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ABSTRACT

Motivation: Although many amino acid substitution matrices have

been developed, it has not been well understood which is the best

for similarity searches, especially for remote homology detection.

Therefore, we collected information related to existing matrices, con-

densed it and derived a novel matrix that can detect more remote

homology than ever.

Results: Using principal component analysis with existing matrices

and benchmarks, we developed a novel matrix, which we designate

as MIQS. The detection performance of MIQS is validated and com-

pared with that of existing general purpose matrices using SSEARCH

with optimized gap penalties for each matrix. Results show that MIQS

is able to detect more remote homology than the existing matrices

on an independent dataset. In addition, the performance of our

developed matrix was superior to that of CS-BLAST, which was a

novel similarity search method with no amino acid matrix. We also

evaluated the alignment quality of matrices and methods, which re-

vealed that MIQS shows higher alignment sensitivity than that with the

existing matrix series and CS-BLAST. Fundamentally, these results are

expected to constitute good proof of the availability and/or importance

of amino acid matrices in sequence analysis. Moreover, with our

developed matrix, sophisticated similarity search methods such as

sequence–profile and profile–profile comparison methods can be im-

proved further.

Availability and implementation: Newly developed matrices and

datasets used for this study are available at http://csas.cbrc.jp/

Ssearch/.
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1 INTRODUCTION

Protein sequence comparison methods are fundamental tools in

contemporary biology. Currently they are used widely in various

fields of bioinformatics such as computational genomics and
proteomics, and computational evolutionary biology. Pairwise

alignment is the basis of protein sequence comparison methods.

Consequently, improving pairwise amino acid sequence compari-

son methods can engender improved quality of studies in the

field of computational biology.

A few factors are necessary to improve pairwise amino acid

sequence comparison methods. Minimum units that govern the
methods consist of comparison algorithms and amino acid sub-

stitution matrices, also called similarity/mutation/scoring matri-

ces. Development and improvement of a matrix are crucial for
improvement of the methods. Many studies have been under-

taken since the first compilation of such matrices (Tomii and
Kanehisa, 1996) and have been developed and improved along

the following three lines. (i) Specific matrices are proteins

with distinctive amino acid compositions. Consequently, it is
reasonable to construct matrices for distinctive protein classes

or proteins encoded in the genome under directional mutation
pressures. For instance, matrices specialized for transmembrane

regions (Muller et al., 2001; Ng et al., 2000) and for �-barrel
membrane proteins (Jimenez-Morales and Liang, 2011;
Jimenez-Morales et al., 2008) have been developed. Matrices

for particular proteins/organisms have also been constructed
(Ali et al., 2012; Brick and Pizzi, 2008; Dimmic et al., 2002;

Kuznetsov, 2011; Lemaitre et al., 2011). Aside from those matri-

ces, a general scheme for the compositional adjustment of matri-
ces has been proposed (Yu et al., 2003). (ii) Optimized matrices:

starting from the existing matrices, some superior matrices have
been derived by maximizing the ability to discriminate between

homologs and non-homologs (Hourai et al., 2004; Kann et al.,

2000; Saigo et al., 2006), and to obtain accurate alignments (Qian
and Goldstein, 2002) with optimization methods. (iii) Context-

dependent matrices: from the pioneering work of constructing
400� 400 doublet-type (¼ dipeptide) substitution matrices

(Gonnet, et al., 1994), several approaches along this line have

been proposed (Crooks et al., 2005; Gambin et al., 2002; Huang
and Bystroff, 2006; Jung and Lee, 2000; Liu and Zhao, 2010).

More recently, a novel similarity search method called
CS-BLAST, which uses information of neighboring residues

extensively to improve similarity search, has been developed

(Biegert and Soding, 2009). In this method, the similarity
search is performed with no amino acid substitution matrix.

