each time t one of 
the models Ma or M′ according to the criterion defined in Subsection 3.1 
with threshold τ given in Section 4. We have 5621 positive diagnosed 

Table 6 
Proportion of right estimated number of components among S = 100 runs. At 

each execution, the estimation is correct iff: K̂
a
= K(1) and K̂

(0)
= K(0).  

Experiment Proportions of right 
estimated number of 
components with n 
= 400 

Proportions of right 
estimated number of 
components with n 
= 200 

Proportions of right 
estimated number of 
components with n 
= 100 

Case I. 96% 90% 61% 
Case II. 98% 87% 46% 
Case III. 100% 92% 61% 
Case IV. 100% 87% 59% 
Case V. 92% 76% 42% 
Case VI. 42% 20% 8% 
Case VII. 99% 81% 51% 
Case VIII. 54% 29% 22% 
Case IX. 54% 34% 29% 

Bold numbers are superior results. 

Table 7 
Distribution of positive diagnosed people to COVID-19 over weeks.  

Week Number of positive diagnosed people per week  

9  5  
10  18  
11  272  
12  965  
13  1666  
14  1297  
15  695  
16  366  
17  209  
18  114  
19  14  
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patients over all weeks and all Paris IRIS areas. Table 7 informs us that 
the number of cases per week is not homogeneous, as in first weeks, few 
cases living in Paris were detected. 

5.2. Comparison of the Robust EM and the Modified Robust EM on the 
real data set 

As described in Section 3.2, Robust EM [18] has a convergence 
problem, revealed on real data sets. Even if it is dynamic, it can be stuck 
in an incorrect local maximum involving overlapping clusters. This 
phenomenon has been detected on the real dataset of COVID-19 positive 
cases in Paris area. We compare here the estimated GMMs by original 
Robust EM and by our Modified REM, which is correcting this over
lapping effect (Subsection 3.2). 

On all weeks except week 13, the Robust EM presents no overlapping 
clusters. It returns acceptable estimated mixture models. As there are no 
abnormalities in the estimation process, our Modified Robust EM returns 
similar results. It is illustrated by Fig. 7a and b showing estimations on 
week 12 for both algorithms. On week 13, the Robust EM algorithm 
presents overlapping clusters. The final number of classes is 11, but the 
Fig. 7c shows us that there are only nine clusters. We can only detect 
superimposed clusters by doing a post-processing analysis, which con
sists of checking the estimated parameters. Table 11 gives these esti
mated parameters for both the Robust EM [18] and the Modified REM. 
From this table we see that there are two pairs of superimposed clusters 
with mixture estimation by Robust EM. By executing our Modified REM 
on the same week, independently of the other time steps, we obtain nine 
clusters (Fig. 7d and Table 11), confirming that if we merge redundant 
clusters, we obtain a stable solution, accepted by the algorithm. Our 
Modified REM solves the problem of superimposed clusters. This avoids 
having to consider post-processing inside STMP, which would require a 
user action at each time step. It also allows us to solve a specific problem: 
to correctly model COVID-19 data in space and time. 

5.3. Results 

The aim here is to underline presence or absence of temporal con
stancy in COVID-19 data. A temporal constancy would suggest that the 
population distribution was stable at the peak of the pandemic. This is in 
line with epidemiological studies that where showing a “peak” around 
these weeks after the first propagation phase (weeks 9 to 12) (see weekly 
reports of Public Health Institution [24] Page.7 Fig. 8). 

