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ABSTRACT Obstructive sleep apnea (OSA) is a common disorder characterized by
episodic obstruction to breathing due to upper airway collapse during sleep. Be-
cause of the episodic airway obstruction, intermittently low O2 (hypoxia) and high
CO2 (hypercapnia) ensue. OSA has been associated with adverse cardiovascular and
metabolic outcomes, although data regarding potential causal pathways are still
evolving. As changes in inspired O2 and CO2 can affect the ecology of the gut mi-
crobiota and the microbiota has been shown to contribute to various cardiometa-
bolic disorders, we hypothesized that OSA alters the gut ecosystem, which, in turn,
exacerbates the downstream physiological consequences. Here, we model human
OSA and its cardiovascular consequence using Ldlr�/� mice fed a high-fat diet and
exposed to intermittent hypoxia and hypercapnia (IHH). The gut microbiome and
metabolome were characterized longitudinally (using 16S rRNA amplicon sequencing
and untargeted liquid chromatography-tandem mass spectrometry [LC-MS/MS]) and
seen to covary during IHH. Joint analysis of microbiome and metabolome data re-
vealed marked compositional changes in both microbial (�10%, most remarkably in
Clostridia) and molecular (�22%) species in the gut. Moreover, molecules that al-
tered in abundance included microbe-dependent bile acids, enterolignans, and fatty
acids, highlighting the impact of IHH on host-commensal organism cometabolism in
the gut. Thus, we present the first evidence that IHH perturbs the gut microbiome
functionally, setting the stage for understanding its involvement in cardiometabolic
disorders.

IMPORTANCE Intestinal dysbiosis mediates various cardiovascular diseases comorbid
with OSA. To understand the role of dysbiosis in cardiovascular and metabolic dis-
ease caused by OSA, we systematically study the effect of intermittent hypoxic/hy-
percapnic stress (IHH, mimicking OSA) on gut microbes in an animal model. We take
advantage of a longitudinal study design and paired omics to investigate the micro-
bial and molecular dynamics in the gut to ascertain the contribution of microbes on
intestinal metabolism in IHH. We observe microbe-dependent changes in the gut
metabolome that will guide future research on unrecognized mechanistic links be-
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tween gut microbes and comorbidities of OSA. Additionally, we highlight novel and
noninvasive biomarkers for OSA-linked cardiovascular and metabolic disorders.
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Obstructive sleep apnea (OSA) afflicts nearly 12% of the adult population in the
United States, with an annual cost burden of nearly $149.6 billion, per a recent

study commissioned by the American Academy of Sleep Medicine (1). Timely diagnosis
and treatment of OSA improves not only sleep and cognitive function but also
management of comorbid cardiometabolic diseases (CMDs). Therefore, identifying the
mechanisms underlying the downstream consequences of OSA would aide in devel-
opment of effective treatment modalities, reducing overall health care utilization.

OSA is marked by changes in oxygen and carbon dioxide-inspired concentrations,
which impact the gut microbial community (2). Since the gut microbiota plays a key
role in the metabolism of dietary precursors, including lipids, cholesterol, and choline,
it impacts the cardiometabolic health of the host (3). Gut dysbiosis has already been
linked to an array of cardiovascular and metabolic disorders, such as hypertension, type
2 diabetes, hepatic steatosis, and atherosclerosis (4, 5). Additionally, previous work has
identified specific gut bacteria to be significantly correlated with plasma cholesterol
and apolipoprotein levels (6). Thus, probing this commensal ecosystem may provide a
valuable avenue of investigation to understand the mechanisms underlying the car-
diovascular consequences of OSA. In this study, we investigated the taxonomic and
molecular alterations in the gut microbiome that potentially mediate the interplay
between OSA and related CMDs.

