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SARS-COV-2 is prevalent all over the world, causing more than six million

deaths and seriously affecting human health. At present, there is no specific

drug against SARS-COV-2. Protein phosphorylation is an important way to

understand the mechanism of SARS -COV-2 infection. It is often expensive and

time-consuming to identify phosphorylation sites with specific modified

residues through experiments. A method that uses machine learning to

make predictions about them is proposed. As all the methods of extracting

protein sequence features are knowledge-driven, these features may not be

effective for detecting phosphorylation sites without a complete understanding

of the mechanism of protein. Moreover, redundant features also have a great

impact on the fitting degree of themodel. To solve these problems, we propose

a feature selection method based on ensemble learning, which firstly extracts

protein sequence features based on knowledge, then quantifies the importance

score of each feature based on data, and finally uses the subset of important

features as the final features to predict phosphorylation sites.
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1 Introduction

According to the World Health Organization (WHO), Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-COV-2), a novel coronavirus known as Coronavirus

Disease 2019 (Covid-19) infection causing coronavirus disease, is the key viruses of the

pandemic. As of June 2022, there are already a total of 531 million confirmed cases and up

to 6.3 million deaths worldwide. The disease is causing tremendous stress and tension not

only in global healthcare systems, but in a variety of fields. And the impact of the virus far

exceeds that of SARS in 2003 (Cui et al., 2003; Read et al., 2021). Although vaccination

against SARS-COV-2 is now available, the virus cannot be completely eradicated

nowadays due to the huge global population base and the rapid mutation of the

virus, and infection with the novel coronavirus remains severe in most regions (Cai

et al., 2021a; Cai et al., 2021b; Li T. et al., 2021; Song et al., 2021). In response to the

COVID-19 epidemic, the search for potential viral genetic or protein information as soon

as possible will greatly help clinicians to improve diagnostic and therapeutic efficiency and

contribute to the development of more effective treatments. The level of investment in
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vaccine and drug development is high, so a comprehensive

understanding of the molecular mechanisms of SARS-COV-

2 infection and changes in host cellular pathways is essential

for rational drug design (Li F. et al., 2021; Ren et al., 2021; Tang

et al., 2021).

Phosphorylation is one of the most important cellular

biological processes, who is involved in signaling of various

processes, including cell cycle, proliferation and apoptosis

(Hunter, 1998; Lawlor and Alessi, 2001; Cohen, 2002). During

phosphorylation, a phosphate group is added to the side chain of

an amino acid, mainly serine (Ser, S), threonine (Thr, T) or

tyrosine (Tyr, Y), but to a lesser extent to arginine, lysine and

histidine residues (Pearson and Kemp, 1991). Studies have shown

that phosphorylation occurs in 30–50% of all proteins (Pinna and

Ruzzene, 1996). Therefore, accurate prediction of

phosphorylation sites of proteins may help to understand the

overall intracellular activity.

With the development of high-throughput sequencing, the

functions of many phosphorylation sites are well annotated.

Regulated kinases can be easily identified from

phosphorylation sequence, many of which may have become

drug targets with therapeutic potential (Ochoa et al., 2016; Ochoa

et al., 2020). Bouhaddou et al. presented a quantitative mass

spectrometry-based phosphorylated protein proteomics study

that investigated SARS-COV-2 infection in cells, revealing a

reorganization of host and viral protein phosphorylation

(Bouhaddou et al., 2020). Hekman et al. performed a

quantitative phosphorylated protein proteomics study of

SARS-COV-2 infection to find the connection (Hekman et al.,

2020). Due to the biological importance of protein kinases in cell

signaling and the steadily increasing number of reports

identifying phosphorylation sites (Knight et al., 2003), it has

become impractical for experimental molecular biologists to

track all phosphorylation modifications of proteins in their

field of study. Most of the experimental require expensive

equipment and labor.

Therefore, machine learning methods based on high-

throughput obtained sequencing data are heavily used.

