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Abstract

Zinc is indispensable to all forms of life as it is an essential component of many different proteins involved in a wide range of
biological processes. Not differently from other metals, zinc in proteins can play different roles that depend on the features
of the metal-binding site. In this work, we describe zinc sites in proteins with known structure by means of three-
dimensional templates that can be automatically extracted from PDB files and consist of the protein structure around the
metal, including the zinc ligands and the residues in close spatial proximity to the ligands. This definition is devised to
intrinsically capture the features of the local protein environment that can affect metal function, and corresponds to what
we call a minimal functional site (MFS). We used MFSs to classify all zinc sites whose structures are available in the PDB and
combined this classification with functional annotation as available in the literature. We classified 77% of zinc sites into ten
clusters, each grouping zinc sites with structures that are highly similar, and an additional 16% into seven pseudo-clusters,
each grouping zinc sites with structures that are only broadly similar. Sites where zinc plays a structural role are
predominant in eight clusters and in two pseudo-clusters, while sites where zinc plays a catalytic role are predominant in
two clusters and in five pseudo-clusters. We also analyzed the amino acid composition of the coordination sphere of zinc as
a function of its role in the protein, highlighting trends and exceptions. In a period when the number of known zinc proteins
is expected to grow further with the increasing awareness of the cellular mechanisms of zinc homeostasis, this classification
represents a valuable basis for structure-function studies of zinc proteins, with broad applications in biochemistry,
molecular pharmacology and de novo protein design.
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Introduction

Zinc is an essential element for living organisms. While this

statement applies to several other metals, the pervasive occurrence

of zinc in biological processes is unique. This mostly results from

the association of zinc with an impressive variety of proteins

involved in a wide range of physiological activities [1,2]. Estimates

of zinc proteomes in various organisms indicated that the amount

of genes encoding zinc proteins varies from 4% to 10% of the

genome and that approximately 3,000 zinc proteins are encoded

in the human genome [3,4]. Zinc enzymes in which zinc plays a

catalytic role are present across all living organisms and constitute

the largest share of prokaryotic zinc proteins. The main reason for

the selection of zinc as a catalytic cofactor lies in its distinctive

chemical properties, which combine Lewis acid strength, lack of

redox reactivity, and fast ligand exchange [5]. As a reflection of the

widespread use and the remarkable versatility of zinc in biological

catalysis, zinc enzymes are present in all six major classes of

enzymes (oxidoreductases, transferases, hydrolases, lyases, isomer-

ases, and ligases) [5,6]. In eukaryotes but not in prokaryotes the

majority of zinc proteins function in the regulation of gene

expression, pointing out that the biological importance of zinc

increased as increasingly complex cellular, and in particular multi-

cellular, systems evolved. Many of these proteins contain one or

more so-called zinc fingers, which are small protein domains

stabilized by a zinc ion playing a structural role [7]. Originally

discovered as DNA-binding motifs, zinc fingers are now known to

mediate protein-RNA and protein-protein interactions [8]. Other

zinc proteins whose importance emerged more recently include

proteins for zinc sensing, transport, buffering, and storage. As the

molecular mechanisms of cellular zinc homeostasis are just

beginning to be elucidated, the number of these proteins and

thus the size of zinc proteomes is likely to be larger than what is

currently realized [9,10].

Given the above considerations, the wealth of studies in which

zinc proteins were analysed appears to be adequate to the ‘‘sphere

of influence’’ of zinc on biological systems. Indeed, the size of this

sphere is so large that even the largest surveys were necessarily

conducted on subsets of zinc proteins, e.g., enzymes [11] or zinc

finger proteins [12]. In many of these studies, attempts were made

to classify zinc sites in proteins and relate their function to

properties such as coordination number and geometry, and the

type of zinc ligands [13–16]. A structural classification of zinc

fingers dating back to 2003 was developed based on the spatial

arrangement of secondary structure elements around the zinc sites

[17].

In this work we propose a new, comprehensive classification of

zinc sites in proteins with known structures. It is the opinion of the

authors that this effort is timely, as an up-to-date classification of

zinc sites appears to be needed at a time when the above-
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mentioned sphere of influence of zinc is possibly going through a

further expansion. This classification is based on the widely

recognized concept that metal sites in proteins are not adequately

described, and thus classified, only on the basis of the metal ligands

(i.e., the metal coordination sphere) [18–20]. Indeed, models of

metal sites in proteins that include only the metal ligands may not

be sufficiently accurate to reproduce biochemical functions. The

surroundings of the coordination sphere must also be taken into

account in order to define what can be thought of as the minimal

environment determining metal function, or the ‘‘minimal

functional site’’ (MFS). The precise definition of MFSs, however,

is not obvious. In our approach we define them by means of three-

dimensional templates that encompass the structure of the protein

matrix around the metal well beyond its coordination sphere, by

including all residues within 5 Å from any metal-binding residue

[21]. This definition is most convenient in that (i) it incorporates

the characteristics of the protein environment that affect metal

function, (ii) it can be implemented in automated routines for

building the templates from PDB structures, and (iii) it allows the

comparison of metal sites via structural alignment, thereby

providing a basis for classification. Specifically, the use of a

distance threshold of 5 Å for building the MFS templates appears

to be an ideal compromise between the need of including all

residues that interact with metal ligands (also accounting for the

various accuracy degrees of PDB structures) and the need of

describing metal sites only in terms of their local structure (i.e.,

without extending too far from the metal at the risk of detecting

similarities that are not relevant to the sites).

