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Abstract

Motivation: Diverse applications—particularly in tumour subtyping—have demonstrated the importance of integra-
tive clustering techniques for combining information from multiple data sources. Cluster Of Clusters Analysis
(COCA) is one such approach that has been widely applied in the context of tumour subtyping. However, the proper-
ties of COCA have never been systematically explored, and its robustness to the inclusion of noisy datasets is
unclear.

Results: We rigorously benchmark COCA, and present Kernel Learning Integrative Clustering (KLIC) as an alternative
strategy. KLIC frames the challenge of combining clustering structures as a multiple kernel learning problem, in
which different datasets each provide a weighted contribution to the final clustering. This allows the contribution of
noisy datasets to be down-weighted relative to more informative datasets. We compare the performances of KLIC
and COCA in a variety of situations through simulation studies. We also present the output of KLIC and COCA in real
data applications to cancer subtyping and transcriptional module discovery.

Availability and implementation: R packages klic and coca are available on the Comprehensive R Archive Network.

Contact: paul.kirk@mrc-bsu.cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Thanks to technological advances, both the availability and the di-
versity of omic datasets have hugely increased in recent years
(Manzoni et al., 2018). These datasets provide information on mul-
tiple levels of biological systems, going from the genomic and epige-
nomic level, to gene and protein expression level, up to the
metabolomic level, accompanied by phenotype information. Many
publications have highlighted the importance of integrating informa-
tion from diverse omic datasets in order to provide novel biomedical
insight. For example, numerous studies by The Cancer Genome
Atlas (TCGA) consortium have demonstrated the value of combin-
ing multiple omic datasets in order to define cancer subtypes (see
e.g. The Cancer Genome Atlas Research Network, 2011, 2012).

Many existing statistical and computational tools have been
applied to this problem and many others have been developed spe-
cifically for this. One of the first statistical methods applied to inte-
grative clustering for cancer subtypes was iCluster (Shen et al.,
2009, 2013). iCluster finds a partitioning of the tumours into differ-
ent subtypes by projecting the available datasets onto a common la-
tent space, maximizing the correlation between data types. Another
statistical method for integrative clustering is Multiple Dataset
Integration (MDI; see Kirk et al., 2012; Mason et al., 2016). It is

based on Dirichlet-multinomial mixture models in which the alloca-
tion of observations to clusters in one dataset influences the alloca-
tion of observations in another, while allowing different datasets to
have different numbers of clusters. Similarly, Bayesian Consensus
Clustering (BCC) is based on a Dirichlet mixture model that assigns
a different probability model to each dataset. Again, samples belong
to different partitions, each given by a different data type, but here they
also adhere loosely to an overall clustering (Lock and Dunson, 2013).
More recently, Gabasová et al. (2017b) developed Clusternomics, a
mixture model over all possible combinations of cluster assignments on
the level of individual datasets that allows to model different degrees of
dependence between clusters across datasets.

Integrative clustering methods can be broadly classified as either
joint modelling or two-step approaches. The former simultaneously
consider all datasets together (e.g. MDI or BCC). The latter, which we
consider here, are composed of two steps: first, the clustering structure
in each dataset is analyzed independently; then an integration step is
performed to find a common clustering structure that combines the in-
dividual ones. These approaches have sometimes also been referred to
as sequential analysis methods (Kristensen et al., 2014).

Cluster Of Clusters Analysis (COCA) is a particular two-step ap-
proach, which has grown in popularity since its first introduction in
The Cancer Genome Atlas Research Network (2012). As we explain
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in Section 2.1, COCA proceeds by first clustering each of the data-
sets separately, and then building a binary matrix that encodes the
cluster allocations of each observation in each dataset. This binary
matrix is then used as the input to a CC algorithm (Monti et al.,
2003; Wilkerson and Hayes, 2010), which returns a single, global
clustering structure, together with an assessment of its stability. The
idea is that this global clustering structure both combines and sum-
marizes the clustering structures of the individual datasets. Despite
its widespread use, to the best of our knowledge the COCA algo-
rithm has never previously been systematically explored. In what
follows, we elucidate the algorithm underlying COCA, and highlight
some of its limitations. We show that one key limitation is that the
combination of the clustering structures from each dataset is
unweighted, making the output of the algorithm sensitive to the in-
clusion of poor quality datasets.