CS-BLAST, which is reportedly of high detection performance,
presents the possibility of displacement of a traditional amino

acid substitution matrix (Angermuller et al., 2012; Biegert and

Soding, 2009).
Although many matrices have been proposed, we found pre-

viously that widely used matrices, so-called general purpose

matrices such as PAM (Dayhoff et al., 1978) and BLOSUM

(Henikoff and Henikoff, 1992), have common characteristics in
terms of the results of both hierarchical cluster analysis and

reproduction from amino acid indices, despite the difference in*To whom correspondence should be addressed.
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datasets, methods, and models used for obtaining them (Tomii
and Kanehisa, 1996). This fact might imply the existence of

common ground among general purpose matrices. It is worth
investigating the potential for development. To this end, we ex-

plore effective matrices for identifying distantly related proteins
based on the prevailing matrices. We explored and identified

effective matrice(s) in the PCA subspace through the intensive
benchmark analyses, and inferred the most sensitive matrix. That

matrix, designated as MIQS, with SSEARCH outperforms the
existing matrices and CS-BLAST on an independent dataset, in

terms of sensitivity. We argue that substitution matrices are
useful for amino acid similarity search.

2 METHODS

2.1 Datasets

We used a non-redundant subset of SCOP (1.75 release) (Andreeva et al.,

2008) domain sequences from ASTRAL (Chandonia et al., 2004) for both

training and validation of our method. The subset, SCOP20, consists of

all SCOP domains with 20% maximum pairwise sequence identity and

includes 7074 sequences in total. We divided the sequences randomly into

two sets for training and validation. The resulting sets respectively con-

tain 3537 sequences.

To investigate the effects of dataset for training of our method, we

prepared the other dataset with a higher threshold of sequence identity.

The subset, which we call SCOP40-v, consists of SCOP domain se-

quences, except those included in the validation set above, with 40%

maximum pairwise sequence identity. The resulting set contains 8598

sequences.

Furthermore, we prepared a test set that does not share homologous

sequences with either the training or validation set to ensure the inde-

pendence of the sets. We created the test set based on ever-growing

CATH domain sequences (Sillitoe et al., 2013). We first built a subset,

the CATH20 dataset, which consisted of CATH domains (ver. 3.5.0) with

20% maximum pairwise sequence identity and which included 8203 se-

quences, using the PSI-CD-HIT program of CD-HIT (ver. 4.6.1) package

(Fu et al., 2012). Then, we obtained the test set, called CATH20-SCOP

(1754 sequences), by excluding sequences related to entries in SCOP, ac-

cording to SCOP/CATHmapping (Lewis et al., 2013). Coordinate files of

CATH domains for alignment quality evaluation were generated from

corresponding PDB files using makedomains.perl (ver. 1.1) developed by

Dr Martin (http://www.bioinf.org.uk/faqs/cath/).

To perform principal component analysis (PCA; see below), we used

nine existing substitution matrices, in 1/3-bit units, of the three series, i.e.

original BLOSUM, VTML (Muller et al., 2002) and matrices developed

by Benner et al. (1994). For brevity, we designate the last ones as BCG

below. BCG1, BCG2 and BCG3 correspond to a matrix collected in

6.4–8.7, 22–29 and 74–100 PAM, respectively. The BLOSUM and

BCG series are major members of the cluster containing matrices that

are widely used in sequence alignments (Tomii and Kanehisa, 1996).

To ascertain whether a BLOSUM-type matrix performs well, we

derived the BLOSUM20 matrix, which we called BLOP20, using the

training set from SCOP20, and tested it. To construct BLOP20, we

used the scripts provided by (Lemaitre et al., 2011).

2.2 Derivation of matrices from the PCA subspace

The substitution matrix processed in this study is symmetric, and it

consists of 210 elements. Therefore, the PCA was performed with the

variance–covariance matrix of the nine 210-dimensional vectors as an

input. Our aim is to explore and to identify sensitive region(s) to identify

distantly related proteins in the PCA subspace, and to deduce and obtain

the most sensitive matrix. To this end, in the PCA subspace, matrices

derived from points around the existing matrices, which perform better

among the nine matrices with the training set, were sampled and exam-

ined. We can produce systematically arbitrary matrices based on principal

component scores (¼ coordinate as (s1, s2, s3) in the PCA subspace) as

follows:

M ¼ lþ
X3

i¼1

siU
T
i ð1Þ

Therein, Ui
T represents the transpose of eigenvector PCi; si represents the

coordinate on the PCi axis (i¼ 1, 2, 3). Furthermore, M represents a

novel matrix; l represents the mean of nine matrices used for PCA.