We use the fixed alert threshold τ = 1.1 in our pipeline, as estimated 
by previous experiments in Section 4. On the first week (week 9), as the 
number of cases is very low, the initial Modified Robust EM converges 
towards the removal of all clusters. The final parameters correspond 
here to the initial ones, so we observe on Fig. 8a initial high variances 
and that each case is its proper cluster. The week 10 is still presenting a 
low number of scattered cases, which are modeled by two global clus
ters, geographically distributed on both sides of the river Seine. As from 
week 10 to week 11 (and week 11 to week 12) the number of cases is 
highly increasing, the model accepts new estimated parameters θa. Our 

STMP reveals that the GMM estimated on week 12 with K̂
(12)

= 10 was 
accepted on 13th and 14th weeks. For reference, week 12 represents the 
beginning of the lockdown and week 13 represents the peak of the 
pandemic, in terms of new positive cases. This means that C-EM 
executed across 13th and 14th weeks fits very well the new data set each 
week with a source model estimated on week 12. Even if the number of 
cases changes over time, STMP is able to detect a constant distribution. 
This is consistent with the patients' distribution on weeks 12, 13 and 14 

as we can see on Figs. 8 and 9. On week 15, STMP rejects the hypothesis 
that the patients' data set is approximated by the mixture law estimated 
on previous weeks. The alternative model Ma is accepted. Parameters 
θ(15) on week 15 are newly estimated, evolving too far from θ(14), esti
mated parameters of week 14. It can be interpreted as the strong 
decrease of new positive cases such as the disappearance of large clusters 
from previous weeks and the detection of large and global clusters, 
corroborated by the Fig. 9a. On week 16, these three clusters from week 
15, large and non-informative, are accepted by STMP. On the following 
weeks (weeks 17, 18 and 19), the number of cases is still decreasing. As 
on first weeks, the small number of cases leads to accept totally new 
estimated parameters θa each week, without link with previous weeks. 

From Table 8, the likelihood ratio values are globally distant from 
our defined threshold τ = 1.1, leaving no doubt about the choice of best 
parameters θ(t) at each time step t. Only on week 15 the likelihood ratio 
value is smaller that our defined threshold while the temporal- 
dependent model M′ is rejected. This rejection is due to large varia
tions in the covariance matrices during the C-EM stage. The model M′

fits the new data set by excessively moving the covariance parameters 
herited from M(14). There is no likelihood ratio value in the last week. 
This ratio is incalculable due to the “empty class phenomenon”. The 
model M′ tries to remove a component which leads to an early stop of the 
estimation process of this model. This triggers the inevitable choice of 
the alternative model and raises an alert. 

From the mathematical and algorithmic point of view we obtain 
interesting results, showing that C-EM can over time sufficiently model 
evolving real-world data with a relatively stable and high dataset size. 

5.4. Interpretations 

The results obtained with STMP on this COVID-19 data set are 
coherent with public health policy and COVID-19 transmission patterns 
during this time period. Lockdown in France took place from the 17th of 
March (beginning of week 12) to the 1st of June. As it takes about two 
weeks to go from contamination to cytokine storm, no evolution in 
clusters was expected from week 12 to 14. Thereafter a decrease in the 
number of clusters was expected, associated with a moving distribution. 
Moreover, estimated clusters concentrate closed to Paris periphery, 
which are low-income neighbourhoods, known to favor COVID-19 
transmission. The reject on week 15 of the previous time step model 
can be interpreted as the effect of the lockdown, and we can observe the 
natural barrier formed by the Seine, as people in France could only move 

Table 8 
Results of our process on positive diagnosed people in AP-HP hospitals with a 
time step being a week.  

Week Estimated 
number of 
classes K̂ by Ma 

Estimated 
number of 
classes K̂ by M′

Likelihood ratio r Accepted 
model  

9  5 None None M(0)  

10  2 5 1.383 Ma  

11  4 2 1.376 Ma  

12  10 4 1.171 Ma  

13  9 10 1.088 M′

14  5 10 0.950 M′

15  3 10 0.87 Ma  

16  5 3 1.080 M′

17  4 3 1.307 Ma  

18  9 4 2.215 Ma  

19  3 9 Computationally 
invalid 

Ma 

Bold numbers are superior results. 
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in a perimeter of 1 km during this lockdown. The numerous clusters 
during week 18 are residual clusters not solved by the lockdown. They 
mainly correspond to concentrated positive cases areas, whereas in the 
rest of the city there are few and scattered cases. 

