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Identification of cell senescence
molecular subtypes in
prediction of the prognosis
and immunotherapy of
hepatitis B virus-related
hepatocellular carcinoma

Xue Yu1,2†, Peng Chen3†, Wei Yi2, Wen Ruan1 and Xiaoli Xiong2*

1School of Medicine, Jianghan University, Wuhan, China, 2Department of Integrated Chinese and
Western Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital),
Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China,
3Department of Respiratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare
Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
Hepatitis B virus (HBV)-infected hepatocellular carcinoma (HCC) has a high

incidence and fatality rate worldwide, being among the most prevalent

cancers. The growing body of data indicating cellular senescence (CS) to be

a critical factor in hepatocarcinogenesis. The predictive value of CS in HBV-

related HCC and its role in the immune microenvironment are unknown. To

determine the cellular senescence profile of HBV-related HCC and its role in

shaping the immune microenvironment, this study employed a rigorous

evaluation of multiple datasets encompassing 793 HBV-related HCC

samples. Two novel distinct CS subtypes were first identified by nonnegative

matrix factorization, and we found that the senescence-activated subgroup

had the worst prognosis and correlated with cancer progression. C1 and C2

were identified as the senescence-suppressed and senescence-activated

subgroups. The immune microenvironment indicated that C2 exhibited a

relatively low immune status, higher tumor purity, and lower immune scores

and estimated scores, while the C1 subgroup possessed a better prognosis. The

CS score signature based on five genes (CENPA, EZH2, G6PD, HDAC1, and

PRPF19) was established using univariate Cox regression and the lasso method.

ICGC-LIRI and GSE14520 cohorts were used to validate the reliability of the CS

scoring system. In addition, we examined the association between the risk

score and hallmark pathways through gene set variation analysis and gene set

enrichment analysis. The results revealed a high CS score to be associated with

the activation of cell senescence-related pathways. The CS score and other

clinical features were combined to generate a CS dynamic nomogram with a

better predictive capacity for OS at 1, 2, and 3 years than other clinical

parameters. Our study demonstrated that cellular senescence patterns play a

non-negligible role in shaping the characteristics of the immune

microenvironment and profoundly affecting tumor prognosis. The results of
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this study will help predict patient prognosis more accurately and may assist in

development of personalized immunotherapy for HBV-related HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) is the third leading cause

of cancer-related fatalities globally, with limited treatment

options, high recurrence rates, and poor prognoses. Chronic

infection by hepatitis B virus (HBV) is the main cause of

hepatocellular carcinoma (HCC) worldwide, which threatens

human health and quality of life (1–3). As an increasing number

of HBV-related HCCs are diagnosed early, treatment efficacy has

significantly improved (4). However, robust prognostic

signatures of HBV-related HCC remain unavailable. Moreover,

patients with similar tumor stages or pathologic structures may

have notably different prognoses, owing to genetic heterogeneity

(5, 6). Therefore, it is essential to explore novel and reliable

signatures for the precise prognostic prediction of HBV-related

HCC. Cellular senescence is a permanent state of cell cycle arrest

and is an essential hallmark of malignancy (7). HBV has been

linked to telomere shortening (8), leading to hepatocellular

senescence and eventually decompensated cirrhosis (9, 10).

Cellular senescence displays dichotomous behavior during

tumor progression. On the one hand, senescence is an effective

barrier to stopping cell proliferation and preventing cells from

transforming into infinitely proliferating tumor cells (11), as well

as to propagation of ontogenetically activated cells (12). In

contrast, the senescent microenvironment secretes pro-

inflammatory components due to deficient immune

surveillance, thereby generating a pro-tumorigenic milieu that

stimulates cancer genesis (13).

There were accumulating evidence suggestting that

senescence reprogramming is linked to the mediation of

cancer progression (14), metastasis (15), and formulation of

the immune microenvironment (16). Through a procedure

termed senescence-associated secretory phenotype (SASP),

which occurs outside the cell, senescent tumor cells possess the
, Tumor immune
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ability to remodel the tumor microenvironment (TME) (17).

Paracrine secretion of pro-inflammatory cytokines, chemokines,

growth factors, and proteases (e.g., IL-6, IL-8, and TGF-b) by
senescent cells in the TME via SASP boosts immune

surveillance. It promotes tumor immune clearance by

transforming the surrounding non-senescent cells into

senescent cells. In contrast, maladaptive senescence increases

the number of senescent tumor cells to attract and activate

myeloid derived suppressor cells (MDSCs) and M2macrophages

via SASP, impairing senescent tumor cell clearance and secreting

pro-angiogenic substances to enhance vascularization (18, 19).

However, the role and mechanism of cellular senescence in the

progression and TME formation of HBV-related HCC

remains unclear.