Our results indicate that over 77% of zinc sites can be

accounted for in terms of ten structural motifs conserved across

protein superfamilies, and an additional 16% in terms of more

general but also useful structural descriptors. We also analyze and

discuss correlations between the function performed by zinc in a

protein and the structural motif as well as the amino acid residues

used to bind it, thereby providing a valuable reference for future

studies aimed at unveiling the subtleties of the structure-function

relationships in zinc proteins.

Methods

All the available protein structures containing zinc were

downloaded from the Protein Data Bank (PDB) [22] by searching

for entries that contained any of the following non-standard PDB

residues: BAZ, BOZ, DAZ, DOZ, DTZ, HE5, HES, ZEM, ZH3,

ZN, ZN2, ZN3, ZNH, ZNO, and ZO3. At the time of the

download (January 2011), these were all the non-standard PDB

residues containing at least one zinc atom as described in the

Chemical Component Dictionary (http://www.wwpdb.org/ccd.

html). Zinc sites in each structure were identified by taking all the

zinc atoms in the structure, and considering zinc atoms at a

distance of less than 5.0 Å from one another as belonging to the

same site. A structural template was built for each site by

extracting the PDB coordinates of all the zinc atoms in the site, of

the zinc ligands, and of the protein residues in spatial proximity of

the zinc ligands. Specifically, zinc ligands were defined as those

(protein or non-protein) residues having a non-hydrogen atom at a

distance of less than 3.0 Å from any zinc atom in the site, and

spatially proximal residues were defined as those having a non-

hydrogen atom at a distance of less than 5.0 Å from any atom of a

zinc-binding residue. Each of these templates defines a zinc

minimal functional site (MFS).

Zinc sites were grouped based on the CATH [23] (http://www.

cathdb.info, version 3.3) and SCOP [24] (http://scop.mrc-lmb.

cam.ac.uk/scop, release 1.75) classifications of the protein

domains containing the zinc-binding residues of each site.

Specifically, each site was assigned to both a CATH and a SCOP

superfamily, and sites assigned either to the same CATH or to the

same SCOP superfamily were grouped together. The superfamily

level is common to both the CATH (where it corresponds to a

four-digit code) and the SCOP (where it corresponds to a three-

digit code) hierarchical classification schemes, and groups together

similar folds for which there is good evidence of common ancestry.

The sites of proteins that have not yet been included in the CATH

or in the SCOP database were also assigned to an existing CATH

and/or SCOP superfamily or to an ‘‘unclassified’’ superfamily,

using a procedure described in [21]. Zinc sites placed in the same

superfamily were compared against one another in an all-versus-all

fashion using the structural alignment program FAST, and

clustered by single linkage clustering using a threshold similarity

score of 1.5 [21,25]. By this clustering, structurally distinct sites

present in the same protein domain (e.g., the catalytic and the

structural zinc site of alcohol dehydrogenase, PDB code 6adh [26])

were placed into different groups. The relevant literature was

examined to annotate the functions of grouped zinc sites and to

identify non-physiological zinc sites, such as sites in metallopro-

teins where zinc has been substituted for the native metal ion (e.g.,

cytochrome c, PDB code 1m60 [27]), or non-specific sites due to

adventitious binding of zinc to the protein (e.g., acyl carrier

protein, PDB code 1l0h [28]).

A set of representative zinc sites was selected by choosing the

PDB structure in each group with the highest resolution (unless the

highest resolution structure was not appropriate, e.g., due to

engineered mutations of the zinc ligands). This set was used to

analyse the coordination sphere of zinc sites as described in [21].

The coordination geometry of four-coordinated zinc ions in this

set was calculated by FindGeo, an in-house developed tool that

automatically determines the best-fit geometry among a number of

possible ideal geometries. The representative zinc sites were

compared against one another in an all-versus-all fashion using

FAST, and clustered by single linkage clustering using progres-

sively lower threshold similarity scores, corresponding to the 99th,

98th, 97th, 96th, and 95th percentile of all non-zero similarity scores

obtained from FAST (i.e., the score below which 99%, 98%, 97%,

96%, and 95% of all scores fall, respectively). The clusters built

with the 99th percentile threshold were used as the reference set of

clusters, and their composition was compared to that of the

clusters built with lower thresholds with the aim of extending their

coverage. The composition of clusters was then manually refined.

For each cluster, the amino acid sequences of the protein chains

containing the sites in the cluster were aligned using the program

T-Coffee [29].

To countercheck the correctness of the use of a 5.0 Å value as

the distance threshold to build zinc MFS templates, we re-built the

templates of representative zinc sites using other different values

(i.e., 3.0, 4.0, 6.0, 7.0, 8.0, 9.0, and 10.0 Å), and repeated the

above procedure including all-versus-all comparison and cluster-

ing. Each set of clusters built with the 99th percentile threshold was

then compared with the reference set of clusters. The comparison

confirmed that the 5.0 Å value represents an optimal choice for

the size of structural templates, although the 4.0 Å value yields

comparable results (Table S5).