Then, elements in M are rounded off to the nearest integer values.

We used Kernel Density Estimation (KDE) to infer and confine the

most sensitive region in the 3D PCA subspace based on the results of

benchmarks for sampled matrices. At the KDE execution, we treated a

value of ROC50 (see below) as a density at each grid point sampled in the

PCA subspace. Both PCA and KDE were conducted using R ver. 2.15.0

(R Development Core Team, 2012).

2.3 Gap penalty optimization and sensitivity benchmark of

existing and derived matrices

To assess the sensitivity of both existing and derived matrices, we used

SSEARCH (ver. 36.3.5) (Pearson, 1991) to conduct all-against-all se-

quence comparison of datasets. The SSEARCH results were sorted ac-

cording to their statistical significance (E-value), with the most significant

hits on top. Each hit is labeled as true or false positive, otherwise un-

known. Above the threshold(s), we defined hits from the same superfam-

ily with a query in SCOP (or the same homologous superfamily in CATH)

as true positives, and defined hits from the different fold with a query in

SCOP (or different topology in CATH) as false positives. Hits from the

different superfamily (homologous superfamily), but from the same fold

(topology), were classified as neither a true nor a false positive, but were

classified as unknown because it is difficult to determine whether such hits

are homologous or not.

With the training set from SCOP20, we tested all possible combin-

ations of open gap penalty from �13 to �9 at 1 interval, and �2 and

�1 as an extension gap penalty for each matrix. For each matrix and each

combination of open and extension gap penalties, ROC50 (see below) was

calculated. Then the best (optimized) combination of open and extension

gap penalties and the best ROC50 value for each matrix was used for the

subsequent analyses, i.e. for evaluation and for obtaining the most sen-

sitive matrix. The best combination of the open and extension gap pen-

alty and the corresponding ROC50 value for the existing nine matrices is

shown in Table 1.

2.4 Evaluation

Detection sensitivity and selectivity were measured using the receiver-

operating characteristic (ROC) curve (Gribskov and Robinson, 1996).

In this curve, the number of true positives is shown against the number

of false positives with an arbitrary threshold of E-value. To compare and

evaluate the performance of matrices (and also methods), ROC50 was

used as in previous reports (Lee et al., 2008; Schaffer et al., 2001). The

ROC score is defined as the normalized area under the ROC curve;

therefore, ROC50 is the normalized area under the ROC curve up to

the first 50 false positives, as

ROC50 ¼
1

50T

X50

i¼1

ti ð2Þ

In this equation, T represents the total number of true positives in each

dataset; ti represents the number of true positives up to i-th false positive.

To observe the performance per query, we use ROC5. The percentage of
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all test queries that yield larger ROC5 than a given value is shown against

the given value.

Furthermore, to evaluate the detection performance differences be-

tween methods statistically, we conducted the bootstrap analysis using

the script provided in a report of an earlier study (Green and Brenner,

2002).

We also evaluated alignment quality: the alignment sensitivity and

precision of matrices and methods. To assess the alignment quality, we

compared sequence alignments with the structural alignments generated

by Fr-TM-align (Pandit and Skolnick, 2008), which allows flexible align-

ments, and DaliLite (ver. 3.3) (Holm et al., 2008) as reference alignments.

The alignment sensitivity, the ratio of correctly aligned residue pairs to

structurally equivalent residue pairs, is defined as (N\S)/S, where N is the

number of residue pairs in the sequence alignment and S is the number of

ones in the reference alignment. The alignment precision is the ratio of

correctly aligned pairs to aligned pairs and is defined as (N\S)/N. First,

we randomly selected a maximum of 10 domain pairs from each family in

the CATH20-SCOP test set and structurally aligned each pair with

Fr-TM-align and DaliLite. Among the obtained alignments, those with

TM-scores40.6 for Fr-TM-align and those with Z-scores42 for DaliLite

were used as reference alignments, respectively. Results show that refer-

ence alignments of 345 pairs from 433 different protein domains were

obtained using Fr-TM-align and those of 588 pairs from 670 different

domains were obtained using DaliLite. Then, the average alignment sen-

sitivity and precision were computed respectively, and were binned by

pairwise sequence identity in the reference alignment.