In this study, we first identified two CS-based clusters in a

cohort of patients via the nonnegative matrix factorization

(NMF) algorithm. By delineating the two CS-based

molecular clusters, we found that they were characterized

by diverse clinical features, immune microenvironment

characteristics, and biological molecular pathways. The

immune microenvironment indicated that C2 senescence-

activated clusters had a relatively low immune status and

higher tumor purity and presented lower immune scores and

estimated scores, while the C1 senescence-suppressed

subgroup had a better prognosis . Importantly , we

established a novel CS scoring system based on the

expression patterns of five CSRGs. It is applicable for

predicting the prognosis and immune environment of

patients with HBV-related HCC.
Materials and methods

Preprocessing of hepatocellular
carcinoma dataset and download
of cellular senescence genes

The Cancer Genome Atlas (TCGA; https://portal.gdc.

cancer.gov/), Gene Expression Omnibus (GEO; https://www.

ncbi.nlm.nih.gov/geo/), and International Cancer Genome

Consortium (ICGC; https://dcc.icgc.org/) were used to
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procure and file gene expression profiles of patients with HBV-

related HCC and combined detailed clinical cohort

information. In the current study, we included three

independent liver cancer cohorts for the analysis (TCGA-

HCC, GSE14520, and ICGC-LIRI). The clinical baseline

characteristics of the three datasets are illustrated in Table 1.

We consulted the CellAge database (https://genomics.

senescence.info/cells/index.html), which comprises 279

experimentally validated cellular senescence genes. In HBV-

related HCC cohorts, we used the ComBat package (20) to

correct batch effects from different datasets.
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Univariate cox regression and
unsupervised clustering of cell
senescent-related subtypes

Before further analysis, samples with less than 30 days of the

follow-up period were excluded. First, we performed a univariate

Cox approach using the survival package to identify the gene set for

cellular senescence associated with prognosis. P < 0.001 in the

univariable Cox regression analysis was considered statistically

significant. The liver cancer cohort was then precisely grouped

using the clustering tool of an unsupervised clustering algorithm. A
TABLE 1 Baseline characteristics of patients in the training and two validation datasets.

Level Training dataset Validation datasets

TCGA-LIHC, n = 355 GSE14520, n = 203 ICGC-LIRI, n = 243

Sex Male 240 (67.6) 175 (86.2) 182 (74.9)

Female 115 (32.4) 28 (13.8) 61 (25.1)

Age in years ≤50 73 (20.6) 100 (49.3) 17 (7.0)

>50 282 (79.4) 103 (50.7) 226 (93.0)

HBV infection No 22 (6.2) 6 (3.0) /

Yes 134 (37.7) 195 (96.0) /

Unknown 199 (56.1) 2 (1.0) /

HCV infection No 57 (16.1) / /

Yes 99 (27.9) / /

Unknown 199 (56.1) / /

Alcohol consumption No 232 (65.4) / /

Yes 113 (31.8) / /

Unknown 10 (2.8) / /

Cirrhosis No / 16 (7.9) /

Yes / 187 (92.1) /

Child-Pugh stage A 211 (59.4) / /

B/C 22 (6.2) / /

Unknown 122 (34.4) / /

AFP in ng/mL ≤300 206 (58.0) 108 (53.2) /

>300 63 (17.7) 92 (45.3) /

Unknown 86 (24.2) 3 (1.5) /

Tumor size in cm ≤5 / 134 (66.0) /

>5 / 69 (34.0) /

Tumor number Solitary / 163 (80.3) /

Multiple / 40 (19.7) /

Edmondson grade I/II 227 (63.9) / 158 (65.0)

III/IV 128 (36.1) / 65 (26.7)

Unknown 0 / 20 (8.2)

Vascular invasion No 199 (56.1) / /

Yes 102 (28.7) / /

Unknown 54 (15.2) / /

AJCC stage I/II 161 (79.3) 263 (74.1) 146 (60.1)

III/IV 42 (20.7) 97 (39.9)

BCLC stage A / 157 (77.3) /

B/C / 46 (22.7) /
HBV, hepatitis B virus; HCV, hepatitis C virus.
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total of 793 meta-cohorts of HBV-related HCC patients, including

three datasets, were utilized to authenticate the HCC cohort

senescence subtypes based on the expression profiles of 51

prognosis-related cellular senescence genes as screened by

univariate Cox regression. The optimal K value, in which the K

value was adopted as the number of subgroups, was chosen at the

point where the magnitude of the covariance correlation coefficient

started to decrease with an increasing number of optimal clusters

(21); thus, two cellular senescence subtypes, C1 and C2, were

inscribed. The cancer subtype package performs an unsupervised

clustering algorithm (22). Survival analysis of the two subtypes and

genes associated with cellular senescence prognosis were visualized

by the “survival” and “survminer” R packages (23), in which the

differences with p-values less than 0.05 were statistically significant.
Analysis of the senescent enrichment
hallmarks and clinical characteristics
in different subtypes

The “clusterProfiler” package in the R software was utilized

to undertake gene set enrichment analysis (GSEA), and the

HALLMARK gene sets were adopted as the enrichment gene sets

(24). Gene set variation analysis (GSVA) was also performed

using the R program’s “GSVA” package (25). We then employed

the limma package to analyze the differences in the results of

different subtypes of GSVA and visualized them in the form of

heat maps using the heatmap package. Subsequently, a total of

343 TCGA-HCC cohort patients with clinical information of

different subtypes were included for clinical correlation analysis,

with C1 and C2 clusters having different clinical characteristics.
Analysis of the composition of the
immune microenvironment in cellular
senescence subtypes