We used atherosclerosis-prone (Ldlr�/�) adult mice fed a high-fat diet (HFD) en-
riched in cholesterol and milk fat (resembling Western dietary practices) to evaluate
atherosclerosis risk in OSA. We previously demonstrated that IHH increases atheroscle-
rosis plaque formation in this model (7). As episodic hypoxia and hypercapnia mimic
the changes in blood gases that occur in OSA-driven downstream consequences (8),
these mice were exposed to IHH (treatment group; n � 8) or air (control group; n � 8)
and examined longitudinally for 6 weeks (see Fig. S1 in the supplemental material).
Fecal samples, representative of the gut ecosystem, were collected at baseline and
twice each week thereafter, and the microbiome and metabolome were profiled using
16S rRNA amplicon sequencing and liquid chromatography-tandem mass spectrometry
(LC-MS/MS)-based untargeted mass spectrometry, respectively. These data were pro-
cessed to obtain relative abundances of microbial and molecular species per sample
(referred to as “feature tables” henceforth), which were used for comparing mice
mimicking humans with OSA and control mice.

First, we performed principal-coordinate analysis (PCoA) on the microbiome and
metabolome feature tables to identify major factors driving the clustering of samples.
Figure 1 shows the PCoA results plotted against time to visualize the dynamics of
clustering based on the gut microbiome (unweighted UniFrac distances [9] are shown
in Fig. 1a) and the metabolome (Gower distances [10] are shown in Fig. 1b and c) as the
duration of IHH exposure increases. Here, the first fecal sample represents the baseline
gut composition before animals were switched to an HFD. There is a rapid shift in both
microbial and molecular composition due to HFD alone, consistent with similar previ-
ous findings (11–13). Moreover, starting from a highly congruent gut composition,
IHH-exposed mice significantly diverge from controls with increasing exposure duration
(a permutational multivariate analysis of variance [PERMANOVA] test was performed
per time point [Table S1]). This demonstrates that prolonged IHH exposure (analogous
to chronic OSA) cumulatively perturbs the gut microbiome and metabolome. We tested
the relationship between the two omics data sets by superimposing the principal
coordinates computed from microbiome and metabolome data (procrustes analysis
[14]) (Fig. 1d and e). The ordination spaces are correlated (Mantel test r statistic � 0.36,
P � 0.001), and changes in the metabolome and microbiome of samples within the
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treatment groups over time are proportional, suggesting microbe-dependent changes
in intestinal metabolism with chronic OSA.

We then tested for specific microbes and metabolites that changed with OSA. More
than 80 (of ~730) microbial features differed significantly between the IHH-exposed
group and controls (by permutation test with discrete false-discovery rate [FDR]
correction [15]). Figure S2a presents a global overview of these changes in gut
microbiota per sample (sorted by duration of treatment). Table S2 provides a list of
these differentially represented bacteria that potentially contribute to alterations in gut
metabolism due to IHH. Figure 2a to f display trends in relative abundances of bacteria
showing the largest differences, which belong to the Mogibacteriaceae (family), Oscil-
lospira (genus), Lachnospiraceae (family), and Clostridiaceae (family). Previous studies
have consistently associated these taxonomic groups with metabolic and inflammatory
disturbances in the host (16, 17), which suggests that related mechanisms might be at
play in driving the consequences of hypoxic and hypercapnic stress.

Using the same statistical approach, we found that more than 380 out of ~1,700
molecular species (MS1 spectral features) differed significantly in relative abundance in
animals exposed to IHH. Figure S2b provides a global representation of these differ-
entially abundant molecules in samples belonging to treatment and control groups and
sorted by treatment duration (Table S3 provides a comprehensive list of these mole-
cules). To gain insight into the structures of these differentially abundant metabolites,
we performed molecular networking using Global Natural Products Social Molecular
Networking (GNPS) (18). The molecular network is constructed using a cosine similarity
measure between tandem mass spectral data and then visualized using cytoscape (19)