An alternative class of approaches for integrating multiple omic
datasets is provided by those based on kernel methods (see, among
others, Lanckriet et al., 2004b; Lewis et al., 2006, for ‘omic dataset’
applications). In these, a kernel function (which defines similarities
between different units of observation) is associated with each data-
set. These may be straightforwardly combined in order to define an
overall similarity between different units of observation, which
incorporates similarity information from each dataset. Determining
an optimal (weighted) combination of kernels is known as multiple
kernel learning (MKL); see, e.g. Bach et al. (2004), Gönen and
Alpayd (2011), Lanckriet et al. (2004a), Strauß et al. (2019), Wang
et al. (2017), Yu et al. (2010). A challenge associated with these
approaches is how best to define the kernel function(s), for which
there may be many choices.

Here, we combine ideas from COCA and MKL in order to pro-
pose a new Kernel Learning Integrative Clustering (KLIC) method
that addresses the limitations of COCA (Section 2.2). Key to our ap-
proach is the result that the consensus matrix returned by CC is a
valid kernel matrix (Section 2.2.3). This insight allows us to make
use of the full range of MKL approaches in order to combine con-
sensus matrices derived from different omic datasets. We perform
simulation studies to illustrate our proposed approach and compare
it with COCA. Finally, we show how KLIC and COCA compare in
two practical applications: multiplatform tumour subtyping, where
the goal is to stratify patients, and transcriptional module discovery,
where genes are the statistical observations that we want to cluster.

2 Materials and methods

2.1 Cluster of clusters analysis
COCA (The Cancer Genome Atlas Research Network, 2012) is an
integrative clustering method that was first introduced in a breast
cancer study by The Cancer Genome Atlas Research Network
(2012) and quickly became a popular tool in cancer studies (see e.g.
Aure et al., 2017; Hoadley et al., 2014). It makes use of CC (Monti
et al., 2003), an algorithm that was originally developed to assess
the stability of the clusters obtained with any clustering algorithm.

2.1.1 Consensus clustering

We recall here the main features of CC in order to be able to explain
the functioning of COCA. As originally formulated, CC is an ap-
proach for assessing the robustness of the clustering structure pre-
sent in a single dataset (Monti et al., 2003; Wilkerson and Hayes,
2010). The idea behind CC is that, by re-sampling multiple times
the items that we want to cluster and then applying the same cluster-
ing algorithm to each of the subsets of items, we assess the robust-
ness of the clustering structure that the algorithm detects, both to
perturbations of the data and (where relevant) to the stochasticity of
the clustering algorithm. To do this, CC makes use of the concepts
of co-clustering matrix and consensus matrix, which we recall here.

Given a set of items X ¼ ½x1; . . . ; xN� that we seek to cluster and
a clustering c ¼ ½c1; . . . ; cN � such that ci is the label of the cluster to
which item xi has been assigned, the corresponding co-clustering
matrix (or connectivity matrix) is an N�N matrix C such that the
ijth element Cij is equal to one if ci ¼ cj, and zero otherwise. Let

Xð1Þ; . . . ;XðHÞ be a list of perturbed datasets obtained by re-
sampling subsets of items and/or covariates from the original dataset
X. If IðhÞ is the subset of the indices of the observations I ¼
f1;2; . . . ;Ng present in XðhÞ, then the co-clustering matrix has ij-th
element equal to one if i; j 2 IðhÞ and ci ¼ cj, zero otherwise. We de-
note by CðhÞ the co-clustering matrix corresponding to dataset XðhÞ

where the items have been assigned to K classes using a clustering
algorithm.

The consensus matrix DK is an N�N matrix with elements

DK
ij ¼

PH
h¼1 C

ðhÞ
ij

minf1;
PH

h¼1 I
ðhÞ
ij g

(1)

where I
ðhÞ
ij ¼ 1 if both items i and j are present in dataset XðhÞ.

Thus, CC performs multiple runs of a (stochastic) clustering al-
gorithm (e.g. k-means, hierarchical clustering etc.) to assess the sta-
bility of the discovered clusters, with the consensus matrix providing
a convenient summary of the CC analysis. If all the elements of the
consensus matrix are close to either one or zero, this means that
every pair of items is either almost always assigned to the same clus-
ter, or almost always assigned to different clusters. Therefore, con-
sensus matrices with all the elements close to either zero or one
indicate stable clusters. In the framework of CC, these matrices can
also be used to determine the number of clusters, by computing and
comparing the consensus matrices DK for a range of numbers of clus-
ters K ¼ fKmin; . . . ;Kmaxg of interest and then pick the value of K
that gives the consensus matrix with the greater proportion of ele-
ments close to either zero or one (Monti et al., 2003).