To further investigate the differences in tumor immune

composition due to the CS process, ESTIMATE (26) and

single-sample gene set enrichment analysis (ssGSEA)

algorithms (27, 28) were used to evaluate the immune-related

scores and functions between CS patterns.
Derivation and verification of the cellular
senescence score

First, we performed further filtering based on the 51

prognosis-related cellular senescence genes that were

previously identified as significant. To formulate the CS score

model and avoid an over-fitted scenario, the “glmnet” R package

was employed for the lasso algorithm, and the following

equation was implemented to determine the risk score for
Frontiers in Immunology 04
each patient (29). CS risk score=∑Gi∗Bi, where Gi is the

expression level, and Bi is the coefficient. Depending on the

median CS score, the cohort patients were split into a low-risk

group and a high-risk groups. Subsequently, a dimensionality

reduction investigation between various risk subgroups was

undertaken to utilize principal component analysis (PCA) and

the nonlinear dimensionality reduction approach (tSNE).

Kaplan-Meier survival data were used to investigate the

connection between CS scores and OS. A time-independent

survival receiver operating characteristic (ROC) curve was also

plotted to assess its predictive usefulness. The other two cohorts

served as the test and validation datasets, respectively, whereas

the TCGA-HCC cohort was used as the training dataset to create

the model.
Construction of the WGCNA to detect
the modules correlated to cellular
senescent properties

The underlying co-expression modules positively linked

with the high- and low-risk groups were uncovered by

generating a weighted gene co-expression network analysis

using the WGCNA program (30), which further revealed

molecular functional differences between the high- and low-

risk groups. The soft thresholds for the scale-free networks were

determined as b=14. The similarity of the topological overlap

matrices was evaluated to assess the distance between gene

modules. Furthermore, we regarded the CS score as a clinical

factor and examined the relationship between the different gene

modules. Spearman correlation coefficients between high- and

low-risk traits and functional modules were dominated by the

correlation index and matching p values. Gene significance (GS)

and module membership (MM) were computed for each

module. After selecting the modules that were most closely

related to the high- and low-risk groups, gene ontology (GO)

and Kyoto encyclopedia of genes and genomes (KEGG) analyses

were performed on the chosen modules.
Correlation analysis of the CS score
and immune regulation

To measure the immunity landscape between different risk

groups, seven algorithms (CIBERSORT, MCPcounter,

QUANTISEQ, XCELL, CIBERSORT-ABS, EPIC, and TIMER)

from TIMER 2.0 (31) (http://timer.cistrome.org/) were

implemented. Therefore, correlation and immune infiltration

qualification evaluations were used to evaluate immune

infiltration between distinct CS groups. The immune

checkpoint expression matrix was extracted and incorporated

into subsequent correlation investigations.
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Establishment and validation of the
nomogram containing senescence
risk coefficients

The CS risk score was assessed using univariate and

multivariate Cox regression models to determine whether it is

a reliable prognostic indicator for HBV-related HCC

populations. Additionally, we used the “RMS” R package to

create a dynamic nomogram model with CS risk score

parameters for overall survival forecasting. The generated

nomogram included two factors for the risk score and

variables for the clinical stage. We also presented the

calibration curve, the 45° line reflecting the best prediction, to

further assess the accuracy of the nomogram plot. The

consistency index (C-index) between actual and projected

probabilities was used to calculate the predictive capacity of

the dynamic Norman plot. Furthermore, we tested the

prognostic diagnostic effectiveness of the dynamic Norman

diagram using time-dependent ROC analyses (1, 2, and 3

years). Moreover, we performed decision curve analysis (DCA)

using the R package “rmda” (32) to examine the clinical value of

the dynamic nomogram.
Statistical analysis

In this investigation, categorical and quantitative data were

juxtaposed using chi-square and Mann-Whitney U tests. Visual

and statistical comparisons were performed using R version

4.0.2. Differences between the high- and low-risk groups were

tested using the Mann–Whitney test for non-normally

distributed variables and the unpaired t-test for normally

distributed variables.R software (version 4.0.3) was used for all

statistical analyses, and a two-sided P value of 0.05 was set as the

threshold for significance.
Result

Identification of cell senescence
gene-based subtypes in the
combined meta-data cohort

We first performed a univariate Cox analysis using the

relevant cellular senescence gene expression profiles from

TCGA and clinical data to identify 51 cellular senescence-

associated genes affecting the overall survival time in liver

cancer (Figure 1A). Among the 51 prognosis-related CS genes,

12 had HR values less than 1, and most of the others were risk

factors with HR values >1. After correcting for batch effects, we

performed an unsupervised pattern analysis on the combined

metadata cohort (TCGA-HCC, GSE14520, and ICGC-LIRI) that
Frontiers in Immunology 05
consisted of data of all 793 samples to better comprehend the

cellular senescence patterns in HBV-related HCC. The

ConsensusClusterPlus package was then used to evaluate the

stability of the clusters based on the 51 prognosis-related genes

previously screened, and we observed that two clusters exhibited

the ideal number. (Figures 1B, D, E). We then performed

unsupervised consensus clustering on the above cohort

samples to identify CS subtypes, further PCA analyses of

which revealed distinct discrimination between the two

phenotypes (Supplementary Figure 1). We termed these

cellular senescence-suppressed (C1) and senescence-activated

(C2). Furthermore, overall survival (OS) analysis revealed that

the C1 cluster had a much better prognosis than the C2 cluster

(P<0.001, log-rank test; Figure 1C).
GSVA analysis of the CS-enrichment
pathway hallmarks

Furthermore, to investigate the link between enriched

pathways and the survival of HBV-related HCC CS patterns,

we utilized GSVA analysis to elucidate the discrepancies between

enrichment pathways (Figure 2A). GSVA results showed that

many differentially expressed pathways were enriched among

subtypes, which were then visualized using a heat map.