In evaluation of both detection sensitivity and alignment quality, we

performed SSEARCH with the nine and obtained matrices, and also

performed, with both default and optimized parameter set, SSEARCH,

blastpgp (Altschul et al., 1997) and the latest version of CS-BLAST with

the K4000.crf library (Angermuller et al., 2012). We used the –s option to

enhance alignment quality by calculating the locally optimal Smith–

Waterman alignments with blastpgp and CS-BLAST.

3 RESULTS

3.1 The PCA subspace

We performed principal component analysis (PCA) from three

series of prevailing substitution matrices, i.e. BLOSUM, VTML

and BCG, to uncover a region with higher sensitivity in the PCA

subspace. In this study, we used three matrices for each type, i.e.

nine matrices in total. Results showed that the first three com-

ponents are dominant ones to represent the total variance of the

nine matrices. The first three components of PCA described

�92.7% of the total variation. The first (PC1), second (PC2)

and third (PC3) components described 61.1, 18.9 and 12.7%,

respectively. Other components were responsible for 3.4% or

less. Therefore, most necessary factors of the matrices are re-

tained in this subspace consisting of the first three components.

These three components can sufficiently explain the relation

among the matrices.

In this subspace, we found substantial linearity between PC1

and the divergence of matrices for both the BLOSUM and

VTML series. For BLOSUM, as the clustering threshold is

decreased, their scores (¼ coordinate values) on PC1 are

decreased. Higher-numbered VTML matrices have lower coord-

inate values of PC1. In fact, eigenvectors of diagonal elements

are along PC1 (Supplementary Fig. S1). The divergence of BCG

matrices is related mainly to PC2 instead of PC1. As the set of

sequences used for constructing matrices is diverged, their coord-

inate values of PC2 are decreased.

3.2 Derivation of the most sensitive matrix

3.2.1 Grid search To identify a region with high sensitivity in
the PCA subspace, the points around the existing sensitive matri-

ces for the training set were sampled based on the results pre-

sented in Table 1. Among the existing matrices, BCG3,

VTML200 and VTML250 are more sensitive than others in

terms of ROC50. In this study, points from �14 to 4, from

�14 to 2 and from �18 to 2 at two intervals were sampled for

PC1, PC2 and PC3 axes, respectively. They amounted to 990

(¼ 10� 9� 11) samples (Fig. 1A). Matrices were calculated

from PCA coordinates of those sampling points (see Section

2). For every matrix sampled in the PCA subspace, we assessed

the detection sensitivity in the same manner, using SSEARCH

and optimized gap penalties, as existing matrices with the

training set. The best ROC50 value for each matrix was used

for the subsequent analysis. According to the result of the grid

search, a matrix derived from (PC1, PC2, PC3)¼ (�6, �6, �6)

demonstrated the best performance (ROC50¼ 0.0386).

Correspondingly, we also identified the most sensitive point

with the SCOP40-v subset as the training set.

3.2.2 KDE and refinement To elucidate the most sensitive point
(¼ matrix) in the PCA subspace, we performed Kernel Density

Estimation (KDE) based on the results of the grid search above.

As a density, we used the best ROC50 value at each point, as

described above. According to the result by KDE (Fig. 1B), the

most densely populated, i.e. most sensitive point, was identified

as (PC1, PC2, PC3)¼ (�4.57, �7.14, �6.57). Subsequently, we

conducted grid search again to scrutinize matrices derived from

around this point. We sampled and tested points (¼ matrices

derived) from �5.5 to �4, from �8 to �6.5 and from �7.5 to

�6 at 0.5 intervals for PC1, PC2 and PC3 axes, respectively. As a

result of this grid search, a matrix derived from (PC1, PC2,

PC3)¼ (�5.5, �8, �6.5) showed the best performance

(ROC50¼ 0.0395), with gap penalties of �10 for open and �2

for extension, in terms of ROC50. We refer to this matrix as a

Matrix to Improve Quality in Similarity search (MIQS).

Correspondingly, we also identified the most sensitive matrix

and gap penalties for the SCOP40-v subset. We refer to this as

MIQS.SCOP40-v.