QUOKKA applied multiple sequence scoring functions in

combination with optimized logistic regression algorithms to

predict phosphorylation sites (Li et al., 2018). PhosPred-RF (Wei

et al., 2017) and PhosphoSVM (Dou et al., 2014), used only

sequence-based features for random forest (RF) and support

vector machine (SVM) based predictions, respectively.

PhosphoPredict (Song et al., 2017) also used a combination of

sequence and functional features to decipher kinase-specific

substrates and their associated phosphorylation sites. Lv et al.

used word vectors to extract features and LSTM network

architecture for phosphorylation site identification (Lv et al.,

2021).

In this paper, we use machine learning techniques to predict

the phosphorylation sites of SARS-CoV-2 based on protein

sequences combined with amino acid composition,

physicochemical properties and zScale and AESNN3 features.

The problem has been conversion to a two-class classification

problem, where the two classes correspond to phosphorylation

sites and non-phosphorylation sites, respectively. We quantify

the importance of each feature component to select a subset of

features as a preprocessing step. After feature dimensional

reduction, we use the Random Forest algorithm based on

ensemble learning to make predictions for phosphorylation

sites. We outperform other algorithms in accuracy and

number of features in independent test datasets. Figure 1

shows the complete data processing approach.

2 Methods

2.1 Data

In this study, we use experimentally validated

phosphorylation site data from human A549 cells infected

with SARS-COV-2 (Stukalov, 2021), which consisted of

14,119 phosphorylation sites. Since sequences are often

affected by homology and redundancy issues. Therefore,

eliminating sequence redundancy and reducing

homologous sequences are prerequisites for understanding

the dataset and preventing overfitting of the model. To deal

with this effect, Hao et al. used CD-HIT (Li and Godzik, 2006)

to remove homologous sequences with 30% parameters as the

threshold, and truncated the sequences into 33 residues long

sequences centered on S/T and Y sites, so as to compare them

with other phosphorylation prediction methods. To balance

the amount of positive and negative sample data, Hao et al.

randomly selected a subset of non-redundant negative

samples to match the number of positive samples (Basith

et al., 2020; Mei et al., 2021; Wei et al., 2021). A fragment is

defined as a positive sample if its centers S/T and Y are

phosphorylation, otherwise the sample is considered

negative. 20% is used as independent test data. The final

S/T and Y data are obtained in Table 1.

2.2 Feature extraction

In general, machine learning cannot directly process

sequence data, so protein sequences need to be encoded.

The commonly used feature extraction methods, depending

on the diversity of protein, are Amino Acid Composition

(AAC) based on the type and content of amino acids, the

physicochemical properties of amino acid, and n-skip-gram

based on the simple arrangement order of amino acids. In this

study, we mainly use these feature extraction methods of

amino acid content, physicochemical properties and

arrangement order. To convenience the description, the

protein sequence is defined as:
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P � p1p2p3 . . . pL , pi ∈ {A, C, D, . . .Y},

where P is the sequence of a sample, pi is the ith amino acid in the

sequence, and L is the length of sequence.

2.2.1 AAC
Amino Acid Composition (AAC) is a relatively simple

protein feature extraction method, which codes the percentage

of each amino acid type in protein sequence. The AAC feature of

the sequence of an amino acid sample is as follows:

AAC � N(pi)
L

, 0< i≤ 20,

whereN(pi) represents the number of pi in the sequence, and L

represents the length of the sequence. Finally, the dimension of

this feature is 20 × 1.

2.2.2 CTD
Composition (C), Transition (T) and Distribution (D)

represent the amino acid physicochemical features of each

sequence (Govindan and Nair, 2013). This feature divides

amino acids into three grades according to certain properties,

with positive, neutral, negative. C is the percentage of each grade.

T features describe three transitional relationships between

residue pairs, i.e., a negative residue followed by a neutral; a

positive residue followed by a negative; a positive residue

followed by a neutral. D refers to the ratio of the first, 25%,

50%, 75% and the last of amino acid residues of three levels in

each group of amino acids and the length of the whole protein

sequence. CTD is a method without sequence alignment, and its

effectiveness depends largely on the amino acid classification.