Compared with cluster 1, pathways related to cell cycle

regulation, G2M checkpoint, DNA damage repair, and spindle

formation were significantly overexpressed in cluster 2. In

addition, the C2 subclass was significantly enriched in the E2F

transcription factor pathway and the C-MYC target gene

pathway relevant to tumor progression. In contrast,

adipogenesis, bile acid metabolism, and fatty acid metabolism

pathways related to lipid metabolism were significantly

downregulated. This is one of the reasons why the C2 subtype

has a worse prognosis than the C1 subtype. This phenomenon

was consistent with previous reports that identified the

manifestation of senescent subtypes of clear cell renal cell

carcinoma (33).
Association of cellular senescence
patterns with clinical characteristics
of HBV-related HCC Patients

We compared the various clinical features of different

patterns to determine the role of cellular senescence in

advancing HBV-related HCC. We found that C1 and C2 had

significant differences in survival, T stage, and stage features

(Figure 2B, P<0.05). This result indicated that cellular

senescence patterns might be attributed to the prognosis and

progression of HBV-related HCC.
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B

C

D

E

A

FIGURE 1

Clustering of cell senescence genes–based subtypes in combined meta-data cohorts using NMF algorithm. (A) Screening of prognostic CSRGs
by univariate Cox regression analysis. (B) The optimal cluster number was determined to be two. (C) The log-rank test P-value for survival curve
analysis of the patients in the two clusters. (D) The clustering heat map visualizes the degree of segmentation in sample clustering. (E) The
average silhouette width represents the coherence of clusters.
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Cellular senescent subpopulations
exhibit different tumor immune
function characteristics

Next, we performed immunological analysis of both

subtypes. The estimation algorithm revealed that the

stromal score, as well as the estimated score, was higher in

subtype C1 than in subtype C2. At the same time, tumor

purity was higher in C2 than in C1, and no significant

differences were found between the two immune scores

(Figures 3A, B). The infiltration of immune cells into

various cellular senescence subpopulations was estimated
Frontiers in Immunology 07
using the ssGSEA algorithm. We revealed that compared to

cluster 2, cluster 1 had significantly higher levels of para-

inflammation, B cells, cytolytic activity, and interferon (IFN)

response infiltration. Dendritic cells, APC co-inhibition cells,

macrophages, MHC class 1, and T cell co-inhibition were far

more prevalent in cluster 2 than in cluster 1 (Figures 3C, D).

Furthermore, TIDE algorithm was applied to predict the

likelihood of immunotherapy response of each CS-based

patterns of HBV-related HCC patients (Supplementary

Figure S1). Based on the TIDE algorithm, C2 was predicted

to be much more responsive to immunotherapy than C1, and

C1 had a higher TIDE score than the C2 cluster.
B

A

FIGURE 2

GSVA analysis of the senescent-enrichment pathway hallmarks and clinical characteristics in distinct CS patterns. (A) The differences between
the C1 and C2 subtypes in the enriched hallmark pathways. (B) Pie charts illustrated the different distribution of clinical characteristics between
the two subtypes between C1 and C2 subtypes in TCGA-HCC cohorts.
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FIGURE 3

The correlation between the tumor microenvironment features and the CS patterns. (A) Quantitative comparison of estimated, immune and
stromal scores of the two phenotypes. (B) Quantitative comparison of the tumor purity of the two phenotypes. (C) Visualization of the two CS
phenotypes by heat map to obtain the enrichment levels of 29 immune-related cells as assessed by the ssGSEA algorithm and quantitative
analysis. *p < 0.05; ***p < 0.001; ****p < 0.0001. (D) Box plots exhibited the degree of difference in immune composition between the two
phenotypes.
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Development of CS score for prediction
prognosis

CS patterns profoundly drive tumor development and reshape

the immune microenvironment, resulting in diverse patient

prognostic outcomes. Therefore, we constructed a multivariate

model containing five CS gene variables (CENPA, EZH2, G6PD,

HDAC1, and PRPF19) to predict the overall survival time in

different patient cohorts by combining univariate Cox lasso

machine learning algorithms (Figures 4A–D). Each of the five

gene expression levels were multiplied by the corresponding

coefficient indices to yield the patient’s individual CS risk scores.