FIG 1 Principal-coordinate analysis (PCoA) and procrustes analysis of the gut microbiome and metabolome. (a) PCoA of the microbiome (16S rRNA sequencing)
data using unweighted UniFrac distances; (b and c) PCoA of the metabolome (untargeted LC-MS/MS) data using Gower distances; (d and e) procrustes analysis
of the microbiome and metabolome data sets with (d) and without (e) baseline samples. The duration of treatment (in weeks, with an interval length of
0.5 week) is constrained to be one of the axes in the ordination plots (a to e). In the procrustes analysis (d and e), the coordinates for a sample obtained using
microbiome data (black lines) are connected to coordinates for the same sample obtained using metabolome data (pink lines). This analysis stretches, rotates,
and superimposes ordinations generated from one data set over the other, while preserving distances within each individual matrix. The goal is to find the best
fit between two matrices to infer whether one data set coherently captures the properties of the other. PC1, principal component 1; HFD, high-fat diet; IHH,
intermittent hypoxia and hypercapnia.
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(Fig. S3). Each node in the network, which represents a consensus MS/MS spectrum,
was searched against public libraries in this study. In total, we annotated about 400
molecular compounds in the GNPS database, including bile acids (BAs), fatty acids, and
phytoestrogens. Additionally, all key compounds discussed in this work were defined to
the highest level of annotation per the metabolomic standards initiative using com-
mercial standards (Fig. S4, Fig. S5, and Table S4) (20).

Interestingly, the top differentially abundant features detected between IHH and
control mice included molecules known to depend on gut microbes for their produc-
tion. Below, we discuss some of these metabolites and their implications with respect
to consequences of OSA.

Alterations in bile acids. We observed significant alterations in BAs between
IHH-exposed mice and control groups (Table S3). Figure 2g to n display these trends in
primary (Fig. 2g to i) and secondary (Fig. 2j to l) bile acids with increasing IHH exposure
duration. Primary BAs are amphipathic molecules synthesized in the liver from choles-
terol. These are conjugated to glycine or taurine and released in the biliary tract.
Together with other biliary components, these facilitate the emulsification and trans-
portation of dietary fats, cholesterol, and fat-soluble vitamins. About 95% of the BAs are
reabsorbed in the terminal ileum and recycled. The remaining 5% reach the colon and
are deconjugated, dehydrogenated, and dehydroxylated by the intestinal bacteria to
form secondary BAs (21). BAs, including microbially generated BAs, are potent signaling
molecules that interact with the farnesoid X receptor (FXR) (expressed in the liver and
intestine), which modulates BA synthesis by the liver (22). Perturbations in the gut
microbial population disrupt normal signaling properties that regulate BA production
and can profoundly alter the BA composition in the gut. A range of diseases, including

FIG 2 Changes in the gut microbes and molecules due to IHH exposure. (a to f) Top differentially abundant sOTUs elevated in the control group (a, b, and
c) and treatment group (d, e, and f). The sOTUs belonging to the families Clostridiaceae (a and c) and Coriobacteriaceae (b) were elevated in controls, whereas
those belonging to the genus Oscillospira (d) and the families Lachnospiraceae (e) and Mogibacteriaceae (f) were higher in IHH-exposed mice than in control
mice. (g to n) Trends in abundances of significantly differential bile acids. These differential bile acids include the unconjugated primary bile acids
alpha-muricholic acid (g), chenodeoxycholic acid (h), and cholic acid (i), the secondary bile acids lithocholic acid (j) and deoxycholic acid (k), and the conjugated
secondary bile acid taurodeoxycholic acid (l). (m and n) Trends in abundances of the significantly differential xenoestrogens enterodiol (m) and enterolactone
(n). Significantly differential time points are denoted by asterisks. IHH, intermittent hypoxia and hypercapnia.

Tripathi et al.

May/June 2018 Volume 3 Issue 3 e00020-18 msystems.asm.org 4

msystems.asm.org


cardiometabolic diseases, are characterized by aberrant BA profiles (23), and prolonged
perturbations in the BA pool might also be a factor in mediating the consequences
of OSA.

Elevations in phytoestrogens. The dietary hormones enterolactone (mammalian
lignan) and enterodiol (oxidation product of enterolactone) were significantly elevated
in the exposed mice compared to their levels in controls. Figure 2m and n show the
trends in their abundances with increasing duration of IHH exposure. These molecules
are phytoestrogens, i.e., plant-derived hormones that structurally mimic estrogen and
are produced by intestinal microbiota upon bioconversion of dietary lignans. Owing to
their affinity to estrogen receptors (producing estrogenic or/and antiestrogenic effects
[24]), they perturb many hormone-dependent systems in the body and have been
linked to adverse metabolic, reproductive, and neurological outcomes (25). Sex-specific
differences in OSA-diagnostic symptoms and risk factors suggest hormonal involve-
ment (26, 27). However, the contribution of microbes in maintaining hormonal homeo-
stasis has not yet been investigated. Therefore, these findings motivate novel avenues
of research for biomarkers and therapeutic targets to manage the metabolic conse-
quences of OSA.