Table 1. Optimized gap penalties and benchmark results with the training

dataset of the existing nine matrices

Matrix Gap penalty ROC50

BCG1 (�11, �2) 0.0249

BCG2 (�12, �1) 0.0293

BCG3 (�12, �1) 0.0358

BLOSUM80 (�13, �1) 0.0254

BLOSUM62 (�9, �2) 0.0299

BLOSUM45 (�13, �1) 0.0288

VTML160 (�10, �2) 0.0338

VTML200 (�9, �2) 0.0361

VTML250 (�12, �1) 0.0359

Note: Optimized open and extension penalties are shown in parentheses.
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3.3 Obtained matrix: MIQS

The obtained matrix was located between the VTML series and

the BLOSUM series on the PC1–PC2 plane and at the lower
than most of the existing matrices on the PC3 axis
(Supplementary Fig. S1). According to relative entropy, our

best matrix, MIQS (0.3004), is more diverse than BLOSUM62
(0.6979), even when compared with BLOSUM45 (0.3795). This

might be expected because MIQS was derived using a diverse set
of proteins with 20% maximum pairwise sequence identity,
although the relative entropy of MIQS is slightly higher than

that of BLOSUM40 (0.2851). As presented in Figure 2 (and
Supplementary Fig. S2), diagonal elements, except for Gly, of

the best matrix are smaller, from �1 to �4, than those of the
popular matrix, BLOSUM62. By contrast, most off-diagonal
elements of MIQS are larger, from 1 to 4, than those of

BLOSUM62, although some off-diagonal elements of MIQS
are smaller, from �1 to �3, than those of BLOSUM62.

Notably, values for amino acid pair associated with Trp, such
as W–C, W–Q and W–E pairs, are reduced in MIQS. Those
differences remind us of the observation that chemical character-

istics of amino acids are influential at high divergence (Benner
et al., 1994). On biplots, the W–C pair is far from 0 associated

with PC1, PC2 and PC3, and W–Q and W–E pairs show extre-
mal positions associated with PC3, reflecting the high variance in
these mismatch scores between MIQS and BLOSUM

(Supplementary Fig. S1).

3.4 Performance of obtained matrix

We evaluated both the detection performance and alignment
quality of nine existing matrices, MIQS, MIQS.SCOP40-v and

BLOP20 with their optimized gap penalties for the training set
from SCOP20 using SSEARCH. For comparison with standard

methods, we measured the performance of SSEARCH, blastpgp
and CS-BLAST with both the default parameter set and the
optimized gap penalties for the training set from SCOP20 in

the same manner as that described above.

3.4.1 Detection sensitivity When we measure the detection per-

formance using ROC50 with the validation set, as depicted in

Figure 3A, a matrix that showed the best detection performance

among the existing nine matrices was VTML200, which was

identical to a result with the training set. In contrast, the detec-

tion performance of our novel matrix indicated ROC50 of 0.0347,

which was higher than that of VTML200 by �10.4%, and which

was almost identical to that of CS-BLAST. MIQS and

MIQS.SCOP40-v showed almost identical detection sensitivity.

However, ROC50 of BLOP20 was 0.0281 and it was inferior to

MIQS by �23.7%. When compared by the superfamily-weighted

ROC50, the performance of MIQS was also higher than that of

Fig. 1. PCA subspace constructed with the nine existing matrices and the result of grid search. The red, green and blue lines represent BCG, BLOSUM

and VTML series, respectively. On the red line, each point represents BCG1, BCG2 and BCG3 in descending order of PC2 coordinate. On the green line,

each point represents BLOSUM45, BLOSUM62 and BLOSUM80 in ascending order of PC1 coordinate. On the blue line, each point represents

VTML250, VTML200 and VTML160 in ascending order of PC1 coordinate. (A) The 990 generated points for the detection performance benchmark. (B)

Contour plot of the estimated density (¼ sensitivity). The color box on right side represents a kernel density corresponding to the detection performance.