2.1.2 Cluster Of Clusters Analysis

In contrast to CC (which we emphasize is concerned with assessing
clustering stability when analyzing a single dataset), the main goal
of COCA is to summarize the clusterings found in different omic
datasets, by identifying a ‘global’ clustering across the datasets that
is intended to summarize the clustering structures identified in each
of the individual datasets. In the first step, a clustering cm is pro-
duced independently for each dataset Xm, m ¼ 1; . . . ;M, each with
a different number of clusters Km. We define �K ¼

PM
m¼1 Km. Then,

the clusters are summarized into a Matrix Of Clusters (MOC) of
size �K �N, with elements:

MOCn;mk
¼ 1 if cm

n ¼ mk;
0 otherwise:

�
(2)

where by mk we denote the kth cluster in dataset m, k ¼ 1; . . . ;Km

and m ¼ 1; . . . ;M. The MOC matrix is then used as input to CC to-
gether with a fixed global number of clusters K. The resulting con-
sensus matrix is then used as the similarity matrix for a hierarchical
clustering method (or any other distance-based clustering
algorithm).

The global number of clusters K is not always known. In The
Cancer Genome Atlas Research Network (2012), where COCA was
introduced, the global number of clusters was chosen as in Monti
et al. (2003), as explained above: CC was performed with different
values of K and then the one that gave the ‘best’ consensus matrices
were considered. Instead, Aure et al. (2017) suggest to choose the
value of K that maximizes the average silhouette (Rousseeuw, 1987)
of the final clustering, since this was found to give more sensible
results.

Since the construction of the MOC matrix just requires the clus-
ter allocations, COCA has the advantage of allowing clusterings
derived from different sources to be combined, even if the original
datasets are unavailable or unwieldy. However, this method is
unweighted, since all the clusters found in the first step have the
same influence on the final clustering. Moreover, the objective func-
tion that is optimized by the algorithm is unclear.

In what follows, we describe an alternative way of performing
integrative clustering that takes into account not only the clusterings
in each dataset, but also the information about the similarities be-
tween items that are extracted from different types of data.
Additionally, the new method allows weights to be given to each
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source of information, according to how useful it is for defining the
final clustering.

2.2 Kernel learning integrative clustering
Before introducing the new methodology, we recall the main princi-
ples behind the methods that we use to combine similarity matrices.

2.2.1 Kernel methods

Using kernel methods, it is possible to model non-linear relation-
ships between the data points with a low computational complexity,
thanks to the so-called kernel trick. For this reason, these have been
widely used to extend many traditional algorithms to the non-linear
framework, such as PCA (Schölkopf et al., 1998), linear discrimin-
ant analysis (Baudat and Anouar, 2000; Mika et al., 1999; Roth and
Steinhage, 2000) and ridge regression (Friedman et al., 2001;
Shawe-Taylor and Cristianini, 2004).

A positive definite kernel or, more simply, a kernel d is a sym-
metric map d : X � X ! R for which for all x1;x2; . . . ;xN 2 X , the
matrix D with entries Dij ¼ dðxi; xjÞ is positive semi-definite. The
matrix D is called the kernel matrix or Gram matrix. Kernel meth-
ods proceed by embedding the observations into a higher-
dimensional feature space H endowed with an inner product h�; �iH
and induced norm k � kH, making use of a map / : X ! H. Using
Mercer’s theorem, it can be shown that for any positive semi-
definite kernel function, d, there exists a corresponding feature map,
/ : X ! H (see e.g. Vapnik, 1998). That is, for each kernel d, there
exists a feature map / taking value in some inner product space H
such that dðx;x0Þ ¼ h/ðxÞ;/ðx0ÞiH. In practice, it is therefore often
sufficient to specify a positive semi-definite kernel matrix, D, in
order to allow us to apply kernel methods such as those presented in
the following sections. For a more detailed discussion of kernel
methods, see e.g. Shawe-Taylor and Cristianini (2004).

2.2.2 Localized multiple kernel k-means clustering

Kernel k-means is a generalization of the k-means algorithm of
Steinhaus (1956) to the kernel framework (Girolami, 2002). The
kernel trick is used to reformulate the problem of minimizing the
sum of squared distances between each point and the corresponding
cluster centre (in the feature space) as a trace maximization problem
that only requires knowing the Gram matrix corresponding to the
kernel of interest. Optimal cluster allocations can then be efficiently
determined using kernel Principal Component Analysis (PCA) .
More details on kernel k-means can be found in the Supplementary
Material.