Results and Discussion

Occurrence, physiological relevance and functions of zinc
sites in PDB structures

At the time of the present study, the PDB contained 6170

protein structures having at least one zinc atom (referred to as Zn-
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structures hereafter), for a total of 15763 zinc sites (Zn-sites

hereafter). As described in the Methods section, Zn-sites found in

protein domains that belong to the same superfamily according to

either the CATH or the SCOP classification were grouped

together, and, subsequently, structurally distinct sites present in the

same domain were divided into different groups. We define the

groups formed by this procedure as superfamilies of Zn-sites (Zn-

superfamilies hereafter). As proteins classified in the same CATH

or SCOP superfamily are not only structurally but also

functionally related, Zn-sites included in the same Zn-superfamily

were assumed to have the same general function (i.e., catalytic,

structural, regulatory, or substrate), despite the specific functions of

the proteins that contain them may vary, especially in the largest

CATH and SCOP superfamilies. The general functions of Zn-sites

were assigned by inspection of the available literature. Concur-

rently, non-physiological Zn-sites were identified and discarded,

resulting in the removal of 4832 Zn-sites and 1288 Zn-structures

from the original dataset (a list of the Zn-sites removed is given in

Table S1). This result highlights the importance of considering the

physiological relevance of zinc atoms (and of metal atoms in

general) bound to proteins, as more than 20% of PDB structures

containing zinc are not in fact zinc proteins.

The 10931 physiological Zn-sites (found in a total of 4882 Zn-

structures) that formed our final dataset were grouped into 367

Zn-superfamilies. A summary of the relevant information on Zn-

superfamilies is given in Table S2, and the lists of Zn-sites

belonging to each Zn-superfamily are given in Table S3. The

number of Zn-sites included in a Zn-superfamily is highly variable,

ranging from only one to 758. However, as this number depends

on the redundancy of the PDB, a better measure of the size of a

Zn-superfamily is the number of non-redundant proteins (defined

here as proteins with sequence identity lower than 50%) in which

the Zn-sites of the Zn-superfamily were found. Using this criterion,

the large majority (about 86%) of Zn-superfamilies map to five or

less non-redundant proteins, and only a few (about 7%) map to ten

or more non-redundant proteins (Table S2).

On the basis of literature analysis, 301 Zn-superfamilies could

be assigned one of the four abovementioned general functions

(Table S2 and Figure 1). The most widespread function was

structural (213 cases), followed by catalytic (68 cases), regulatory

(14 cases), and substrate (6 cases). These results come as no

surprise as zinc has been long known to stabilize the tertiary and/

or the quaternary structure of proteins (structural function), and to

occur in the active site of many various enzymes (catalytic

function). On the other hand, the cellular pathways of zinc

homeostasis and of zinc-mediated signalling have only recently

begun to emerge, and a relatively low number of proteins is known

in which zinc acts as a regulatory element (regulatory function) or

zinc is bound to be transported and/or stored (substrate function).

Furthermore, as the latter two functions usually involve a transient

binding of zinc to the protein, such Zn-sites are often elusive to

catch during protein structure determination, which is another

reason for their scarcity in the PDB.

Zinc coordination: trends and exceptions
To have a survey of the modes of zinc coordination found in

proteins, a representative Zn-site was selected for each Zn-

superfamily (Table S2). These sites are most often mononuclear

(about 93% of the cases), with the coordination number of

individual zinc atoms varying from three to seven, and being four

in most cases (about 76%). The coordination geometry of four-

coordinated zinc atoms (as determined automatically from the

structures using an in-house developed tool) is most commonly

tetrahedral (87% of the cases). In the remaining 13% of the cases,

the geometry can be generally viewed as distorted tetrahedral,

although our tool indicated that it can also be described as trigonal

bipyramidal (10%) or square pyramidal (3%) with a vacant

coordination position. Some of these cases may therefore represent

structures where a fifth zinc ligand has been overlooked. In no case

a square planar geometry was observed. When the representative

Zn-sites are examined on a per-function basis, the correlation

between the coordination features of the site and the specific role

that zinc plays in the protein becomes apparent, highlighting the

capability of the protein matrix to modulate metal function

(Figure 2).

In structural sites, zinc is by far most frequently coordinated by

four ligands (94% of the cases), which are all provided by the

protein except for the only cases of human interferon beta (PDB

code 1au1 [30]), hexameric insulin (PDB code 1ev6 [31]), and

Shank SAM domain (PDB code 2f44 [32]), where an exogenous

ligand is also present. Almost all protein ligands in four-coordinate

Figure 1. Pie charts showing the functions of zinc sites in (A)
Zn-superfamilies, and (B) non-redundant zinc proteins (de-
fined as proteins with sequence identity lower than 50%). The
higher proportion of unknown zinc sites and the lower proportion of
catalytic zinc sites in (A) with respect to (B) reflect the fact that Zn-
superfamilies with unknown functions are generally small (consisting on
average of 1.5 non-redundant proteins), whereas those with catalytic
functions are generally larger (consisting on average of 7.5 non-
redundant proteins).
doi:10.1371/journal.pone.0026325.g001
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sites are Cys (80%) and His (19%), the only exceptions being Asp/

Glu and Ser. In more detail, in more than 96% of these sites at

least two of the four protein ligands are Cys, which are generally

preferred to other residues by virtue of their capability to transfer

negative charge to the Zn2+ ion, thus forming stronger bonds [16].

In the few cases (8 out of 213) where a structural zinc ion is

coordinated by more than four ligands, however, Cys are

practically absent, and coordination is accomplished by a mixture

of His and Asp/Glu (which are often bidentate), sometimes

accompanied by backbone N and O atoms and water molecules.