The cross-sectional view, which is parallel to the PC1-PC3 plane, passing through around the highest point is shown

Fig. 2. Comparison between obtained matrix and BLOSUM62. The ob-

tained matrix (lower) and difference matrix (upper) obtained by subtract-

ing BLOSUM62 from the obtained matrix are shown
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VTML200, by �5.1%, and was almost identical to that of CS-

BLAST (Fig. 3B).
Inconsistencies in SCOP classification have been noted. For

example, the authors of CS-BLAST argue that SCOP has no

well-classified superfamilies or folds. Then they avoid judging

pairs as true or false within the four- to eight-bladed �-propellers
(SCOP fold IDs: b.66�b.70), Rossman-like folds (c.2�c.5, c.30,

c.66, c.78, c.79, c.111) and �-helical and 4Fe-4S ferredoxins

(a.1.2, d.58.1). The detection performance of MIQS exceeded

that of the nine existing matrices and was lower than that of

CS-BLAST by �5.8% if followed by the standard with super-

family weighting. Similarly, the performance of MIQS exceeded

that of the existing matrices and was lower than that of CS-

BLAST by �11.4%, when we used the ruleset for SCOP 1.61

benchmarks (Gough et al., 2001).

Furthermore, we evaluated the detection performance of the

matrices and methods against another test dataset, CATH20-

SCOP, to ensure the independence of the dataset from the

training set (Fig. 3C). Results show that, if compared by

ROC50, a matrix of the best performance detection among the

existing matrices was also VTML200, whereas MIQS was

slightly better than VTML200. When compared by the homolo-

gous superfamily-weighted ROC50, the performance of MIQS

was higher than that of VTML200 by �2.9% and was higher

than that of CS-BLAST by �12.0%. In this case, the CS-BLAST

performance was degraded drastically, partly because CS-

BLAST can detect many homologies from a few, rather than

from various, superfamilies (see below).
We also compared ROC5 for search results of individual query

(Fig. 3D). In this figure, the percentage of queries that exceeds an

ROC5 value is shown against the horizontal axis. This figure

demonstrates how effective the testing method is in actual use

because the ROC5 analysis evaluates the detection performance

of the testing method when very few false positives are detected:

the number of false positives is five in this case. As depicted in

Figure 3D, the fraction of queries of MIQS was the highest over

Fig. 3. Detection performance of developed matrix. (A) A comparison of ROC50 value of the developed matrix and other existing matrices and other

methods. (B) ROC curve of the developed matrix and other matrices and methods on the SCOP20 validation set. The purple and bold line represents the

developed matrix. The number of true positive relation detected was weighted by the number of superfamily. (C) ROC curve on the CATH20-SCOP

dataset. (D) ROC5 curve on SCOP20 validation set. In SSEARCH, blastpgp, and CS-BLAST, (def.), present the result with the default gap penalties,

and (opt.) shows the one with gap penalties optimized on the training set from SCOP20. BLOSUM50 is used for SSEARCH (def.) and (opt.), and

BLOSUM62 is used for blastpgp (def.) and (opt)
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the entire range of ROC5 value among all tested matrices and

methods: MIQS showed the highest performance for both easy

problems (larger ROC5 on horizontal axis) and difficult prob-

lems (smaller ROC5 on horizontal axis).
Furthermore, enhanced evaluation supports our observation.

When we perform the bootstrap analysis (Green and Brenner,

2002), at Error Per Query (EPQ)¼ 0.0285, which corresponds to

50 false positives in ROC curve, we observed that SSEARCH

with MIQS was significantly better than CS-BLAST for the

CATH20-SCOP dataset, although we were unable to find a

significant difference between SSEARCH with MIQS and

CS-BLAST for the SCOP20 validation dataset at

EPQ¼ 0.0141, which corresponds to 50 false positives in ROC

curve (Supplementary Fig. S3). The same results were observed

at EPQ¼ 0.01 in both cases.
We compared the number of true positive relations detected at

the number of false positives as 50 with MIQS and the other

matrices and methods. In addition to this, we compared the

number of true positive superfamilies detected with MIQS and

the other matrices and methods. Comparison results are por-

trayed in Figure 4 as Venn diagrams. The number of true posi-

tives detected with MIQS was compared with that of VTML200

(Fig. 4A) and CS-BLAST (Fig. 4B). The number of true positive

superfamilies detected by MIQS was also compared with that of

VTML200 and that of CS-BLAST. Regarding true positive re-

lations, MIQS was able to detect more unique true relations than

VTML200 did, but less than CS-BLAST did. However, MIQS

detected the same number of superfamilies as VTML200

(Fig. 4C) did, but more superfamilies than CS-BLAST did

(Fig. 4D). These results indicate that, compared with

VTML200, MIQS can detect more sequences from various dif-

ferent homologous relations. Compared with CS-BLAST, MIQS

can detect various sequences from various different homologous

relations.