The clustering algorithm used here is the extension of the kernel
k-means approach to MKL (Gönen and Alpayd, 2011) with sample-
specific weights (Gönen and Margolin, 2014) aimed at removing
sample-specific noise. We consider multiple datasets X1; . . . ;XM

each with a different mapping function /m : RP !Hm and corre-
sponding kernel dmðxi; xjÞ ¼ h/mðxiÞ;/mðxjÞiHm

and kernel matrix
Dm. Then, if we define /HðxiÞ ¼ ½hi1/1ðxiÞ0; hi2/2ðxiÞ0; . . . ;
hiM/MðxiÞ0�0, where H 2 R

N�M
þ is a vector of kernel weights with ele-

ments him such that
P

mhim ¼ 1 and him � 0 for i ¼ 1; . . . ;N, the
kernel function of this multiple feature problem is a convex sum of
the single kernels:

dHðxi;xjÞ ¼ h/HðxiÞ;/HðxjÞiHm
¼
XM

m¼1
himhjmdmðxi; xjÞ: (3)

We denote the corresponding kernel matrix by DH. The idea of
localized multiple kernel k-means is to replace the Gram matrix
used in kernel k-means by this weighted matrix. The optimization
strategy proposed by Gönen and Margolin (2014) is based on the
idea that, for some fixed vector of weights H, this is a standard ker-
nel k-means problem. Therefore, they develop a two-step optimiza-
tion strategy: (i) given a fixed vector of weights H, solve the
optimization problem as in the case of one kernel, with kernel ma-
trix given by dH and then (ii) minimize the objective function with
respect to the kernel weights, keeping the assignment variables fixed.
This is a convex quadratic programming (QP) problem that can be

solved with any standard QP solver up to a moderate number of ker-
nels M.

2.2.3 Identifying consensus matrices as kernels

We prove that the consensus matrices defined in Section 2.1 are
positive semi-definite, and hence that they can be used as input for
any kernel-based clustering method, including the integrative clus-
tering method presented in the next section. Given any N�N co-
clustering matrix C, we can reorder the rows and columns to obtain
a block-diagonal matrix with blocks J1; J2; . . . ; JKwhere K is the total
number of clusters and Jk is an nk � nk matrix of ones, with nk being
the number of items in cluster k. It is straightforward to show that
the eigenvalues of a block-diagonal matrix are simply the eigenval-
ues of its blocks. Since each block is a matrix of ones, the eigenval-
ues of each block are nonnegative, and so any co-clustering matrix
C is positive semi-definite. Moreover, given any set of km, m ¼
1; . . . ;M non-negative, and co-clustering matrices Cm,
m ¼ 1; . . . ;M, then

PM
m¼1 kmCm is positive semi-definite, because if

k is a nonnegative scalar, and C is positive semi-definite, then kC is
also positive semi-definite and the sum of positive semi-definite
matrices is a positive semi-definite matrix. Since every consensus
matrix is of the form

P
mkmCm, we can conclude that any consensus

matrix is positive semi-definite.

2.2.4 Kernel Learning Integrative Clustering

We recall from Section 2.2.1 that any positive semi-definite matrix
defines a feature map / : RP !H and is therefore a valid kernel ma-
trix. The integrative clustering method that we introduce here is
based on the idea that we can identify the consensus matrices pro-
duced by CC as kernels. That is, one can perform CC on each data-
set to produce a consensus matrix Dm for each m 2 f1; . . . ;Mg. This
is a kernel Dm, where the ijth element corresponds to the similarity
between items i and j. Therefore, these matrices Dm can be combined
through the (localized) multiple kernel k-means algorithm described
in Section 2.2.2. This allows a weight to be obtained for each kernel,
as well as a global clustering c of the items. We note that this algo-
rithm could also be applied using more than one similarity matrix
per dataset, and also using kernel matrices other than (or in addition
to) consensus matrices.

3 Examples

3.1 Simulated data
To assess the KLIC algorithm described in Section 2.2.4 and to com-
pare it with COCA, we perform a range of simulation studies. We
generate several synthetic datasets, each composed of data belonging
to six different clusters of equal size. Each dataset has total number
of observations equal to 300. Each observation x

ðkÞ
n is generated

from a bivariate normal with mean ks for each variable, where k
denotes the cluster to which the observation belongs and s the separ-
ation level of the dataset. Higher values of s give clearer clustering
structures. The variance covariance matrix is the identity matrix.