At variance with structural sites, catalytic zinc sites most often

contain at least one exogenous ligand, and display a higher

variability in their coordination. This observation can be traced

back to the mechanism of action of zinc in enzymatic catalysis,

where it is involved in substrate binding and activation, and can

vary coordination number and geometry [5,33]. These variations

are mainly due to changes in the bonds that zinc forms with the

exogenous ligands (e.g., enzyme substrate/product), whereas

protein ligands generally remain unchanged. The number of

protein ligands in catalytic zinc sites is most frequently three (49%

of the cases), followed by four (43%) and five (9%), and the most

common ligands are His (47%) and Asp/Glu (36%), whereas Cys

are relatively rare (13%). In addition, a preference appears to exist

for the Ne2 atom of His to act as the ligand atom rather than Nd1

(the Ne2/Nd1 ratio is about 3.5). This tendency has been

previously noted, and attributed to the stricter steric requirements

imposed by Nd1 ligation with respect to Ne2 [13]. The use of Cys

as a ligand, instead, appears to be linked to the coordination

number of zinc, in that when zinc is bound by more than four

ligands, Cys residues are either only one or absent (a situation that

also occurs in structural sites, as noted above). Furthermore, in the

13 catalytic sites that contain two or more Cys ligands, the

coordination number of zinc does not appear to be higher than

four at any state of the enzymatic reaction. This observation has

been drawn upon the analysis of all the sites included in the

superfamilies of these Zn-sites, which represent all the available

structural information on the various coordination states accessible

to zinc in these enzymes. Out of 261 structures inspected, only two

structures of blasticidin S deaminase (PDB codes 1wn6 and 2z3i,

the latter being a single mutant of the former), which have been

determined within the same study, show a five-coordinate zinc,

which would occur in a putative reaction intermediate [34].

Figure 2. Zinc ligands found in the representative Zn-sites with structural (left) and catalytic (right) functions, overall (pie charts,
top) and as a function of the coordination number (histograms, bottom). ‘‘Other endo’’ includes all endogenous (i.e., provided by the
protein) ligands different from those explicitly indicated, and ‘‘Exo’’ includes all exogenous (i.e., non-protein) ligands. The histogram for structural
sites does not take into account the single case of coordination number seven (PDB code 2faw [44]).
doi:10.1371/journal.pone.0026325.g002

Classification of Zinc Sites in Proteins

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e26325



Indeed, this observation still holds when all the catalytic sites in

our dataset (i.e., a total of 4524 sites in 2404 PDB structures) are

taken into account. Also, the analysis of the enzymatic reactions

collected in Metal-MACiE (a database containing information on

catalytic metal ions) [35] shows that zinc ions coordinated by two

or more Cys have at most four ligands at any reaction step. This

leads to two considerations. First, the presence of at least two Cys

in the coordination sphere of zinc, which has been previously

taken as a criterion to discriminate between structural and

catalytic zinc sites [16], could be a determinant of the accessible

coordination states, and thus of the mechanism of action, of the

metal. Namely, two Cys ligands would be sufficient to prevent zinc

from extending its coordination number above four. This looks

much like a requirement in structural sites, where zinc must be

rigidly fixed, and Cys are in fact predominant. Still, Cys may well

be used as the predominant ligands in catalytic sites as well, as long

as the reaction mechanism involves a zinc coordination number

not higher than four. In this respect, we suggest that the number of

Cys ligands may be a discriminating factor in the contentious

mechanism of the zinc-dependent medium-chain alcohol dehy-

drogenase (ADH) superfamily of enzymes. In the classical

mechanism, zinc is believed to maintain a tetrahedral coordination

during the entire catalytic process [36]. However, a five-

coordinate zinc intermediate has been proposed to occur based

on studies on human sorbitol dehydrogenase [37] and Haloferax

mediterranei glucose dehydrogenase [38]. As the latter enzymes

contains a single or no Cys ligand whereas the majority of these

enzymes contain two, it is possible that ADHs with two Cys ligands

follow the classical mechanism, while ADHs with one or no Cys

ligand follow the other one. The second consideration is that

predictive rules using the number of Cys ligands to predict zinc

function could be improved by taking into account the

coordination number as well. For instance, the prediction that

every zinc bound by one or zero Cys residues is catalytic, as

proposed in [16], should not be applied when the zinc

coordination number is higher than four, as in this case Cys

ligands appear to be one or zero in both structural and catalytic

sites.

As previously mentioned, regulatory and substrate zinc sites for

which a structure is available are still a few. Nevertheless, some

trends in their coordination features can be recognized, although

they should be regarded with some caution. Regulatory sites

appear to resemble catalytic sites in their ligand preferences, as the

most frequent protein ligands are His and Asp/Glu (35% and

29%, respectively), and exogenous ligands can be also found (in 5

out of 14 cases). Cys ligands are less uncommon than in catalytic

sites (18%), yet they appear to be predominant only in sites

specifically designed to sense zinc (exemplified by the transcrip-

tional regulator ZntR, PDB code 1q08 [39]), or to act as redox

switches involving thiol-disulfide redox reactions (exemplified by

the bacterial heat shock protein Hsp33, PDB code 1vzy [40]). In

substrate sites, a clear difference exists between those found in zinc

trafficking proteins and those found in zinc storage proteins. The

former also show a preference for His and Asp/Glu (35% and

40%, respectively) with respect to Cys (10%), and can contain

exogenous ligands (present in one out of three cases) within

coordination spheres that include from three to five ligands. In

storage proteins (metallothioneins), instead, zinc is invariably four-

coordinated by Cys (88%) and, much less frequently, His (12%).

These sites are thus more similar to structural ones, although they

typically contain clusters of zinc ions which are very unusual

among structural sites (about 2% of the cases).

Clustering of representative zinc sites
The representative Zn-sites, each selected from a different Zn-

superfamily, were compared against one another with the aim of

grouping those that have similar structures into clusters (Zn-

clusters hereafter). The comparison was performed by structural

alignment of the MFS templates describing the local environment

of the representative Zn-sites (see Methods). In this way, zinc-

binding motifs that are common to different Zn-superfamilies were

identified, thereby allowing zinc sites to be classified into more

general types on a purely structural basis. At the same time, these

shared motifs can be regarded as potential examples of convergent

evolution, in which proteins belonging to different superfamilies

independently evolved the same kind of zinc-binding site.