Alterations in fatty acids. In addition to detecting changes in bile acids and
phytoestrogens, we detected differentially abundant fatty acid-related chemical fami-
lies (Table S3). For example, we noted a significant reduction in a molecular feature
matched to elaidic acid. Elaidic acid is an unsaturated fatty acid that increases plasma
cholesteryl ester transfer protein (CETP) activity, which modulates systemic levels of
low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol. A de-
crease in elaidic acid in the IHH-exposed group suggests reduction in plasma CETP
activity, a mechanism associated with adverse cardiovascular effects (28). Similarly,
phytomonic, jasmonic, hexadecanoic, linoleic, and conjugated linoleic acids were also
reduced in exposed mice compared to levels in controls. Of these, phytomonic acid and
conjugated linoleic acid are known to be microbially produced (29, 30), suggesting that
changes in the microbiome contribute to these changes in metabolome.

In summary, we demonstrate that IHH, a hallmark of OSA, changes the microbiota
and the chemistry in the gut. We have highlighted changes in bile acids, phytoestro-
gens, and fatty acids under OSA-related conditions that could lead to CMDs. The
present results reveal a previously unrecognized mechanistic link between OSA and gut
microbes. It suggests that targeting gut microbiota and their metabolites may serve as
a potential therapeutic approach for the treatment of cardiometabolic consequences of
OSA patients.

Animals. Atherosclerosis-prone 10-week-old male Ldlr�/� mice in the C57BL/6J
background (stock number 002207; The Jackson Laboratory, Bar Harbor, ME) were used
in this study (31). Ldlr deficiency was confirmed by PCR per the vendor’s instructions.
All animal protocols were approved by the Animal Care Committee of the University of
California, San Diego, and followed the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health (32).

High-fat diet treatment. Starting at 10 weeks of age, male mice were provided
with a high-fat diet (HFD) containing 1.25% cholesterol and 21% milk fat (4.5 kcal/g;
TD96121; Harlan-Teklad, Madison, WI) for 6 weeks while being exposed to either IHH or
room air.

IHH exposure. Intermittent hypoxia and hypercapnia (IHH) was maintained in a
computer-controlled atmosphere chamber system (OxyCycler; Reming Bioinstruments,
Redfield, NY) as previously described (7). IHH exposure was introduced to the mice in
short periods (~4 min) of synchronized reduction of O2 (from 21% to 8%) and elevation
of CO2 (from ~0.5% to 8%), separated by alternating periods (~4 min) of normoxia
([O2] � 21%) and normocapnia ([CO2] � ~0.5%), with 1- to 2-min ramp intervals for 10 h
per day during the light cycle for 6 weeks. This treatment protocol mimics the severe
clinical condition observed in obstructive sleep apnea patients. Mice on the same HFD
but in room air were used as controls.
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As the experimental setup requires IHH-exposed mice in a controlled atmosphere
chamber and controls in room air, we ensured that the effect of treatment is not
confounded by the effect of distinct housing conditions. To do so, we used two cages
per treatment group, and we compared the relative effect sizes of treatments and cages
with redundancy analysis (RDA), which estimates the independent effect size of each
covariate on microbiome composition variation based on unweighted UniFrac distance
(33). The RDA results showed that treatment had a higher effect size than the cages,
more specifically, that treatment contributed to 11.6% of the microbiome community
variation, while cages had an independent effect size of around 9.8%; with respect to
the metabolome, treatment contributed to 6.2% of the variation, while cages contrib-
uted to only about 0.7% of the variation.