We consider the following settings:

1. Similar datasets. We generate four datasets that have the same

clustering structure and cluster separability s. We denote the

datasets by A, B, C and D. The goal of this experiment is to

show that using localized kernel k-means on multiple consensus

matrices leads to better results than those obtained using just

one consensus matrix. To demonstrate how we may deal with ir-

relevant variables, we also repeat this experiment adding to each

dataset 13 variables centred at zero that have no clustering struc-

ture, i.e.

x
ðkÞ
1 ; . . . ; x

ðkÞ
50 � Nð½ks; ks;0; . . . ; 0|fflfflfflffl{zfflfflfflffl}

13

�; IÞ; 8k ¼ 1; . . . ; 6; (4)

where I is the 15�15 identity matrix.
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2. Datasets with different levels of noise. In this case we utilize four

datasets that have the same clustering structure, but different

levels of cluster separability s. We denote the datasets by 0 for

‘no cluster separability’, 1 ‘low cluster separability’, 2 ‘medium

cluster separability’ and 3 ‘high cluster separability’ (Fig. 1). We

use this example to show how the weights are allocated to each

consensus matrix and why it is important to assign lower

weights to datasets that are noisy or not relevant.

We repeat each experiment 100 times. For each synthetic dataset,
we use CC to obtain the consensus matrices. For simplicity, we set

K¼6. As for the clustering algorithm, we use k-means clustering
with Euclidean distance, which we found to work well in practice.

The Supplementary Material contains additional simulation settings.
In particular, we consider a wide range of separability values for the
setting with four similar datasets and the integration of datasets

with nested clusters. Moreover, we perform a short sensitivity ana-
lysis of the choice or tuning options for the k-means algorithm.

3.2 Multiplatform analysis of 12 cancer types
Hoadley et al. (2014) performed a multiplatform integrative analysis
of 3,527 tumour samples from 12 different tumour types, and used

COCA to identify 11 integrated tumour subtypes. To do so, they
applied different clustering algorithms to each data type separately:
DNA copy number, DNA methylation, mRNA expression,

microRNA expression and protein expression. They then combined
the five sets of clusters obtained in this way using COCA. The final

clusters are highly correlated with the tissue-of-origin of each tu-
mour sample, but some cancer types coalesce into the same clusters.
The clusters obtained in this way were shown to be prognostic and

to give independent information from the tissue-of-origin.
Here, we use the same data to try to replicate their analysis, and

compare the clusters obtained with COCA to those obtained with
KLIC. To facilitate future analyses by other researchers, we have

made available our scripts for processing and analyzing these data-
sets using the freely available R statistical programming language (R
Core Team, 2020), which include scripts that seek to replicate the

original analysis of Hoadley et al. (2014), at https://github.com/aca
bassi/klic-pancancer-analysis.

3.3 Transcriptional module discovery
Transcriptional modules are groups (i.e. clusters) of genes that share
a common biological function and are co-regulated by a common

set of transcription factors. It has been recognized that integrative
clustering methods can be useful for discovering transcriptional
modules, by combining gene expression datasets with datasets that

provide information about transcription factor binding (Ihmels
et al., 2002; Savage et al., 2010).

Here, we consider transcriptional module discovery for yeast
(Saccharomyces cerevisiae). We integrate the expression dataset of

Granovskaia et al. (2010) that contains measurements related to
551 genes whose expression profiles have been measured at 41 dif-
ferent time points of the cell cycle with the ChIP-chip dataset of

Harbison et al. (2004) which provides binding information for 117
transcriptional regulators for the same genes. The latter was discre-

tized as in Kirk et al. (2012) and Savage et al. (2010).

4 Results

4.1 Simulated data
In Section 4.1, we apply the developed methods to the synthetic
datasets. In Section 4.1.2, we compare the performances of our
method for integrative clustering to COCA and other integrative
clustering algorithms.

4.1.1 Kernel Learning Integrative Clustering

We apply KLIC to the synthetic datasets presented in Section 3.1.

4.1.1.1 Similar datasets. First, we run the kernel k-means algorithm
on each of the consensus matrices that have the same clustering
structure and noise level. To assess the quality of the clustering, we
compare the clustering found with the true one using the adjusted
Rand index (ARI; Rand, 1971), which is equal to one if they are
equal and is equal to zero if we observe as many similarities between
the two partitions of the data as it is expected by chance. Then we
run KLIC on multiple datasets. In Figure 2, the box plots of the ARI
obtained combining the four datasets together using KLIC (column
‘AþBþCþD’) and the box plots of the average weights assigned
by the KLIC algorithm to the observations in each dataset are
reported. We observe that as expected, combining together more
datasets helps recovering the clustering structure better than just
taking the matrices one at a time. This is because localized kernel k-
means allows to give different weights to each observation.
Therefore, if data point n is hard to classify in Dataset d1, but not in
Dataset d2, we will have hnd1

< hnd2
. However, on average the

weights are divided equally between the datasets. This reflects the
fact that all datasets have the same dispersion and, as a consequence,
they contain on average the same amount of information about the
clustering structure.