A total of 10 Zn-clusters were identified (Table 1 and Figure 3),

which together comprise 77% of Zn-superfamilies (i.e., 284 of

367), and cover 75% of non-redundant zinc proteins (i.e., 926 of

1233). In terms of size, there are four Zn-clusters that can be

regarded as large (containing 61, 61, 49, and 45 Zn-superfamilies,

respectively), three that can be regarded as medium (containing

20, 16, and 15 Zn-superfamilies, respectively), and three that can

be regarded as small (containing 8, 7, and 2 Zn-superfamilies,

Table 1. Summary of the Zn-clusters identified, showing the number of representative Zn-sites (i.e., of Zn-superfamilies) included
in each cluster, their functions, and the average sequence identity of the protein chains that contain those Zn-sites.

Zn-cluster
# of
sites

Structural
function

Catalytic
function

Regulatory
function

Substrate
function

Unknown
function

Average
sequence
identity

Zinc ribbons 61 48 0 0 0 13 2366%

Treble clefs 61 55 0 0 1 5 2466%

Zinc necklaces 49 32 1 2 2 12 2265%

Zinc rafts 45 7 23 3 1 11 2165%

C2H2 zinc fingers 20 19 1 0 0 0 2266%

Loosened zinc ribbons 16 15 0 1 0 0 2165%

Helical anchors 15 1 9 1 0 4 2165%

Shuffled zinc ribbons – type I 8 6 1 0 0 1 2768%

Zn2Cys6 zinc fingers 7 7 0 0 0 0 2366%

Shuffled zinc ribbons – type II 2 1 0 0 0 1 19%

doi:10.1371/journal.pone.0026325.t001
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respectively). Zn-clusters generally contain sites that have the same

function (with a very few exceptions which will be discussed later),

and most of them contain structural sites. Specifically, almost 90%

of the Zn-superfamilies with a structural function were included in

a cluster. This was also the case for the majority of the Zn-

superfamilies with a substrate (67%) or unknown (71%) function,

and for about a half of the Zn-superfamilies with a catalytic (51%)

or regulatory (50%) function. These data indicate that structural

zinc sites are built around a limited range of motifs, some of which

are especially widespread, while the other zinc sites display a wider

variety of local structures. Zn-clusters are discussed in more detail

in the following (a schematic picture of the structures of the

representative Zn-sites included in each Zn-cluster is given in

Table S4).

1. Zinc ribbons
The Zn-sites included in this cluster have a structure that

consists of two b-hairpins providing two zinc ligands each, with the

axes of the b-hairpins oriented nearly perpendicular to each other.

This structure is classically referred to as a ‘‘zinc ribbon’’ [17],

therefore we use this term to indicate this cluster. Each b-hairpin

most often harbours two Cys ligands (86% of the cases), and the

spacing between two zinc ligands on a b-hairpin is most commonly

two residues (75% of the cases). Almost all the zinc ribbon

structures in the cluster can be entirely superimposed, as the

mutual orientation of the two b-hairpins is highly conserved across

them. The only exception is represented by a Zn-site of human

DNA (cytosine-5)-methyltranferase 1 (PDB code 3epz), whose b-

hairpins, despite having perpendicular axes like the other zinc

ribbons, are oriented in a different way, i.e. by superimposing the

N-terminal b-hairpins, the C-terminal b-hairpins do not overlap

but are rotated by approximately 180 degrees with respect to each

other (and vice versa). This latter site is not shown in the structural

alignment of Figure 3, and was classified among zinc ribbons upon

visual inspection.

In terms of function, 48 of the 61 Zn-superfamilies included in

this cluster have a structural role, and the remaining 13 have no

known function. It is therefore reasonable to predict that these

latter 13 Zn-superfamilies also have a structural function.

2. Treble clefs
The term ‘‘treble clef’’ that we use to indicate this cluster

denotes a structural motif formed by an N-terminal b-hairpin and

a C-terminal a-helix, which provide two zinc ligands each [17].

The majority of the Zn-sites belonging to the cluster (i.e., 45 out of

61) indeed conform to this definition, whereas in 6 sites the b-

hairpin and the a-helix elements are permuted, i.e., the a-helix is

N-terminal and the b-hairpin is C-terminal (PDB codes 1hc7,

1jw9, 2ioi, 2j02, 2k0a, and 2v9k). The remaining Zn-sites in the

cluster represent variants that do not strictly fall within the

definition given above (e.g., the b-hairpin is replaced by a loop in

2ac3 and 3g9m), but can be closely superimposed to classical

treble clefs. The b-hairpin and the a-helix are most often oriented

with their axes approximately parallel to each other, however their

relative orientation can vary depending on the specific arrange-

ment of the zinc ligands within these elements. For example, in a

Zn-site of yeast RNA polymerase II (PDB code 1twf [41]) the two

zinc ligands on the a-helix are adjacent in the sequence (whereas

in 72% of the cases they are separated by two residues), thereby

enforcing a configuration where the axes of the b-hairpin and the

a-helix are almost perpendicular. This and a few other Zn-sites

(PDB codes 1irx, 1jw9, 2ioi, 2j02, and 2x7m) cannot thus be

entirely superimposed on the other treble clefs, and were classified

as such by visual inspection.