2.2.3 188D
Cai et al. (2003) proposed a physicochemical property-based

188D feature based on an extended combination of AAC and

CTD. In this feature, the first 20 features are amino acid

composition, and the percentage of 20 amino acids extracted

from AAC feature types. The remaining 168 features describe

eight physicochemical properties of amino acids, including

hydrophobicity, normalized van der Waals volume, polarity,

polarizability, charge, surface tension, secondary structure, and

solvent accessibility (Govindan and Nair, 2013; Lin et al., 2013;

Zou et al., 2013). For each property, according to the CTD

principle, it is divided into three levels, and then the

FIGURE 1
The method flowchart.

TABLE 1 Phosphorylation data collected in this study.

Data type Residue type Positive samples Negative samples

Train S/T 4308 4308

Y 81 81

Test S/T 1079 1079

Y 21 21
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Composition, Transition and Distribution of the property are

calculated, and each physicochemical property gets a 21-

dimensional numerical feature description. Eight

physicochemical properties are calculated separately and the

results are spliced, and finally 168 features are obtained.

2.2.4 CKSAAP
Composition of K-Spaced Acid Pairs (CKSAAP) encodes the

proportion of amino acid pairs separated by k residues and is

used to characterize the amino acid composition background of

the sequence surrounding the post-translational modification

site. This feature takes into account both sequence and

quantity information of amino acids and is defined as follows:

CKSAAP � Npipj

L
, pi, pj ∈ {A,C,D, . . . ,Y}

j � i + k + 1, i, j≤ L

where Npipj is the content of pipj residue pairs and L is the

length of the amino acid sequence. In this study we use k � 1.

2.2.5 zScale
zScale converts amino acid sequences into five physicochemical

descriptor variables for feature, which are developed by Sandberg

et al., in 1998 (Sandberg et al., 1998), which describe the lipophilic,

steric and electronic descriptors of amino acids, and then is

dimensionality reduced using the PCA method. The zScale

descriptor is used to encode peptides of equal length.

2.2.6 AESNN3
AESNN3 is developed by Lin et al. who apply an artificial

neural network approach to compare protein structures (Lin

et al., 2002; Liu et al., 2019). They encode each amino acid

sequence in 3-dimensional space and find that AESNN3 vector

expression is the best expression method for studying proteins

using neural network methods.

2.3 Feature selection

Protein function is a combination of the type, number, and

sequence of amino acids and the spatial structure of the peptide

chain. Although a great deal of research has been done on the

function of proteins today, there are still many gaps in the

relationship between function and sequence. Moreover, in our

selected feature extraction methods, there are not necessarily

features related to protein phosphorylation. Therefore, the

extracted features need to be filtered, and fewer features are

also more effective in characterizing protein phosphorylation in a

more fundamental way. Here we propose a feature selection

method based on ensembled learning as follows.

In order to find out the important features, we score each

feature component according to its degree of influence on the

classification result. The steps are as follows. Firstly, we

assume that all the extracted features are valid for model

classification. Then we randomly select 70% of the training

data for training the classifier and calculate the classification

accuracy by using the model as score1 in the out-of-bag data.

Then we iterate through each feature component and if the

feature component is important for identifying

phosphorylated sites, then adding interference to the

feature component will have a great impact on the

classification results. Based on this idea, we randomly

disrupted the out-of-bag data with one-dimensional feature

component to ensure consistent data distribution, and used

the classifier trained at 70% to predict the out-of-bag data after

disrupting the one-dimensional feature component to obtain

the classification accuracy score2. The importance score of the

feature is defined as

vimpsi � score1 − score2.

To find the optimal subset of features for each type, we

train the classifier by order accumulating features on the

training data set based on the importance scores of the

features, and calculate the classification accuracy on the test

data. Since some features have no useful information for the

classification, the classification accuracy is incremented and

then smoothed when the features are added according to the

incremental importance score method. And we select the

features with higher accuracy and fewer dimensions of

features as the optimal feature subset. We perform feature

selection for each type of feature in turn and stitch the optimal

feature subset.