According to Kaplan-Meier analysis, these five genes were

independent prognostic indicators of HBV-related HCC

(Supplementary Figure S2). Using the median of the calculated

scores for cellular senescence, we divided the patients into two

groups with high- and low-risk scores. We observed markedly

worse survival in the group with a high senescence risk score

(Figure 4E). Similarly, PCA and t-SNE evaluations were conducted

to determine whether these two risk groups were distributed. CS

scores for OS at 1, 3, and 5 years were 0.795, 0.745, and 0.690,

respectively, according to time-dependent ROC curve

analysis (Figure 4F).
External verification of the CS signature
in the GSE14520 and ICGC-LIRI cohorts

To confirm the solid prognostic value of the signature, we

further confirmed these conclusions in the testing cohort

GSE14520 and verified them in the ICGC-LIRI cohort. As

mentioned earlier for the previous training set, the formula was

employed to calibrate the CS risk scores in GSE14520 (n=242) and

ICGC-LIRI (n=232), and the cohorts were then partitioned into

high- and low-risk groups following the training cohort. The PCA

and tSNE tests also revealed considerable differences between the

high- and low-risk groups in the GSE14520 and ICGC-LIRI

cohorts, supporting the earlier findings from the training set

(Figures 5A, B and 6A, B). Mortality increased with increasing

risk scores (Figures 5C–E and 6C–E), with significantly lower OS

in high-risk patients (Figures 5F and 6F). The scoring system in the

GSE14520 predicted AUC values for OS at 1, 3, and 5 years as

0.764, 0.791, and 0.799, respectively, whereas the risk score in the

ICGC-LIRI predicted AUC values for OS at 1, 3, and 5 years of

0.583, 0.650, and 0.628, respectively (Figures 5G and 6G).

Furthermore, we compared this CS signature with those

previously reported ones and found it had displayed comparable,

or even better in a certain condition, AUCs for OS prediction.Most

importantly, this prognostic model demonstrated better reliability

since its performance was satisfactory and consistent in two

external validation sets (Table 2).
Frontiers in Immunology 09
WGCNA analysis

We generated a novel CS-based model to predict HBV-

related HCC survival and TME infiltration in the previous stage.

We formed a gene co-expression network using the WGCNA

package to identify the modules most vital to the CS risk scores

and further investigate the probable biological molecular

functions occurring in the high- and low-risk groups. The

number 14 was selected as the acceptable soft threshold, from

which we constructed a scale-free co-expression network

(Figure 7A). As a result, 14 gene modules were obtained based

on mean hierarchical clustering and dynamic tree clipping

filtering (Figures 7B–D). The results revealed that the brown

module was more associated with the high-risk group (cor=0.68,

P< 3e-48), whereas the turquoise module was more associated

with the low-risk group (cor=0.54, P< 8e-27; Figures 7E–F).

Finally, we filtered the grey and the turquoise modules for

further functional GO (Supplementary Figure S3) and KEGG

(Figures 7F, G) enrichment analyses (Figures 7H). KEGG

enrichment results proved that cell cycle-related pathways

were enriched in the brown module, while lipid metabolism-

related pathways were dominant in the turquoise module.

Moreover, the correlation heatmap further indicated that the

trend of CS scores correlated with multiple cell cycle signaling

pathways and oncogenic signatures, consisting of MYC and

E2F target gene sets, in contrast to pathways such as lipid

metabolism, which were negatively correlated with the CS

scores (Supplementary Figure S3). Our findings also agree with

the current view that CS is accompanied by the cessation of cell

division (39) and abnormal activation of oncogenes (40). Our

results are consistent with the previously identified GSVA

hallmark phenomena in CS patterns. This was further

confirmed from another perspective that a CS score can

accurately distinguish a patient’s cellular senescent state.
Correlation analysis of the CS score and
immune regulation

To further characterize the influence of the proposed cellular

senescence risk score in shaping the immune microenvironment,

we applied seven immune deconvolution methods to draw the

high- and low-risk immune landscapes (Figure 8A).

Comparative analysis of immune cells and functional

pathways supported the existence of distinct immune cell

subsets in the two risk groups for APC co-stimulation:

checkpoint, HLA molecules, MHC class I, T cell co-inhibition,

T cell co-stimulation, and type I and type II IFN responses, along

with B cells, iDCs, mast cells, neutrophils, NK cells, T helper

cells, Th1, Th2, and Treg (P<0.05; Figures 8B, C). Subsequently,

we examined whether immune checkpoint inhibitors were

modulated in response to the CS scores. We found significant
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1029872
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2022.1029872
B

C D

E F

G H

A

FIGURE 4

Establishment of a novel CS score signature. (A) Identification of the respective regression coefficients of 51 prognostic genes by lasso
regression. (B) Lasso regression narrowed down the CS genes to create an optimal multivariate signature. (C) Heat map visualization of the
trend of five candidate genes in the training cohort with CS score. (D) The values of CSRG-based risk scores were distributed in each group of
patients in the high-risk and low-risk groups. (E) PCA and (F) t-SNE reduction illustrated the patients in different risk groups were distributed in
two directions. (G) Survival analysis results of patients of different risk groups in the training cohort. (H) Results of time-dependent ROC curves
for the risk model in the training cohort.
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FIGURE 5