4.1.1.2 Datasets with different levels of noise. Here we use the data-
sets shown in Figure 1, that have the same clustering structure (six
clusters of the same size each) but different levels of cluster separ-
ability. We consider four different settings, each time combining
three out of the four synthetic datasets. Figure 3 shows the box plots
of the ARI obtained using kernel k-means on the datasets taken one
at a time (columns ‘0’, ‘1’, ‘2’, ‘3’) and the ARI obtained using KLIC
on each subset of datasets (columns “0þ1þ2”, “0þ1þ3”,
“0þ2þ3”, “1þ2þ3”). As expected, the consensus matrices with
clearer clustering structure give higher values of the ARI on average.
Moreover, the ARI obtained combining three matrices with different
levels of cluster separability is on average the same or higher as in
the case when only the “best” matrix is considered. This is because
larger weights are assigned to the datasets that have clearer cluster-
ing structure. In the bottom part of Figure 3 are reported the box
plots of the average weights given by the localized multiple kernel

Fig. 1. Consensus matrices of the synthetic data with different levels of noise, going

from ‘no cluster separability’ to ‘high cluster separability’. Blue indicates high simi-

larity. The colours of the bar to the right of each matrix indicate the cluster labels

Fig. 2. Results of applying KLIC to four similar datasets. Left: ARI of KLIC applied

to each dataset separately (columns ‘A’, ‘B’, ‘C’ and ‘D’) and to all four datasets to-

gether (column ‘AþBþCþD’). The ARI is higher in the last column because KLIC

can combine information from all the datasets to find a global clustering. Right: ker-

nel weights associated to each dataset, when applying KLIC to all four datasets to-

gether. The algorithm is able to recognize that each dataset contains the same

amount of information regarding the global clustering, and therefore assigns on

average the same weight to each dataset
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k-means to the observations in each dataset. It is easy to see that
each time the matrix with best cluster separability has higher
weights than the other two.

4.1.2 Comparison between KLIC, COCA and other methods

We compare the performance of KLIC to the one obtained using
COCA, as well as to two other comparable integrative clustering
algorithms for which implementations are readily available; namely,
iCluster and Clusternomics. Additionally, we compare with local-
ized multiple kernel k-means using standard radial basis function
(RBF) kernels. We use the same synthetic datasets as in the previous
section.

For COCA, we use the k-means algorithm with Euclidean dis-
tance, fixing the number of clusters to be equal to the true one, to
find the clustering labels of each dataset. Many other clustering
algorithms can be used, but this is the one that gives the best results
among the most common ones. To find the global clustering, we
build the consensus matrices using 1000 re-samplings of the data,
each time with 80% of the observations and all the features. The
final clustering is done using hierarchical clustering with average
linkage on the consensus matrix. The iCluster model is fitted using
the tune.iCluster2 function of the R package iCluster (Shen, 2012),
with number of clusters set to six. For Clusternomics we use the
contextCluster function of the R package clusternomics Gabasová
(2017a), providing the true number of clusters both for the partial
and global clusterings. To assess the impact of RBF kernel parameter
choice, we consider two ways to set the free parameter, r, of the ker-
nel. In one setting we fix r¼1, a common default value. In the se-
cond setting, r is tuned for each dataset to maximize the average
ARI between the clustering obtained with kernel k-means using the
RBF kernel and the true clusters (more information about this pro-
cedure can be found in the Supplementary Material). Although this
procedure clearly could not be applied in practice (where the true
clustering is unknown), it is used here to determine a putative upper
bound on the performances of MKL with this kernel.

4.1.2.1 Similar datasets. We combine four datasets that have the
same clustering structure and cluster separability. In Figure 4, the
ARI of all considered methods applied to 100 sets of data of this
type is shown. In the first setting, where only variables relevant for
the clustering are present, the localized multiple kernel k-means
with RBF kernel has the highest median ARI, followed by COCA
and KLIC. To cluster the data that include noisy variables, we re-
place the k-means algorithm by the sparse k-means feature selection
framework of Witten and Tibshirani (2010) in COCA and KLIC,
using the R package sparcl (Witten and Tibshirani, 2018). Thanks
to this, the performances of these two methods are not affected by
the presence of irrelevant variables. COCA, in particular, has the
highest median ARI, followed by KLIC. This shows that both meth-
ods work well in the case of multiple datasets that have the same
clustering structure and level of noise and, in contrast to the four
other methods considered here, can be straightforwardly modified
to deal with the presence of irrelevant features.