6. Conclusion 

We have proposed a complete and generic pipeline for modeling 
evolution of population distribution, and detecting abnormal changes in 
this distribution. This STMP was combined with new EM algorithm 
variants. Our application on public health data shows that this STMP 
models population distributions well, and raises meaningful alerts. 

The STMP for monitoring population distributions and the algo
rithms to estimate the models are two independent objects. This enables 
future directions of our work when integrating covariates following non- 
Gaussian distributions in the mixture. We will still be able to use our 
proposed algorithms as they are blind to the distributions in the mixture. 

On the other hand, the performance of the EM algorithms depends on 
the data set sizes. In future work we will try to introduce a temperature 
parameter in the Modified Robust EM as proposed by [25] to improve 
estimations in unstable situations. 

Finally, the decision rule was empirically fixed in this work. In future 
work this decision rule will be modeled as an acceptation probability, 
taking advantage of Monte Carlo Markov Chains theory. 
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Appendix A 

A.1. Equations for mixture parameters estimation in the original EM algorithm [7] 

The EM algorithm alternates between the two following steps (until convergence criterion is met). At the pth iteration of the algorithm, the update 
equations are given by:  

• E-step: Compute the conditional expectation of the complete log-likelihood. Latent variables zi
k are discrete, so their conditional expectations are 

given by 

pθ
(
zk

i = 1|xi
)
=

πkN d(xi|μk,Σk)
∑K

j=1
πjN d

(
xi|μj,Σj

)

= τk
i (θ).

(8)    

• M-step: Update the parameter estimates: 

π̂p
k,MLE =

1
n
∑n

i=1
τk

i , (9)  

μ̂p
k,MLE =

∑n
i=1τk

i xi
∑n

i=1τk
i
, (10)  

Σ̂
p
k,MLE =

∑n
i=1τk

i (xi − μi)
Τ
(xi − μi)∑n

i=1τk
i

. (11)  

A.2. Pseudo-Code of the Modified Robust EM presented in Section 3 

Algorithm 2. Modified Robust EM. 
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A.3. Supplementary analyses of Section 4  

Table 9 

Different cases of data distributions changes from one time point to the next one (here only considering t = 0 and t = 1). Note that Σ0 =

(
1. 0.
0. 1.5

)

.  

Study case 
reference 

Description at 
t = 0 

Description at t =
1 

Number of 
clusters 
Ktrue

(0) 

Number of 
clusters 
Ktrue

(1) 

Parameters at t = 0 Parameters at t = 1 

Case I. Setup F. Same 
distributions 
(Setup F.)  

3  3 π1 = 0.5, π2 = π3 = 0.25, μ1 =

(− 8, − 3.5), μ2 = (− 8,3.5), μ3 =

(8,0), Σ1 = Σ2 = Σ3 = Σ0 

π1 = 0.5, π2 = π3 = 0.25, μ1 = (− 8, − 3.5), μ2 =

(− 8,3.5), μ3 = (8,0), Σ1 = Σ2 = Σ3 = Σ0 

Case II. Setup F. Emergence of a 
cluster  

3  4 π1 = 0.5, π2 = π3 = 0.25, μ1 =

(− 8, − 3.5), μ2 = (− 8,3.5), μ3 =

(8,0), Σ1 = Σ2 = Σ3 = Σ0 

π1 = π2 = π3 = π4 = 0.25, μ1 = (− 8, − 3.5), μ2 =

(− 8,3.5), μ3 = (8,0), μ4 = (− 2.45,6.57), Σ1 = Σ2 =

Σ3 = Σ0,Σ4 =

(
0.88 0.
0. 0.48

)