3.4.2 Alignment quality The alignment quality is assessed using
two standard measures: alignment sensitivity and precision, as

described in Section 2.4. We compared sequence alignments with

the structural alignments generated by Fr-TM-align (Fig. 5A and

B) and DaliLite (Fig. 5C and D). Although, compared with the
case with DaliLite, greater values of both sensitivity and preci-
sion, except for the quite low (5–10%) range of sequence identity,

were observed using Fr-TM-align, which allows flexible align-
ments, for all matrices and methods, overall trends were pre-
served in both cases. Figure 5A and C shows the alignment

sensitivity, and Figure 5B and D shows precision for various
sequence identity bins in reference alignments. Regarding align-
ment sensitivity, in both cases, MIQS and BLOP20 showed com-

parable performance with the best one, VTML250, over almost
the entire range of sequence identities in this test. In terms of
alignment precision, MIQS.SCOP40-v and CS-BLAST are

superior to other matrices and methods in the entire range.
Generally, a tradeoff exists between sensitivity and precision.

In terms of alignment sensitivity, SSEARCH with sensitive

matrices is better than BLAST-based methods, partly because
the BLAST algorithm including CS-BLAST, and also

SSEARCH with MIQS.SCOP40-v, tends to generate shorter
alignment (Supplementary Fig. S4). Instead, the performance
of shorter alignment groups such as BLAST-based methods

and SSEARCH with MIQS.SCOP40-v is exceeded in alignment
precision comparison. In terms of both alignment sensitivity and
precision, MIQS is balanced compared with existing matrix

series, which tended to produce longer alignments, i.e. better
sensitivity, with more diverged ones, and which tended to gener-
ate shorter alignments, i.e. better precision, with less diverged

ones. Similar results were obtained when reference alignment
was generated from SCOP20 validation dataset instead of
CATH20-SCOP test dataset (Supplementary Fig. S5).

4 DISCUSSION

In this study, based on a previous finding, we empirically identi-
fied a region in the PCA subspace that represents a set of matri-
ces that are suitable for detecting distantly related proteins, by

combining benchmarks and PCA of the nine existing matrices
from BCG, BLOSUM and VTML series. This approach differs
from conventional approaches used to obtain optimized matri-

ces. Consequently, we were able to provide a novel and highly
sensitive substitution matrix, which we call MIQS, for distantly
related protein sequence comparison. We were able to find that

the MIQS performance with SSEARCH is superior to the
sophisticated approach, CS-BLAST, in terms of detection sensi-

tivity on an independent dataset, although CS-BLAST is clearly
superior to other methods when we consider inconsistencies in
the SCOP classification. This finding is expected to have a major

influence on any field of protein sequence analysis that uses a
substitution matrix, such as multiple alignment, profile–profile
alignment and phylogeny inference.

We constructed the PCA subspace with the first three PC axes.
It was thought to be sufficient for these three axes to present a
relation among the existing matrices because the accumulative

contribution of these axes reached �93% of total variance. It
was able to reproduce the existing matrices from the coordinate
of the PCA subspace. We found relations between PC1 and the

divergence of matrices, and between PC2 and the divergence of
the set of sequences used for constructing matrices. We speculate
that a relation exists between PC3 and the datasets, models and

methods used for constructing matrices. These observations

Fig. 4. Venn diagrams for the number of true positive relations and

superfamilies detected. Comparison of true positive relations (A and B)

and superfamilies (C and D) detected between the developed matrix and

VTML200 and CS-BLAST
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might imply that our projection to the PCA subspace was used to

‘de-noise’ data of amino acid substitutions, and that one can

obtain an arbitrary general purpose matrix using the PCA sub-

space without computing actual amino acid substitutions.