LC-MS/MS data acquisition. Prior to LC-MS/MS analysis, fecal samples were pre-
pared using the following extraction procedures. For extraction, 500 �l of 50:50
methanol-H2O was added to all fecal samples (30 to 50 mg approximately) and
vortexed. Fecal pellets in extraction solvent were placed in an ultrasonic bath and
sonicated for 30 min to break apart the pellet and then allowed to incubate for an
additional 30 min. Extracted samples were then centrifuged to separate insoluble
material, and 450 �l of each liquid extract was subsequently transferred to a 96-well
deep-well plate and dried completely using centrifugal evaporation (CentriVap centrif-
ugal vacuum concentrator; Labconco, Kansas City, MO). The dried extracts were resus-
pended in 150 �l of methanol-H2O (1:1, vol/vol), with 1 �M amitriptyline included as an
autosampler injection standard. After resuspension, the samples were transferred into
96-well plates and analyzed on a Vanquish ultrahigh-performance liquid chromatog-
raphy (UPLC) system coupled to a Q Exactive orbital ion trap (Thermo Fisher Scientific,
Bremen, Germany). For the chromatographic separation, a C18 core shell column
(Kinetex column, 50 by 2 mm, 1.7-�m particle size, 100-Å pore size; Phenomenex,
Torrance, CA) with a flow rate of 0.5 ml/min (solvent A, H2O-0.1% formic acid [FA];
solvent B, acetonitrile-0.1% FA) was used. After being injected, the samples were eluted
from 0 to 0.5 min with a linear gradient of 5% solvent B, from 0.5 to 4 min with 5 to
50% solvent B, and from 4 to 5 min with 50 to 99% solvent B, followed by a 2-min
washout phase at 99% solvent B and a 2-min reequilibration phase at 5% solvent B. For
online MS/MS measurements, the flow was directed to a heated electrospray ionization
(HESI) source. The ESI parameters were set to 35 liters/min for the sheath gas flow, 10
liter/min for the auxiliary gas flow, 2 liters/min for the sweep gas flow, and 400°C for the
auxiliary gas temperature. The spray voltage was set to 3.5 kV, and the inlet capillary
was set to 250°C. A 50-V S-lens radio frequency (RF) level was applied. Product ion
spectra were recorded in data-dependent acquisition (DDA) mode. Both MS1 survey
scans (m/z 150 to 1,500) and up to 5 MS/MS scans of the most abundant ions per duty
cycle were measured with a resolution (R) of 17,500 with 1 microscan in positive mode.
The maximum ion injection time was set to 100 ms. MS/MS precursor selection
windows were set to m/z 3 with an m/z 0.5 offset. Normalized collision energy was
stepwise increased from 20 to 30 to 40% with a z of 2 as the default charge state.
MS/MS experiments were automatically triggered at the apex of a peak within 2 to 15 s
from their first occurrence. Dynamic exclusion was set to 5 s.

LC-MS/MS data analysis. Feature detection was as follows. Thermo raw data sets
were converted to m/z extensible markup language (mzXML) in centroid mode using
MSConvert (part of ProteoWizard) (34, 35). All mzXML files were cropped with an m/z range
of 75.00 to 1,000.00 Da. MS1-based feature detection and MS2-based molecular networking
was performed using the GNPS workflow (https://gnps.ucsd.edu/ProteoSAFe/static/gnps
-splash.jsp) (18). The parameters used are detailed at the following URL: http://gnps
.ucsd.edu/ProteoSAFe/status.jsp?task�c6438af750784d919dcd0ee0a783b4fc. Feature
extraction parameters were optimized using MZmine2 (http://mzmine.sourceforge
.net/) (36) with a signal threshold of 2.0e5 and a 0.3-s minimum peak width. The mass
tolerance was set to 10 ppm, and the maximum allowed retention time deviation was
set to 10 s. For chromatographic deconvolution, the local minimum search algorithm
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was used with a minimum relative peak height of 1% and a minimum retention time
range of 0.6 s. The maximum peak width was set to 1 min. After isotope peak removal,
the peak lists of all samples were aligned with the above-mentioned retention time and
mass tolerances. After the creation of a feature matrix containing the feature retention
times and the exact mass and peak areas of the corresponding extracted ion chro-
matograms, the metadata of the samples (treatment type and duration) were added.
The signal intensities of the features were normalized (probabilistic quotient nor-
malization [PQN]) (37) to an internal standard (m/z 278.189; real time, 3.81 min) for
subsequent analysis.