2.4 Ensemble classifier

Traditional classifiers are sensitive to the distribution of data,

but it is difficult to calculate the distribution of the high-

dimensional data. Therefore, we use multiple classifiers to

train the data at the same time, and then find the best one to

calculate the feature importance. Here we use common

classifiers, k-neighbors classifier (KNN), support vector

machine (SVM), logistic regression (LR), multilayer

perceptron (MLP), Gaussian naive bayes (GNB), decision tree

classifier (DTC), for ensemble (Pedregosa et al., 2011). In order to

make the method more applicable, we use default parameters for

fitting the data. We divide the training data, part of which is used

to train all classifiers, and part of which is to choose the classifier

that fits the data best. Then the optimal classifier is used to

predict the phosphorylation.
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In this paper, various classifiers are used and the

corresponding classification accuracies are calculated, and the

classifier with best accuracy is recorded. This procedure is

repeated for 100 times. The decision tree classifier is the most

selected classifier. Therefore, we use the random forest method as

the final classifier for predict the phosphorylation.

Because of the ensembled classifier used, its time complexity

will increase, but the time consumption is worth it.

Measurements.

In this paper, in addition to using the commonmeasure ACC

to assess the effectiveness of classification models, we also use

sensitivity (SN), specificity (SP), which is defined as follows

ACC � TP + TN
TP + TN + FP + FN

,

SN � TP
TP + FN

,

SP � TN
TN + FP

,

where TP, FP, TN and FN respectively represent true positive,

false positive, true negative and false negative.

3 Result

We first extract four types of features based on the sequence

of the protein, and then find the optimal subset of each feature

separately. After finding the feature subsets, we use the test set to

calculate the classification accuracy on the optimal subsets, and

then briefly analyze the important features. Finally, we splice the

four important feature subsets and use the ensembled classifier to

predict Phosphorylation.

3.1 Feature contribution

For each type of features, we divide the training data

randomly for training the classifier and selecting the best

classifier, and further calculate the importance score of the

features. The results of feature importance scores for their S/T

data are shown in Figure 2. The figure shows that only a small

fraction of the proposed features have relatively high scores, such

as feature 114th of 188D, which has a 3% impact on the results.

188D, AESNN3 and zScale have a single feature that can have a

maximum of 3% impact on the results, while CKSAAP can only

had only 0.8% effect on the results. Some features have no effect

on the results at all before and after modification, so we use

feature selection to find effective features and reduce feature

dimensionality at the same time.

Due to the large difference in the amount of data between S/T

phosphorylation and Y phosphorylation, we take 30% of the

sample classifiers for the S/T data and used 70% samples for

testing to find the optimal classifier. And the Y data set is trained

using 70% of the training set, 30% to find the optimal classifier.

3.2 Comparison of the different feature

In order to remove the features that have no effect on the

results, we stack the features in order of decreasing feature

importance, and then randomly select 70% of the data set to

train the ensembled classifier, after which the classification

accuracy is calculated on the out-of-bag data set. The accuracy

of the classifier is then plotted for each dimension of the S/T data,

as shown in Figure 3. The figure shows that the accuracy of all

features generally increases first during the process of

FIGURE 2
The scatter plots of feature importance using different feature extraction methods.
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superposition, and then remains stable around a certain value,

and then the accuracy does not increase significantly as the

features increase, and sometimes even decreases. And we

choose the features whose accuracy rate just keeps stable. We

select the top 35, 23, 139 and 122 most important features among

188D, AESNN3, CKSAAP and zScale features, respectively, and

the number of features selected and their accuracy score are in

Table 2.

3.3 Comparison of the different method

After we select the optimal subset of each type of features

based on the classification accuracy curve of Figure 3, we splice

the selected subset of features, where 340 dimensional features

are obtained for S/T data and 340 features are obtained for Y data.

After that we use the random forest classifier for predicting the

samples. We use all the training data to train the classifier and

then come up with an independent test set for prediction. Then

we compare with other methods on the same dataset, the results

are shown in Table 3.

FIGURE 3
Accuracies derived from the incremental strategy using different feature extraction methods.

TABLE 2 Accuracy on the same independent test datasets of optimal feature subset.