Associated with PC3, some mismatch pairs related to rare

amino acids, such as Trp and Cys, were far from 0

(Supplementary Fig. S1). This apparently implies that PC3 has

a role in adjusting the variation result from low background

frequency of rare amino acids. Using our approach, one might

also develop an amino acid matrix that is suitable for specific

purpose such as a transmembrane matrix, i.e. an AT-biased

matrix.
Our developed matrix, MIQS, exhibited extremely high-

detection performance. In the ROC5 curve, which is an analytical

method suitable for actual sequence similarity search, MIQS

showed the best detection performance over the entire range of

ROC5 values. We learned different characteristics of CS-BLAST

from matrix-based methods. CS-BLAST can detect many true

positive relations from the confined superfamily group, rather

than from various superfamilies, as shown in the Venn diagrams

(Fig. 4). For instance, CS-BLAST can detect a huge number

of true positive relations within the c.37.1 (P-loop containing

nucleoside triphosphate hydrolases) superfamily in SCOP.

As described in Section 3, for the CATH20-SCOP test set, the

performance of CS-BLAST was degraded drastically. These re-

sults suggest that CS-BLAST might be overfitted to the SCOP

dataset or to some confined superfamilies/homologous superfami-

lies when its parameters were trained. However, according to the

result portrayed in Figure 4B, combining CS-BLAST and con-

ventional search with matrices including our developed one for

similarity search is expected to be beneficial. In general, detecting

the relations within larger superfamilies is more difficult, as

pointed out in an earlier study (Green and Brenner, 2002). It is

noteworthy that CS-BLAST is �2-fold faster than SSEARCH

when we search query sequences against a large database, here

NCBI NR, although CS-BLAST takes time when we perform

all-against-all sequence comparison (Supplementary Fig. S6).
The detection performance of a method is not necessarily pro-

portional to the quality of sequence alignment (Vingron and

Waterman, 1994). In the evaluation of alignment quality with

Fig. 5. Alignment quality of matrices and methods. Alignment sensitivity, defined as (N\S)/S, of the developed matrix, MIQS, and other matrices and

methods. Here, N denotes the number of residue pairs in an alignment and S denotes the number of residue pairs in a reference alignment. Therefore,

sensitivity measures the fraction of correctly aligned residue pairs in the sequence alignment. Alignment precision, defined as (N\S)/N, of the developed

matrix and other matrices and methods. Precision measures the fraction of correctly reproduced alignment compared with the reference alignment.

Reference alignments were generated, respectively, using Fr-TM-align (A and B) and DaliLite (C and D)
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DaliLite, our approach is not the best, but it is well balanced and

comparable to the best method(s). Another example shows that

MIQS is of good alignment quality. Yu et al. performed com-

positional adjustment of amino acid substitution matrices for

better alignment quality. They compared an alignment calculated

using their composition-adjusted matrix and the original

BLOSUM62 matrix in their report. We also aligned the same

sequences they used and obtained a similar, though longer, align-

ment as they did without compositional adjustment (Supplemen-

tary Fig. S7). In addition, results obtained using POP (Edgar,

2009) show that MIQS (and BLOP20) is suitable for pairwise

global protein alignments, although we used the Smith–Water-

man local alignment method to derive MIQS (Supplementary

Fig. S8). This result suggests that multiple alignment methods

can be improved using MIQS.
The recently developed innovative method, CS-BLAST, does

not require the use of any substitution matrix for similarity

search. However, as shown in this study, the availability and

importance of amino acid substitution matrices have remained.

Our novel matrix, MIQS, can be useful for improving the per-

formance of existing methods easily. In addition, strictly speak-

ing, CS-BLAST actually requires an amino acid matrix to

construct its context library. Moreover, MIQS might be useful

with other advanced methods, such as profile–profile methods,

to improve their performance. In the future, we will examine

whether our developed matrix, MIQS, can enhance the perform-

ance of these methods.

5 CONCLUSION

We demonstrated in this study that, using the PCA subspace

based on typical existing matrices, we were able to obtain a sen-

sitive novel matrix, MIQS, empirically. Therefore, it is possible

to use it to improve the homology detection of proteins, espe-

cially in the SCOP and CATH database, compared with existing

matrices and CS-BLAST. We argue that MIQS can be useful for

other database searches, and that this matrix can be influential

for the improvement of sophisticated methods, such as PSI-

BLAST and profile–profile comparison methods, in addition to

any method using a substitution matrix in the field of

bioinformatics.
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