Verification of the CS signature in the testing cohort GSE14520. (A) PCA and (B) t-SNE analysis of the testing cohort GSE14520. (C, D) Patterns
of alteration in patient survival status and survival time between the high- and low-risk groups based on the accumulation in CS scores. (E) Heat
map visualization of the expression trend of 5 CS genes with increasing CS score in the GSE14520 cohort. (F) Survival analysis of patients in the
high-risk and low-risk groups in the validation cohort testing cohort GSE14520. (G) Validation of time-dependent ROC curve results for the risk
model in the cohort.
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FIGURE 6

Validation of the CS signature in the verification cohort ICGC-LIRI. (A) PCA and (B) t-SNE analysis of the ICGC-LIRI cohort. (C, D) Patterns of
alteration in patient survival status and survival time between the high- and low-risk groups based on the accumulation in CS scores. (E) Heat
map visualization of the expression trend of 5 CS genes with increasing CS score in the ICGC-LIRI cohort. (F) Survival analysis of patients in the
high-risk and low-risk groups in the validation cohort ICGC-LIRI. (G) Validation of time-dependent ROC curve results for the risk model in
the cohort.
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differences in the expression of the majority of immunological

checkpoints between the two risk groups (Figure 8D). The

prevalence of most immune checkpoint genes showed a

significantly positive connection between the five CS signature

genes and the CS risk score (Figure 9A, B). These results suggest

that the risk scores may be related to immunotherapy. A

previous study had demonstrated that a higher TIDE score

indicated worse immunotherapy response. Therefore, TIDE

algorithm was employed to predict the clinical response to

anti-PD1 and anti-CTLA4 treatments. The TIDE score in

TCGA-HBV-HCC cohorts with high CS risk score was higher

than that in the low CS risk score subgroup (Supplementary

Figure S1).

Overall, our study indicates that the high CS risk score might

suggest poor outcome of anti-PD1 and anti-CTLA4 therapy.

Meanwhile, CS risk score might be a potential biomarker for

evaluating the immunotherapy effect and prognosis in HBV-

related HCC.
Predictive performance of cellular
senescence model in clinical application

Subsequently, we carried out a subgroup test to evaluate the

prognostic significance of the CS score in subgroups of patients with

different clinical characteristics, in which clinical features included

age (Figures 10A, B), gender (Figures 10C, D), grade (Figures 10E-

H), and stage (Figures 10I-K). The findings demonstrated that the

high-risk group was significantly associated with a worse prognosis

in all subgroups except for female patients (Figure 10D), G1

(Figure 10E), and G4 (Figure 10H). Therefore, univariate and

multivariate Cox regression analyses were conducted to explore

the prospective independence of CSRGS compared with other

typical clinicopathological variables. The results demonstrated

that the CS-score model had a high predictive ability for patient

prognosis in practical applications (Figures 10L, M).
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Comparison of the dynamic nomogram
to prove the predictive value of the CS
score signature

After establishing the dynamic nomogram (Figure 11A),

DCA was used to assess the net clinical benefit of the

nomogram-integrated clinical features of the risk score in

forecasting the probability of survival at 1, 2, and 3 years. As

depicted in Figure 11B-D, the CS risk score and integrated

nomogram exhibited similar clinical benefits in predicting 1-

year survival and were superior to the benefits of other clinical

features. Subsequent analyses demonstrated that the integrated

nomogram had the highest clinical benefit in predicting survival

at 2 and 3 years compared with other clinical features and was

superior to the CS score alone and other parameters. The risk

score and nomogram C-index were superior to any other

independent factor (Figure 11E). The calibration curves

further indicated that the survival outcomes of patients

forecasted by the nomogram at 1, 2, and 3 years remained

strikingly similar to the actual survival results (Figure 11F).

Finally, we performed time-dependent ROC analysis to assess

the predictive validity of the CS nomogram model. The findings

demonstrated AUCs of 0.787, 0.718, and 0.733 for the prediction

of 1-year, 2-year, and 3-year OS, respectively (Figure 11G).

These findings suggest that the CS-score-based dynamic

nomogram can accurately predict the prognosis of HBV-

related HCC.
Discussion

Chronic HBV infection is accompanied by insufficient

immune surveillance (10, 41) and the induction of hepatocyte

senescence (42), which leads to HCC. Thus, HBV represents a

crucial link between cellular senescence and the development of

HCC. The present study revealed the cellular senescence
TABLE 2 The comparison with previously reported clinical signatures.

References Model Training set AUC
(1-, 3-, 5-year OS)

Validation set
one

AUC
(1-, 3-, 5-year OS)

Validation
set two

AUC
(1-, 3-, 5-year OS)

CS signature 5-gene TCGA (n = 343) 0.795, 0.745, 0.690 ICGC (n = 229) 0.764, 0.791, 0.799 GSE14520 (n = 221) 0.583, 0.650, 0.628

Yan et al.
2019 (34)

4-gene TCGA (n = 236) 0.72, 0.71,0.61 TCGA (n = 118) 0.71, 0.57, 0.55 GSE76427 (n = 115) 0.63, 0.66, 0.72

Li et al. 2020
(35)

6-gene TCGA (n = 365) 0.76, 0.68, 0.69 ICGC (n = 243) 0.68, 0.7, 0.68 / /

Zhang et al.
2020 (36)