Case III. Setup F. Vanishing of a 
cluster  

3  2 π1 = 0.5, π2 = π3 = 0.25, μ1 =

(− 8, − 3.5), μ2 = (− 8,3.5), μ3 =

(8,0), Σ1 = Σ2 = Σ3 = Σ0 

π1 = π2 = 0.5,μ1 = (− 8,3.5), μ2 = (8,0),Σ1 = Σ2 = Σ0 

Case IV. Setup F. Changing a 
cluster  

3  3 π1 = 0.5, π2 = π3 = 0.25, μ1 =

(− 8, − 3.5), μ2 = (− 8,3.5), μ3 =

(8,0), Σ1 = Σ2 = Σ3 = Σ0 

π1 = π2 = π3 = 1/3,μ1 = (− 8, − 3.5), μ2 = (− 8,3.5), 
μ3 = (6.09, − 2.71),Σ1 = Σ2 = Σ0,Σ3 =
(

1.36 0.
0. 0.92

)

Case V. Setup M. Setup M.  3  3 π1 = 0.5, π2 = π3 = 0.25, μ1 =

(− 8, − 2.5), μ2 = (− 8,2.5), μ3 =

(8,0), Σ1 = Σ2 = Σ3 = Σ0 

π1 = 0.5, π2 = π3 = 0.25,μ1 = (− 8, − 2.5), μ2 =

(− 8,2.5), μ3 = (8,0), Σ1 = Σ2 = Σ3 = Σ0 

Case VI. Setup C. Setup C.  3  3 π1 = 0.5, π2 = π3 = 0.25,μ1 =

(− 8, − 1.8), μ2 = (− 8,1.8), μ3 =

(8,0),Σ1 = Σ2 = Σ3 = Σ0 

π1 = 0.5, π2 = π3 = 0.25,μ1 = (− 8, − 1.8), μ2 =

(− 8,1.8), μ3 = (8,0),Σ1 = Σ2 = Σ3 = Σ0 

Case VII. Setup F. Setup M.  3  3 π1 = 0.5, π2 = π3 = 0.25, μ1 =

(− 8, − 3.5), μ2 = (− 8,3.5), μ3 =

(8,0), Σ1 = Σ2 = Σ3 = Σ0 

π1 = 0.5, π2 = π3 = 0.25, μ1 = (− 8, − 2.5), μ2 =

(− 8,2.5), μ3 = (8,0), Σ1 = Σ2 = Σ3 = Σ0 

Case VIII. Setup F. Setup C.  3  3 π1 = 0.5, π2 = π3 = 0.25, μ1 =

(− 8, − 3.5), μ2 = (− 8,3.5), μ3 =

(8,0), Σ1 = Σ2 = Σ3 = Σ0 

π1 = 0.5, π2 = π3 = 0.25, μ1 = (− 8, − 1.8), μ2 =

(− 8,1.8), μ3 = (8,0), Σ1 = Σ2 = Σ3 = Σ0 

Case IX. Setup M. Setup C.  3  3 π1 = 0.5, π2 = π3 = 0.25, μ1 =

(− 8, − 2.5), μ2 = (− 8,2.5), μ3 =

(8,0), Σ1 = Σ2 = Σ3 = Σ0 

π1 = 0.5, π2 = π3 = 0.25, μ1 = (− 8, − 1.8), μ2 =

(− 8,1.8), μ3 = (8,0), Σ1 = Σ2 = Σ3 = Σ0   

Table 10 
Number of alerts raised by our STMP for each experiment (S = 100 runs) on data sets of n points. For each size n and each Case is provided the number of alerts for 
different values of the alert threshold.   

Case Case I. Case II. Case III. Case IV. Case V. Case VI. Case VII. Case VIII. Case IX. 

n Threshold 

400  1.00 78% 100% 100% 100% 99% 67% 99% 96% 55%  
1.05 2% 100% 100% 100% 2% 21% 4% 69% 1%  
1.10 2% 100% 100% 100% 2% 2% 2% 29% 1%  
1.15 2% 100% 100% 100% 2% 1% 1% 7% 1%  
1.20 2% 100% 100% 99% 2% 1% 1% 4% 1%  
1.25 2% 100% 100% 92% 2% 1% 1% 4% 1%  
1.30 2% 100% 100% 81% 2% 1% 1% 2% 1%  
1.35 2% 100% 99% 73% 2% 1% 1% 2% 1%  
1.40 2% 100% 98% 72% 2% 1% 1% 2% 1% 