4.1.2.2 Datasets with different levels of noise. We also compare the
behaviour of all methods in the presence of multiple datasets with
the same clustering structure, but different levels of cluster separabil-
ity. The ARI is shown in Figure 4. We observe that, in each of the
four simulation settings, KLIC and the optimized version of local-
ized multiple kernel k-means with RBF kernel have the highest ARI
scores. The reason for this is that COCA, iCluster and
Clusternomics are not weighted methods, so their ability to recover
the true clustering structure is decreased by adding noisy datasets.
Instead, we have shown in the previous section that KLIC allows to
give lower weights to the noisiest datasets, achieving better perform-
ances. We emphasize that the optimal values of the RBF parameters
have been determined making use of the true cluster labels, which
will not be possible in real applications. The performance achieved
when the RBF kernel parameter, r, is fixed to 1 may therefore be
more representative of what can be achieved in practice.

Overall, these comparisons suggest that KLIC may be a good de-
fault choice, since it can be run in such a way that it is robust to
both the inclusion of noisy variables (via the choice of an appropri-
ate clustering algorithm) and of noisy datasets.

Fig. 3. Results of applying KLIC to datasets with different levels of noise (‘0’ indi-

cates the dataset that has no cluster separability, ‘1’ the dataset with low cluster sep-

arability, and so on). Top: ARI of KLIC applied to each dataset separately (columns

‘0’, ‘1’, ‘2’ and ‘3’) and to subsets of three of those datasets (columns ‘0þ1þ 2’,

‘0þ 1þ3’, ‘0þ2þ3’ and ‘1þ 2þ3’). Bottom: kernel weights associated to each

dataset in each of the experiments with multiple datasets, ordered by cluster separ-

ability. For example, the first subset is ‘0þ 1þ2’ so the weights marked as ‘first’ are

those assigned to dataset ‘0’, ‘second’ are those assigned to ‘1’ and so on. For each

subset of datasets the weights of the noisier datasets (‘first’ and ‘second’) are lower

than those of the ‘best’ dataset in the subset (‘third’). This is reflected in an increased

ARI in each subset, compared with applying KLIC to those datasets separately

Fig. 4. Comparison between KLIC, COCA and other clustering algorithms. The

labels ‘RBF opt.’ and ‘RBF fixed’ refer to the MKL method using an RBF kernel

with either r optimized or fixed at 1 (see text). Top: ARI obtained with each cluster-

ing algorithm using four datasets having the same clustering structure and cluster

separability (as in Fig. 2). Bottom: ARI obtained with COCA and KLIC for each of

the subsets of heterogeneous datasets considered in Figure 3. The high ARI obtained

with KLIC in all settings shows the advantage of using this method, especially when

some of the datasets are noisy
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4.2 Multiplatform analysis of 12 cancer types
The first step of the data analysis is dedicated to replicating the ana-
lysis performed by Hoadley et al. (2014). The DNA copy number,

DNA methylation, mRNA expression, microRNA expression, and
protein expression data were preprocessed in the same way as
Hoadley et al. (2014) did. We then clustered the tumour samples in-
dependently for each dataset, using the same clustering algorithm as

in the original paper. We compared the clusters we obtained to those
reported by Hoadley et al. (2014) for different number of clusters,
and we found that the best correspondence was given by choosing

the same number of clusters as in the original paper, except for the
microRNA expression data, for which we found the best number of
clusters to be seven (instead of 15). Figure 5 (left) shows the MOC

matrix formed by these clusters and the resulting COCA clusters. As
can be seen from the Figure 5, each dataset has some missing obser-
vations. The corresponding entries in the MOC matrix were set to
zero. We chose the number of clusters that maximizes the silhouette,

as suggested by Aure et al. (2017), which is 10.
We then applied KLIC to the preprocessed data, building one

consensus matrix for each dataset, using the same clustering algo-
rithm and number of clusters as for COCA. We assigned weight
zero to every missing observation (more details on how to use KLIC
with incomplete data can be found in the Supplementary Material).

The weighted consensus matrix is shown in Figure 5 (centre). The
weights assigned on average to the observations in each dataset are
as follows: copy number 31.4%, methylation 19.2%, miRNA

17.8%, mRNA 16.4% and protein 15.2%.
Similarly to what was observed by Hoadley et al. (2014), both

the clusters obtained using COCA and KLIC correspond well with

the tissue-of-origin classification of the tumours. However, there are
a few differences between the two: the coincidence matrix is shown
in Figure 5 (right). Further details on how we tried to replicate the

data analysis of Hoadley et al. (2014) and how we applied KLIC to
these data can be found in the Supplementary Material.