14-gene TCGA (n = 312) 0.71, 0.74, 0.64 GSE14520 (n = 225) 0.64, 0.59, 0.65 GSE76427 (n = 114) 0.60, 0.61, 0.60

Liu et al.
2020 (37)

4-gene TCGA (n = 343) 0.70, 0.71, 0.68 GSE14520 (n = 215) 0.72, 0.70, 0.68 / /

Li et al., 2022
(38)

6-gene TCGA (n = 343) 0.768, 0.691, 0.666 ICGC (n = 231) 0.683, 0.701, 0.641 / /
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FIGURE 7

WGCNA analysis. (A) The 14 was elected as the soft threshold parameter value to build and fit the scale-free co-expression network. (B)
Clustering of module eigengenes. (C) The branches of the tree diagram correspond to the 14 highly co-expressed gene modules and are color-
coded. (D) Correlation coefficients and corresponding P-values between each color co-expressed gene module and Risk score are shown in
boxes and visualized in different color-block shades. (E) The scatter plot presents the correlation between gene memberships in the brown
module. (F) The scatter plot presents the correlation between gene memberships in the turquoise module. (G) The significant KEGG results of
the Brown module. (H) The significant KEGG results of the Turquoise module.
Frontiers in Immunology frontiersin.org14

https://doi.org/10.3389/fimmu.2022.1029872
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2022.1029872
B

C

D

A

FIGURE 8

The difference in immune infiltration among patients in different risk groups. (A) Seven deconvolution immunization algorithms visualise the
immune cell differences between high and low-risk groups. (B-C) The box plot illustrated the absolute abundance scores of the 16 immune
cells and 13 immune function components in different risk groups. (D) The correlation heatmap between the absolute abundance scores of
immune cells and the immune function and the CS-score. *Adjusted p < 0.05, ** adjusted p < 0.01, *** adjusted p < 0.001.
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activation phenotype to have the following characteristics: 1.

DNA damage response, telomere shortening, and activation of

relevant pathways; 2. cyclin-dependent kinase inhibitors and cell

cycle arrest; and 3. immune senescence. GSVA results further

confirmed the reliability of our CS classification. Cell cycle-

related signals, including G2M checkpoints, E2F targets, MYC

targets, and the accumulation of cellular damage events, such as

DNA repair and apoptosis, as well as mTOR signaling (43), were

enriched in the C2 senescence-activated subtype. The mTOR
Frontiers in Immunology 16
signaling pathway is upregulated in senescent cells, activating the

SASP phenotype, secreting inflammatory factors, promoting

inflammation, and altering the immune microenvironment

(44, 45). Senescent T cells exhibit robust glucose metabolism,

while lipid metabolism is impeded (46), which is consistent with

our GSVA results with more senescent T cell subpopulations in

the C2 subgroup.

We demonstrated that cluster 2 contributed to higher levels

of infiltration of dendritic cells, antigen-presenting cell (APC)
B

A

FIGURE 9

The correlation between immune checkpoint and the CS risk score. (A) The expression of the classic immune checkpoint genes between
different risk groups. (B) The correlation heatmap between classic immune checkpoint genes, the five CS signature genes, and the CS risk score.
*Adjusted p < 0.05, ** adjusted p < 0.01, *** adjusted p < 0.001.
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co-inhibition, macrophages, MHC class 1, and T cell co-

inhibition, whereas para-inflammatory components, B cells,

active cytolytic components, and IFN response were

distributed more in cluster 1 than in cluster 2. The C1 subtype

resembles the T-cell inflammation-like phenotype, characterized

by high expression of chemokines, T-cell markers, and IFN (47).

Furthermore, innate immune recognition of cancer cells early in

vivo involves activation of the type I IFN production pathway.

Tumors can induce host APCs to produce type I IFNs, which in

turn are necessary for the full activation of dendritic cells and

initiation of spontaneous CD8+ T cells, and in turn, this leads to

an immune phenotype of T cell infiltration (48). The immune

landscape in C2 showed that the cellular senescence program

was closely correlated with self-limited antitumor immunity and

immune inhibition. T-cell infiltration has been linked to

favorable clinical outcomes in HBV-related HCC (49–51). A
Frontiers in Immunology 17
recent study also showed that the number of cytotoxic T cells

(CTLs) is reduced during the progressive phase of HBV-related

HCC and is significantly associated with higher mortality and

reduced survival time in HBV-related HCC (50). Furthermore,

we revealed that NKT cells, which are critical for innate

immunity (52), were negatively associated with the risk score

and the five CS genes. Thus, differences in the immune

composition between the two patterns may contribute to the

poor prognosis of the C2 senescence-activated cluster.

Therefore, cellular senescence could reprogram the immune

cell composition of HBV-related HCC, thereby affecting

its prognosis.