Data type Feature extract Feature number ACC(%) SN (%) SP (%)

S/T 188D 35 76.04 82.67 49.42

AESNN3 23 74.42 72.01 76.83

CKSAAP 139 72.20 78.18 66.27

zScale 122 72.47 73.40 71.55

Y 188D 22 92.86 95.24 90.48

AESNN3 22 76.19 71.43 80.95

CKSAAP 196 83.35 80.95 85.71

zScale 100 88.10 85.71 85.71

TABLE 3 Comparedwith other methods on the same independent test
datasets.

Data type Method ACC (%) SN (%) SP (%)

S/T DeepIPs 80.63 79.61 83.50

DeepPSP 80.21 76.65 83.78

MusiteDeep2017 80.17 78.87 81.46

Our method 80.81 75.25 86.38

Y DeepIPs 83.33 90.48 80.95

DeepPSP 76.19 95.24 57.14

MusiteDeep2017 80.95 85.71 76.19

Our method 95.24 100 90.48
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As can be seen from Table 3, the classification accuracy of our

method is similar to that of the method (Wang et al., 2017; Guo

et al., 2020; Lv et al., 2021) on the S/T dataset. On the Y data set it

can be seen that the classification accuracy of our method is much

higher than that of the deep learning-based method. This is due

to the fact that there is a larger amount of S/T and the neural

network can train the parameters better, but for Y data, there are

only 204 data, which is not enough for the deep learning model to

converge. This also shows the drawback of neural networks,

which cannot train a good model when the amount of data is

small.

4 Discussion

By analyzing the extracted features, we find that the

classification accuracy is low when using the optimal subset of

features extracted from a single type of features, such as the S/T

data set are at 75%, while when we splice the optimal subset of

four types of features, the classification accuracy can reach

80.81%. This also shows that when detecting phosphorylation

site, the features are not well identified when using one type

feature alone using machine learning for classification. When we

ensemble multiple features, it is possible to capture the features

that have an important role.

From Table 3, the deep learning methods are based only on

data-driven for encoding protein sequences (have on functional

knowledge of the protein), and although these methods achieve

more than 80% accuracy on both S/T data sets, this is only

because of the large amount of S/T data that allows the neural

network to learn associations between features autonomously.

However, for Y data, we find that the accuracy of the neural

network is far behind that of our proposedmethod. And when we

use only the first 22 of 188D features, we can achieve 92.86%

accuracy. This also illustrates the effectiveness of our method of

extracting features even using knowledge-driven and data-driven

extraction of effective features.

While for the most important features found for example in

the S/T dataset 188D features, the most important features are

the last, first and the third quartile one of the features which is the

positive, respectively. This indicates that the positive charge

property of SARS-COV-2 positive samples occupies an

important position in the classification of phosphorylation

sites. The 21th and 22th features also illustrates the

hydrophobicity of SARS-COV-2 protein. This is also

consistent with the study by Gao et al. (2021). The remaining

important features are the 63th which is amino acid composition

with Polar polarity at 8.0–9.2, and proline amino acid content,

the 167th which is the burned category of solvent accessibility, the

105th which is the neutral category of charge, the 62th which is

amino acid composition with polar polarity at 4.9–6.2, etc.

In contrast, sequence-based features, such as CKSAAP and

zScale features, are not suitable for short sequence amino acid

feature processing because the short amino acid sequences result

in a large number of features of this type with zero.

5 Conclusion

This study uses a computational biology approach to explore

the nature of phosphorylation of SARS-COV-2 to make a small

contribution to SARS-COV-2 drug discovery. In this study, an

ensembled learning-based feature selection method is proposed

that combines knowledge-driven and data-driven approaches to

find out the important features for protein phosphorylation site

prediction, then which a subset of important features based on

heavier amino acid feature extraction rules are spliced for

prediction. Comparing with other neural network-based

methods, the results show that our method can not only

obtain high accuracy on small samples, but also find

biological features related to phosphorylation sites. This also

indicates the accuracy, reliability and interpretability of our

method. Most importantly the model is built to be of

particular value in predicting the phosphorylation sites in host

cells infected with SARS-COV-2.
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