4.3 Transcriptional module discovery
We clustered the 551 genes based on the gene expression and tran-
scription factor data using KLIC. For each dataset, the consensus
matrices were obtained as explained in Section 2.1. The clustering
algorithms used in this step were partitioning around medoids
(PAMs; Kaufman and Rousseeuw, 2009) with the correlations be-
tween data points as distances for the gene expression data and
Bayesian hierarchical clustering (BHC) for the transcription factor
data (Cooke et al., 2011; Heller and Ghahramani, 2005). The con-
sensus matrices obtained in this way were then used as input to
KLIC. The algorithm was run with number of clusters ranging from
2 to 20. We found that the silhouette is maximized by setting the
number of clusters to four. Figure 6 shows the weighted kernel ma-
trix given by KLIC where the rows and columns are sorted by final
cluster. Next to it are reported the data, where the observations are
in the same order as in the kernel matrix. The clusters obtained inde-
pendently on each dataset are also shown on the right of each plot.
The kernel matrices of each dataset can be found in the
Supplementary Material.

We also applied COCA to this dataset, with the initial clusters
for each dataset obtained with the same clustering algorithms as
those used for the consensus matrices. The metrics used to choose
the number of clusters for the initial clustering of the expression
data are reported in the Supplementary Material. BHC does not re-
quire the number of clusters to be set by the user. For the final clus-
tering the number of clusters was chosen in order to maximize the
silhouette, considering all values between 2 and 10. This resulted in
choosing the 10-cluster solution.

In order to assess the quality of the clusters, we make use of the
Gene Ontology Term Overlap (GOTO) scores of Mistry and

Fig. 5. Multiplatform analysis of 12 cancer types. Left: matrix-of-clusters of the pan-cancer data, each row corresponds to a cluster in one of the dataset, and each column cor-

responds to a tumour sample. Coloured cells show which tumours belong to each cluster. Grey cells indicate missing observations. Centre: weighted similarity matrix. Right:

Coincidence matrix comparing the clusters given by COCA and KLIC

Fig. 6. Transcriptional module discovery, KLIC output. Left: weighted kernel matrix obtained with KLIC, where each row and column corresponds to a gene, and final clus-

ters. Centre: transcription factor data, where each row represents a gene and each column a transcription factor, black dots correspond to transcription factors that are believed

to be able to bind to the promoter region of the corresponding gene with high confidence; clusters obtained using BHC on the transcription factor data and weight assigned by

KLIC to each data point. Right: gene expression data, where each row is a gene and each column a time point, clusters obtained using PAM on the gene expression data, and

weights assigned by KLIC to each data point
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Pavlidis (2008). Each score is an indication of the number of annota-
tions that, on average, are shared by genes belonging to the same

clusters. These are available for three different ontologies: biological
process, molecular function and cellular component. More details

on these scores and how they are calculated can be found in the
Supplementary Material of Kirk et al. (2012). We report in Table 1,
the GOTO scores of both KLIC and COCA clusters, for both num-

ber of clusters selected by KLIC (4) and COCA (10). We also show
the scores obtained clustering each dataset separately. We observe

that, while in the case of four clusters no information is lost by com-
bining the datasets; by dividing data into 10 clusters one obtains
more biologically meaningful clusters. Moreover, KLIC does a bet-

ter job at combining the datasets, by better exploiting the informa-
tion contained in the data and down-weighting the kernel of the

ChIP dataset, which contains less information. More details about
the kernel matrices and weights can be found in the Supplementary
Material.

5 Discussion

In the first part of this work, we have given the algorithm for

COCA, a widely used method in integrative clustering of genomic
data, highlighting the main issues of using this method. We have

also presented KLIC, a novel approach to integrative clustering, that
allows multiple datasets to be combined to find a global clustering
of the data and is well suited for the analysis of large datasets, such

as those often encountered in genomics applications. A defining dif-
ference between KLIC and COCA is that, while COCA performs a
combination of the clusters found in each dataset, KLIC uses the

similarities between data points observed in each dataset to perform
the integrative step. Moreover, KLIC weights each dataset individu-

ally, which allows more informative datasets to be up-weighted rela-
tive to less informative ones, as demonstrated in our simulation
study. Finally, we have used KLIC to integrate multiple omic data-

sets, in two different real world applications, finding biologically
meaningful clusters. The results compare favourably to those

obtained with COCA.
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