Subsequently, using combined univariate Cox and lasso

multiple regression, five CSRGs (CENPA, EZH2, G6PD,

PDAC1, and PRPF19) were employed to design the CS score

signature. In two different cohorts, we verified these findings and
B C D

E F G H

I J K

L M

A

FIGURE 10

Independent predictive analysis and subgroup analysis of CSRGPI. The subgroup survival analysis was stratified by age (A, B), gender (C, D),
grade (E–H), and stage (I–K) to further confirm the risk stratification ability of CSRGPI. (L, M) Forest plot visualization of univariate and
multivariate cox regression results in the TCGA-HCC cohort.
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noticed that patients with high-risk scores had a worse

prognosis. Moreover, CSRGPI can be used as a reliable and

independent prognostic predictor for HBV-related HCC. Recent

reports demonstrated that the five crucial genes has important

roles in HBV-related HCC. CENPA expression is upregulated in

HBV-related HCC; CENPA serves as an oncogene in the

progression of HBV-related HCC (53). High expression of the

EZH2 in HCC accompanies tumor progression and the

immunosuppressive microenvironment (54). Another study

reported that EZH2 was negatively correlated with the IFN-

gamma signaling pathway and positively correlated with the

MYC and glycolytic signaling pathways, with respect to tumor

growth and aggressiveness (55). Glucose-6-phosphate
Frontiers in Immunology 18
diphosphate (G6PD) catalyzes the pentose phosphate pathway,

which controls oxidative stress and glucose metabolism (50). Liu

et al.reported elevated G6PD expression levels in HBV-mediated

liver cancer (56), and another study confirmed that G6PD

knockdown suppressed hepatocarcinogenesis (57), further

confirming the findings of this study. Previous studies have

also demonstrated that HDAC1 modulates the senescence

process of HCC cells (58), as well as that inhibiting HDAC1

expression induces apoptosis in tumor cells (59). PRPF19 is a

predictive factor for worse clinical outcomes in HBV-related

HCC and is associated with tumor immune evasion and

progression (60). Moreover, WGCNA (47) analysis confirmed

the correlation of CS score with cellular senescence signaling and
B C D
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A

FIGURE 11

Establish of CS-dynamic nomogram and evaluate its clinical performance and benefits of HBV-related HCC. (A) The dynamic nomogram
integrates the variables (CS risk scores and stage) for predicting survival status at 1- year, 2-year, and 3-year. (B–D) DCA was employed to report
the respective clinical net benefits of CS dynamic nomogram at 1- year, 2-year, and 3-year. (E) C-index of the nomogram. (F) The CS dynamic
nomogram calibration curves at 1, 2, and 3 years. (G) Time-dependent ROC curves estimate the nomogram’s forecasting value at 1, 2,
and 3 years. ***p < 0.001.
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oncogenic signaling, highlighting the need for the development

of new immunotherapeutic agents.

It has demonstrated that the CS score model was significantly

correlated with the immune microenvironment of HBV-related

HCC. Malignant tumors may avoid immune destruction by

activating immune checkpoint target genes (e.g., PD-1, PD-L1,

CTLA-4, TGF-b, and HAVCR2). We found that the high-risk

group showed a more uniform distribution of immune checkpoint

expression. Similarly, the majority of immune checkpoint genes

showed a favorable correlation with CS-based prediction models.

These results suggest that the CS score may be a reliable biomarker

for TME prediction and may be advantageous for ICI

therapy forecasting.
Frontiers in Immunology 19
Notably, in distinct clinical stratification, the CS score

exhibited remarkable performance in distinguishing fatal

survival outcomes. Finally, we generated a dynamic nomogram

to predict the 1-, 3-, and 5-year survival probabilities of each

patient by integrating the CS score and patient stage. We

performed a series of tests to evaluate the discrimination and

calibration capacities. The results revealed that the CS risk score

is a reliable prognostic indicator to predict the prognosis of

HBV-related HCC based on a CS dynamic nomogram. The

workflow of this study is shown in Figure 12.

We acknowledge that this study has some limitations. First,

the conclusions of the CS model were derived from analysis of a

database that was assumed to be valid. Further panel validation
FIGURE 12

The workflow for this research.
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should be conducted in a multicenter cohort of clinical patients

with HCC in the future, to determine the value of CS scores in

practical clinical applications, and further molecular biological

validation of the CS score and the biological significance of

critical genes in quantifying the senescent score should be

designed. In future studies, we will further explore the aging-

related aspects discussed herein.
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SUPPLEMENTARY FIGURE 1

The TIDE score between the different (A) CS patterns and risk groups (B).

SUPPLEMENTARY FIGURE 2

The PCA down-dimension test exhibited distinct discrimination between

different clusters in meta-cohorts. (A) The PCA analysis between the CS
phenotypes. (B) The survival curve analysis of five CS-genes.

SUPPLEMENTARY FIGURE 3

The PCA down-dimension test exhibited distinct discrimination between
different clusters in meta-cohorts. (A) The PCA analysis between the CS

phenotypes. (B) The survival curve analysis of five CS-genes.

SUPPLEMENTARY FIGURE 4

GO analysis of co-expressed gene modules and correlation between
CSRG risk score and the hallmark pathway. (A) GO enrichment analysis

and classification based on the brown module were performed on three
categories: CC, MF, and BP. (B) GO enrichment analysis and classification

based on three categories of CC, MF and BP were performed on the

turquoise module. (C) The correlation heat map of CS risk score and the
hallmark pathway. (D) The correlation heat map of CS risk score and GSVA

enrichment pathway.
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