Regarding the function, all the Zn-superfamilies of the cluster

have a structural role except for that of the cyanobacterial

metallothionein SmtA (which has a substrate function) and for 5

Zn-superfamilies with unknown functions, which can thus be

predicted to play a structural role as well.

3. Zinc necklaces
We introduce the term ‘‘zinc necklaces’’ to indicate the Zn-sites

that belong to this cluster, because they can be superimposed onto

a structural motif resembling a necklace. The complete zinc

necklace motif has five possible positions for zinc ligands, and the

zinc ligands in each Zn-site occupy a certain subset of these

positions (Figure 4). Depending on the specific positions occupied

by the zinc ligands and their distances in sequence, three major

subtypes of zinc necklaces can be recognized (Figure 4). The ‘‘N-

terminal’’ subtype is characterized by the presence of two closely

spaced ligands at positions 1 and 2; in these sites, position 3 is

always occupied as well, whereas positions 4 and 5 are usually

vacant. Conversely, the ‘‘C-terminal’’ subtype is characterized by

the presence of two closely spaced ligands at positions 4 and 5; in

these sites, positions 1 and 3 are almost always occupied as well,

whereas position 2 is most commonly vacant. The ‘‘central’’

subtype comprises all the other cases, including the Zn-site of

wheat EC metallothionein (PDB code 2kak [42]), where all five

positions are occupied.

In the classical classification of zinc fingers given by Grishin

[17], some of the Zn-sites belonging to this cluster were placed into

two different groups, i.e., the ‘‘TAZ2 domain-like’’ group

(including, e.g., a zinc necklace of the transcriptional adaptor

protein CBP, PDB code 1f81 [43]) and the ‘‘short zinc-binding

loops’’ group (including, e.g., a zinc necklace of RNA polymerase

II, PDB code 1twf [41]). The ‘‘TAZ2 domain-like’’ sites were

defined as having two zinc ligands each from the termini of two a-

helices, and the ‘‘short zinc-binding loops’’ sites as having at least

three closely spaced zinc ligands from a loop. We suggest that

these two groups are better viewed as two variants of the zinc

necklace motif, resulting from the presence (‘‘TAZ2 domain-like’’

case) or the absence (‘‘short zinc-binding loops’’ case) of a-helices

in correspondence of positions 1 and 5. Indeed, the demarcation

line between the two groups was somehow blurred even in the

original classification, where a Zn-site of DNA polymerase III was

classified once among ‘‘TAZ2 domain-like’’ sites (when taken from

the PDB structure 1jr3) and once among ‘‘short zinc-binding

loops’’ sites (when taken from the PDB structure 1a5t).

The majority of the Zn-superfamilies included in this cluster (32

out of 49) have a structural function, but there are also two with a

substrate, two with a regulatory, and one with a catalytic function.

Predicting the role of the 12 Zn-superfamilies with unknown

functions is therefore less straightforward with respect to the above

discussed zinc ribbons and treble clefs, where both structural and

functional homogeneity is higher.

Figure 3. Structure and composition of the Zn-clusters identified. For each cluster, the superimposition of the structures of the
representative Zn-sites included in the cluster, the picture of an example structure (shown as a cartoon representation with zinc atoms as blue
spheres and zinc ligands as blue sticks), and the list of the representative Zn-sites included in the cluster are given (with the example structure in
bold). Each Zn-site is identified by the PDB code and (in parentheses) the residue number(s) and the chain identifier(s) of the zinc atom(s) in the site.
doi:10.1371/journal.pone.0026325.g003
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4. Zinc rafts
The Zn-sites that belong to this cluster share a common

structural scaffold consisting of three adjacent b-strands, which we

refer to as a ‘‘zinc raft’’. Zinc rafts harbour either two or three zinc

ligands. Over 70% of them are His residues. The central b-strand

always provides at least one ligand, and most often contains two

ligands spaced by a single residue (69% of the cases), whereas only

one of the two lateral b-strands typically provides a ligand (76% of

the cases). The position of zinc with respect to the raft therefore

varies depending on which of the two lateral b-strands contains the

ligand. In the alignment of Figure 3, the Zn-sites included in the

cluster are superimposed so as to have zinc always on the same

side of the raft. In this view, the positions occupied by zinc in the

individual sites span an arch-shaped region whose central portion

corresponds to sites where neither or both of the lateral b-strands

provides a ligand.

The zinc raft motif is the most widespread among Zn-

superfamilies with a catalytic function (there are 23 in the cluster),

but it also occurs in Zn-superfamilies with structural (7 cases),

regulatory (3 cases), and substrate functions (1 case). This suggests

that this motif, while being best suited for catalytic sites, constitutes

a versatile scaffold for zinc sites with diverse roles. The vast

majority (i.e., over 80%) of catalytic Zn-sites in the cluster have

three protein ligands, whereas all of the structural and regulatory

Zn-sites in the cluster have four (or five in the case of glutaminyl

cyclase, PDB code 2faw [44]). Out of the 11 Zn-superfamilies with

unknown function included in the cluster, therefore, the 7 of them

that have three protein ligands are most likely to have a catalytic

function.