200  1.00 80% 100% 100% 100% 91% 55% 98% 94% 58%  
1.05 19% 100% 100% 100% 22% 38% 27% 71% 26%  
1.10 19% 100% 100% 100% 18% 20% 16% 47% 21%  
1.15 18% 100% 100% 100% 16% 18% 14% 38% 19%  
1.20 17% 100% 100% 96% 13% 17% 14% 30% 19%  
1.25 17% 100% 100% 91% 13% 17% 13% 29% 19%  
1.30 17% 100% 100% 81% 13% 17% 13% 28% 19%  
1.35 17% 100% 99% 75% 13% 17% 13% 26% 19%  
1.40 17% 100% 98% 71% 13% 17% 13% 26% 19% 

100  1.00 78% 100% 100% 100% 89% 74% 96% 96% 84%  
1.05 62% 100% 100% 100% 72% 71% 75% 89% 74%  
1.10 56% 100% 100% 100% 70% 63% 70% 80% 71%  
1.15 56% 100% 100% 100% 69% 54% 70% 77% 67%  
1.20 54% 100% 100% 99% 64% 51% 68% 72% 64%  
1.25 54% 100% 100% 97% 60% 51% 67% 68% 63%  
1.30 53% 100% 100% 93% 60% 51% 64% 67% 63%  
1.35 53% 100% 98% 89% 58% 49% 63% 66% 62%  
1.40 53% 100% 97% 86% 58% 49% 63% 66% 62% 

Bold numbers are superior results. 
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A.4. Results on the COVID-19 data set of Section 5

Fig. 7. Estimated GMM labels and centers by Robust EM [18] and Modified Robust EM on COVID-19 data set on weeks 12 and 13. Green dots are centers of the 
clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)  
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Table 11 
Estimated parameters by Robust EM [18] and modified Robust EM on week 13 of the COVID-19 dataset. These estimations were performed independently of 
previous time steps.  

Parameters Robust EM [18] Modified Robust EM 

π̂ 
(

0.02 0.0355 0.0355 0.0494 0.0494 0.1992
0.0389 0.1049 0.0577 0.3463 0.0631

) (
0.0155 0.0651 0.0932 0.2086 0.0341
0.0896 0.0525 0.3924 0.049

)

μ̂ 
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2.3487 48.8308
2.3646 48.8262
2.3646 48.8262
2.3158 48.8882
2.3158 48.8882
2.3166 48.8404
2.27 48.8502

2.3875 48.8473
2.3836 48.8894
2.3644 48.8782
2.4032 48.867

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2.3486 48.8307
2.3646 48.8262
2.3151 48.8879
2.3174 48.8403
2.2697 48.8499
2.3892 48.8461
2.3841 48.8892
2.3655 48.8775
2.4042 48.8661

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Σ̂ 
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Fig. 8. Estimated Gaussian Mixture Models on COVID-19 dataset per week (weeks 9 to 14).   
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Fig. 9. Estimated Gaussian Mixture Models on COVID-19 dataset per week (weeks 15 to 19).  

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.artmed.2022.102258. 
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[25] Allassonnière Stéphanie, Chevallier Juliette. A New Class of EM Algorithms. 
Escaping Local Minima and Handling Intractable Sampling. June 2019. Preprint. 

S. Pruilh et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190707540883
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190707540883
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190707540883
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190706224294
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190706224294
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190706224294
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190706511439
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190705038516
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190705038516
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190705293421
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190705293421
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190658582636
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190658582636
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190658582636
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190700495274
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190700495274
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190700495274
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190707054928
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190707054928
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190707054928
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190706045085
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190706045085
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190706208586
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190706208586
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190701256756
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190701256756
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190701256756
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190707097137
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190707097137
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190707109559
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190707109559
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190702227988
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190702227988
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190702227988
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190702227988
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190707155185
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190707155185
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190707155185
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190702566070
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190702566070
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190703164089
http://refhub.elsevier.com/S0933-3657(22)00023-9/rf202202190703164089