MS/MS annotations were as follows. Molecular features, in the form of MS/MS
spectra, were putatively identified using MS2-based spectral library matches. The false-
discovery rate (FDR) was estimated using a decoy database approach (38) in GNPS and was
found to be less than 1% above a cosine similarity score of 0.6 (GNPS job link, https://gnps
.ucsd.edu/ProteoSAFe/status.jsp?task�feac48de4c9f45d485403e3feb7a470d). Therefore,
we used a cosine score of 0.65 here. For level 1 annotation, as defined by the 2007
metabolomics standards initiative for differentially abundant metabolites, we pur-
chased authentic standards of alpha-muricholic acid, chenodeoxycholic acid, cholic
acid, lithocholic acid, deoxycholic acid, taurodeoxycholic acid, and the xenoestrogens
enterodiol and enterolactone from Cayman Chemical (Ann Arbor, MI) and analyzed
them using the same LC-MS/MS method described above. We then compared and
verified the exact masses, fragmentation patterns, and retention times of those com-
pounds to ensure correct annotations (Fig. S2 and Fig. S3).

Statistical analysis was carried out as follows. QIIME 1.9.1 was used to perform
principal-coordinate analysis (PCoA) (beta_diversity.py, a Gower dissimilarity metric
[10]) and a PERMANOVA test (compare_categories.py). The PCoA plots were visualized
in EMPeror (39). Differential abundance analysis was performed using discrete FDRs
(15).

16S rRNA sequencing. DNA extraction and 16S rRNA amplicon sequencing
were done using Earth Microbiome Project (EMP) standard protocols (http://www
.earthmicrobiome.org/protocols-and-standards/16s) (40). In brief, DNA was extracted
using the MO BIO PowerSoil DNA extraction kit (Carlsbad, CA). Amplicon PCR was
performed on the V4 region of the 16S rRNA gene using the primer pair 515f to 806r
with Golay error-correcting barcodes on the reverse primer. Amplicons were barcoded
and pooled in equal concentrations for sequencing. The amplicon pool was purified
with the MO BIO UltraClean PCR cleanup kit and sequenced on the Illumina HiSeq 2500
sequencing platform. Sequence data were demultiplexed and minimally quality filtered
using the QIIME 1.9.1 script split_libraries_fastq.py, with a Phred quality threshold of 3
and default parameters to generate per-study FASTA sequence files.

16S marker gene data analysis. Feature detection and identification were per-
formed as follows. The raw sequence data were processed using the Deblur workflow
(41) with default parameters in Qiita (https://qiita.ucsd.edu/). This generated a sub-
operational taxonomic unit (sOTU) abundance per sample (BIOM format) (41, 42).
Taxonomies for sOTUs were assigned using the sklearn-based taxonomy classifier
(feature classifier plug-in) in QIIME 2 (43). The sOTU table was rarefied to a depth of
2,000 sequences/sample to control for sequencing effort (44). A phylogeny was inferred
using SATé-enabled phylogenetic placement (45), which was used to insert 16S Deblur
sOTUs into Greengenes 13_8 at a 99% phylogeny.

For statistical analysis, QIIME 2 was used to perform PCoA (unweighted UniFrac
distances [9]). QIIME 1.9.1 was used for the PERMANOVA test (compare_categories.py),
Mantel test (compare_distance_matrices.py), and procrustes analysis (transform_coor-
dinate_matrices.py). The PCoA and procrustes plots were visualized in EMPeror. (39)
Differential-abundance analysis was performed using discrete FDRs (15).

Data availability. The data generated in this study are available publicly under the
following accession numbers: for metabolomics data, MSV000081482; for commercial
standards, MSV000081853; and for microbiome data, ERP106495 (EBI database). Data
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analysis has been documented in Jupyter notebooks available on GitHub (https://
github.com/knightlab-analyses/haddad_osa).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00020-18.
FIG S1, TIF file, 0.3 MB.
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