5. C2H2 zinc fingers
The structural motif shared by the Zn-sites included in this

cluster was the first zinc finger to be discovered, and is referred to

as a ‘‘C2H2’’ zinc finger from the zinc ligands (i.e., two Cys and

two His residues) present in the Xenopus laevis transcription factor

IIIA where it was originally identified [45]. In its archetypal form,

this motif consists of a b-hairpin followed by a a-helix, which

provide two zinc ligands each. Although these same structural

Figure 4. Schematic picture of the positions occupied by zinc ligands in the three subtypes of zinc necklaces. The occupancy of each
position is given as the ratio between the number of sites in which a zinc ligand occurs at that position and the total number of sites belonging to the
subtype, and shown as a circle sized proportionally to this ratio. Details on the specific ligands occurring in individual sites are given in Table S4.
doi:10.1371/journal.pone.0026325.g004
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elements are found in treble clefs (see above), the Zn-sites that

belong to this cluster are structurally distinct from treble clefs, in

agreement with the classical classification of zinc fingers given by

Grishin [17]. Treble clefs and C2H2 zinc fingers are in fact not

superimposable on each other, as by superimposing the b-hairpins,

the a-helices do not overlap but are translated relative to each

other along their axes.

In C2H2 zinc fingers, Cys residues are the most common

ligands in the b-hairpin (87% of the cases), whereas His residues

are most frequent in the a-helix (74% of the cases). The spacing

between the two ligands on the a-helix is typically three residues,

but there are variants (30% of the cases) where the spacing is five

or six residues, and the C-terminal ligand is found downstream of

the helix. In the extreme case of a Zn-site of Thermus thermophilus

GTP cyclohydrolase I (PDB code 1wur [46]) the C-terminal ligand

is absent altogether, and the function of the C2H2 zinc finger is

catalytic. All the other Zn-superfamilies included in the cluster

have instead a structural function.

6. Loosened zinc ribbons
The Zn-sites included in this cluster have a structure that can be

regarded as a variant of the zinc ribbon motif (see above), in which

one of the two b-hairpins is replaced by an extended coil. We thus

use the term ‘‘loosened zinc ribbons’’ to indicate these Zn-sites.

The extended coil typically harbours two zinc ligands spaced by

one residue (81% of the cases), and its backbone trace is oriented

nearly parallel to the axis of the b-hairpin. Exceptions are the Zn-

sites of two viral proteases (PDB codes 2hrv [47] and 3ifu [48]),

which are not shown in the alignment of Figure 3 as the extended

coil is oriented perpendicular to the axis of the b-hairpin. Similarly

to zinc ribbons, zinc ligands in these sites are most commonly Cys

(76% of the cases), and the majority of the Zn-superfamilies

included in the cluster have a structural function (15 out of 16, the

only exception being that of Bacillus subtilis Hsp33, which has a

regulatory function).

7. Helical anchors
The Zn-sites that belong to this cluster are characterized by the

presence of a a-helix providing two zinc ligands, which are most

often His (83% of the cases) and are almost always spaced by three

residues (93% of the cases). This structural element, which we refer

to as a ‘‘helical anchor’’, is complemented by a variable structural

element providing one or, in some cases, two additional zinc

ligands. Each additional zinc ligand can be found at one of three

possible positions, of which only the most common (occupied in

73% of the cases) is shown in Figure 3. Helical anchors are also

present in other Zn-sites, and in C2H2 zinc fingers in particular,

where they are complemented by a b-hairpin element (see above).

However, C2H2 zinc fingers are not superimposable to the Zn-

sites of this cluster.

The majority of the Zn-superfamilies included in this cluster (9

out of 15) have a catalytic function. Indeed, helical anchors

represent the most common motif among catalytic Zn-superfam-

ilies after zinc rafts (see above). Similarly to zinc rafts, however,

other functions are also possible for helical anchors, as this cluster

includes two Zn-superfamilies with a structural and a regulatory

function, respectively (as well as four others with unknown

functions).

8. Small clusters: shuffled zinc ribbons and Zn2Cys6 zinc
fingers

In addition to the large and medium Zn-clusters described

above, which altogether comprise about 73% of all Zn-

superfamilies, a few additional small Zn-clusters altogether

comprising about 5% of all Zn-superfamilies were identified.

The largest of these clusters contains eight Zn-sites whose structure

consists of two two-stranded b-sheets that approximately lie on the

same plane. The zinc ligands are provided by short loops that

connect one b-strand of a b-sheet with one b-strand of the other b-

sheet. Each loop almost invariably contains two Cys ligands

spaced by two residues (94% of the cases). This motif can be

described as resulting from a rearrangement of the classical zinc

ribbon (see above), in which the pairing of the b-strands is different

(i.e., b1–b4 and b2–b3 instead of b1–b2 and b3–b4), and is thus

referred to here as a ‘‘shuffled zinc ribbon’’. We use the same term

to indicate another, smaller cluster, which contains two Zn-sites

sharing a structural motif similar to that described above, except

that one of the two b-sheets is formed by three b-strands, and the

loops connecting the two b-sheets harbour only one zinc ligand

each (one His and one Cys residue). Two other zinc ligands (two

adjacent Cys residues) are instead found on the loop connecting

the two C-terminal b-strands of the three-stranded b-sheet. In

Grishin’s work, both of the above motifs were classified among

zinc ribbons (in ‘‘DnaJ’’ and ‘‘Btk’’ subgroups, respectively) [17],

however they are neither superimposable on each other, nor on

classical zinc ribbons. We therefore suggest to classify them

separately as type I (or DnaJ-like) and type II (or Btk-like) shuffled

zinc ribbons, respectively. Finally, we identified a small cluster

containing seven Zn-sites, whose structure consists of a a-helix

(almost invariably harbouring two Cys ligands spaced by two

residues) followed by an extended coil resembling that found in

loosened zinc ribbons (see above). This motif corresponds to the

‘‘Zn2Cys6 zinc finger’’ group in Grishin’s classification, therefore

we retain this term to indicate this cluster.

All the Zn-superfamilies included in the small clusters described

above have a structural function, except for two (one in type I and

one in type II shuffled zinc ribbons) with unknown functions and

for that of the Escherichia coli Ada protein (PDB code 1adn [49]),

whose catalytic site is best described as a type I shuffled zinc

ribbon.

9. Unclustered sites: grouping into pseudo-clusters
A total of 83 representative Zn-sites could not be included in

any of the clusters described above. Furthermore, the MFS

templates describing the structures of these sites could not be

superimposed on one another, meaning that each of them should

be considered a unique type of zinc-binding motif. Nonetheless,

most of them (i.e., 60 out of 83) could be conveniently grouped

under a limited number of categories (which we refer to as

‘‘pseudo-clusters’’) by using some broader criteria for defining

structural similarity, as shown in Figure 5. The largest of these

categories (‘‘peptidase-like sites’’ in Figure 5), for example, includes

17 Zn-sites that are all found at the top of a three-layer sandwich

structure with a b-sheet in the central layer and a-helices in the

outer layers (a/b/a), as well as 3 Zn-sites found at the top of an

analogous, four-layer a/b/b/a structure. Despite being found in

protein domains with similar folds, the local structures of these

sites differ because the position and arrangement of the zinc

ligands, which are mostly provided by loops connecting the b- and

the a-layers, are highly variable. The majority of these sites are

catalytic, and include those of ‘‘classic’’ zinc enzymes such as

carboxypeptidase, aminopeptidase and alkaline phosphatase [15].

The second largest pseudo-cluster (‘‘half zinc ribbons’’ in Figure 5),

instead, contains 14 Zn-sites that are mostly structural, and all

have two nearby (in sequence) zinc ligands on a b-hairpin-like loop

closely resembling a half-site of zinc ribbons (see above). At

variance with zinc ribbons, however, the other half of these sites is
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Figure 5. Pseudo-clusters grouping part of the unclustered zinc sites. For each pseudo-cluster, a short description of the criterion used to
group the sites, a picture of an example structure (shown as a cartoon representation with zinc atoms as blue spheres and zinc ligands as blue sticks),
and a list of the sites included in the pseudo-cluster are given (with the example structure in bold).
doi:10.1371/journal.pone.0026325.g005
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Figure 6. Summary charts showing how zinc sites with specific functions are distributed across clusters and pseudo-clusters.
Histogram (A) shows the occurrence of zinc sites with structural, catalytic, regulatory and substrate functions in clusters (left) and pseudo-clusters
(right). Pie charts show the shares of structural (B) and catalytic (C) zinc sites occurring in specific clusters and pseudo-clusters, as well as those that
remained unassigned (‘‘orphans’’). Sectors in pie charts are coloured according to whether clusters and pseudo-clusters contain exclusively or
predominantly structural (yellow for clusters and orange for pseudo-clusters) or catalytic sites (red for clusters and purple for pseudo-clusters).
doi:10.1371/journal.pone.0026325.g006
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highly variable, consisting of two further ligands that can be found

in various positions around the b-hairpin-like loop. Altogether, we

defined 7 pseudo-clusters which provide at least a coarse-grained

classification of the zinc sites that could not be placed in the

detailed classification represented by the clusters, ultimately

leaving out only 6% of all Zn-superfamilies.

Concluding remarks
The number of protein structures deposited at the PDB is

growing at a rate of about 150 structures per week. On average, 14

of these structures contain zinc but only 11 are true zinc proteins

(i.e., they naturally bind zinc for their activity and/or stability).

These few statistics exemplify the continuing expansion of our

knowledge on the atomic-level interactions between proteins and

one of their major inorganic partners (i.e., zinc) but also warn that

a significant fraction of these interactions are not relevant to

biological function. We thus embarked upon a systematic study of

zinc sites in proteins with known structure with the aim of

providing an accurate and up-to-date classification that helps

researchers to best use the information available in structural

databases.

By using a method based on the definition of minimal functional

sites as three-dimensional templates encompassing the local

structural environment of metals in proteins, we classified 77%

of a non-redundant set of zinc sites into 10 clusters (Table 1 and

Figure 3), each representing a zinc-binding motif conserved across

different protein superfamilies. An additional 16% were classified

into 7 broader categories (pseudo-clusters), each representing a set

of general structural features (e.g., the secondary structures of zinc

ligands) describing the zinc site. A picture of how zinc sites with

specific functions are distributed across clusters and pseudo-

clusters is given in Figure 6. This Figure shows that structural zinc

sites are the majority in eight clusters and in two pseudo-clusters

(Figure 6A and 6B), while catalytic zinc sites are predominant in

two clusters and in five pseudo-clusters (Figure 6A and 6C). From

another point of view, this indicates that, with a few exceptions,

only ten types of structural and seven types of catalytic zinc sites

appear to occur in proteins. Eight of the ten structural types are

indeed well-defined zinc-binding motifs, covering almost 90% of

structural zinc sites (Figure 6B). This is the case, instead, only for

two of the seven catalytic types (zinc rafts and helical anchors), and

catalytic zinc sites are divided almost equally between these two

(52%) and the other, less well-defined five types (43%) (Figure 6C).

No particular dominant types emerged for regulatory and

substrate zinc sites, which appear to resemble more closely

catalytic or structural sites depending on the specific case. Clearly,

more structural information is needed to understand if there are

some structural motifs that can be recognized as characteristic of

these sites. Even so, MFSs appear to constitute a helpful

conceptual and methodological basis for structure-function studies

of zinc proteins, with applications in various areas such as

biochemistry, molecular pharmacology and de novo protein design.
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