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Abstract

Objective—This study examined the phenotypic effects of adipocyte-specific oncostatin M 

receptor (OSMR) loss in chow-fed mice.

Methods—Chow-fed adipocyte-specific OSMR knockout (FKO) mice and littermate OSMRfl/fl 

controls were studied. Tissue weights, insulin sensitivity, adipokine production, and stromal cell 

immunophenotypes were assessed in epididymal fat (eWAT); serum adipokine production was 

also assessed. In vitro, adipocytes were treated with oncostatin M (OSM) and adipokine gene 

expression assessed.

Results—Body weights, fasting blood glucose levels, and eWAT weights did not differ between 

genotypes. However, the eWAT of OSMRFKO mice was modestly less responsive to insulin 

stimulation than that of OSMRfl/fl mice. Notably, significant increases in adipokines including C-

reactive protein, lipocalin 2, intercellular adhesion molecule-1 (ICAM-1), and insulin-like growth 

factor binding protein 6, were observed in the eWAT of OSMRFKO mice. In addition, significant 

increases in fetuin A and ICAM-1 were detected in OSMRFKO serum. Flow cytometry revealed a 

significant increase in leukocyte number and modest, but not statistically significant, increases in 

B and T cells in the eWAT of OSMRFKO mice.

Conclusions—The chow-fed OSMRFKO mouse exhibits adipose tissue dysfunction and 

increased pro-inflammatory adipokine production. These results suggest that intact adipocyte 

OSM-OSMR signaling is necessary for adipose tissue immune cell homeostasis.
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INTRODUCTION

A coordination among healthy adipocytes and stromal vascular cells (SVCs, including 

immune cells, preadipocytes, and endothelial cells) in the local adipose tissue environment is 

critical to maintain homeostasis of both adipose tissue and systemic metabolism. Obesity is 

intimately coupled to a chronic, low-grade inflammatory state characterized by leukocyte 

infiltration of adipose tissue and subsequent modulation of the tissue adipokine profile. 

Activation of infiltrating leukocytes and promotion of pro-inflammatory adipokine 

production can enable adipose tissue dysfunction and lead to temporal effects on metabolic 

homeostasis (1, 2, 3, 4).

Oncostatin M (OSM), an adipokine belonging to the interleukin-6/gp130 family of 

cytokines, regulates a variety of physiological and pathological processes (5, 6). First 

recognized in 1986 for its anti-tumorigenic effects (7), it is now evident that OSM can 

regulate many other biological processes in a cell-type dependent manner (8). OSM is a 

unique gp130 cytokine in that it has its own specific receptor subunit (OSM receptor β or 

OSMR) that heterodimerizes with gp130 to create a functional OSM receptor complex, 

which produces the majority of OSM effects (9). Adipocytes in particular exhibit extensive 

responses to OSM (10, 11), and OSMR is highly expressed in adipose tissue (12). 

Importantly, though adipocytes express OSMR, they do not produce OSM itself. Rather, 

OSM is produced in various adipose tissue SVCs including macrophages, T cells, and B 

cells (10, 12). Increased adipose tissue expression of OSM and OSMR are correlates of 

obesity in both mouse and man (12). We have previously shown that adipocyte-specific 

deletion of OSMR in mice (referred to here as OSMRFKO mice) is associated with 

augmented adipose tissue inflammation and systemic insulin resistance and obesity (10). 

Notably, adipose tissue OSM expression itself is elevated in obese OSMRFKO mice (10). 

While we have demonstrated its role in perpetuating inflammation and systemic insulin 

resistance in the obese condition (10), it remains unclear what potential effects disrupted 

adipose tissue OSM signaling has in the absence of obesity.

With the present study, we examined the function of adipose tissue OSM signaling in the 

absence of an obesogenic stimulus such as a high-fat diet. Our novel observations 

demonstrate that, in the absence of obesity, OSMRFKO mice exhibit leukocyte accumulation, 

increased pro-inflammatory adipokine production, and a modest reduction of adipose tissue 

insulin responsiveness. These effects occur in the absence of differences in body weight or 

adiposity. These results corroborate our previous observations that intact adipocyte OSM 

signaling is necessary for maintenance of adipose tissue homeostasis, and demonstrate that 

adipose tissue dysfunction precedes systemic metabolic dysfunction in this model.
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METHODS

Animals and Husbandry

Mixed background OSMRFKO mice and homozygous floxed littermates (OSMRfl/fl) were 

obtained from our in-house colony, which was generated using adiponectin–Cre and OSMR 

floxed mice as previously described (10). All mice used in these studies were male, were 6–

9 months of age, and were maintained on LabDiet #5015 (LabDiet, St. Louis, MO) from 

weaning (3 weeks of age) until study termination. Mice were housed in a temperature (22° 

± 2° Celsius) - and humidity-controlled (45–55%) room under a 12-hour light/dark cycle, 

and allowed ad libitum access to food and water. Tissue OSMR and gp130 gene and protein 

expression, 4-hour blood glucose measurement, and eWAT insulin sensitivity studies (acute 

intraperitoneal insulin injections) were performed on one cohort of mice. Acute OSM 

injection studies were conducted in a second cohort of mice, tissue adipokine studies were 

conducted in mice from the protein expression cohort and in a third cohort. Serum adipokine 

studies were also conducted in third cohort. Flow cytometry studies were performed in an 

additional cohort of 6-month old mice. The Pennington Biomedical Research Center 

Institutional Animal Care and Use Committee approved all studies (protocol #961P).

Acute OSM injection experiments

Fed mice (n=4 OSMRfl/fl and n=4 OSMRFKO) were given acute injections of 200 ng 

recombinant murine OSM (mOSM; R&D Systems; Minneapolis, MN; catalog #495-

MO-025) or vehicle (sterile 0.1% BSA in PBS) and sacrificed 15 minutes later. Epididymal 

fat pads were excised, snap frozen, and stored at −80°C for immunoblotting analyses as 

described below.

Cell culture and treatments

Murine 3T3-L1 preadipocytes were grown to 2 days post-confluence in DMEM with 10% 

fetal bovine serum (FBS) and differentiated as described previously (10). One day prior to 

beginning OSM treatment of adipocytes, medium was replaced with DMEM containing 5% 

FBS. Cells were pretreated with 50 μM of the ERK inhibitor U0126 for 1 hour, and then 

1nM recombinant mOSM or vehicle (0.1% BSA in PBS) was added as indicated. Six hours 

later, medium was removed, and cells were washed with PBS and then harvested for RNA 

extraction. Experiments were performed in duplicate.

Gene expression analyses

Total RNA was isolated from indicated mouse tissues or 3T3-L1 adipocytes using an 

RNeasy Mini Kit (Qiagen; Germantown, MD) and yield determined by spectrophotometry 

(NanoDrop Technologies; Wilmington, DE) as previously described (10). cDNA was 

synthesized using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems; 

Foster City, CA) with the SYBR Green system (Clontech; Mountain View, CA). Relative 

quantification of mRNA expression was analyzed using an ABI Prism 7900 Sequence 

Detection System (Applied Biosystems; Foster City, CA). Sequences for mouse primers 

(Integrated DNA Technologies; San Diego, CA) appear in Table 1.
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Immunoblotting

Proteins were separated on 7.5% (OSMR, gp130) or 10% (Akt, ERK, phosphoSTAT3/5) 

polyacrylamide gels containing sodium dodecyl sulfate and transferred to nitrocellulose 

membranes as previously described (10). After transfer, membranes were blocked and 

incubated with goat anti-OSMR (R&D Systems; Minneapolis, MN; catalog #AF662), rabbit 

anti-STAT5A (Santa Cruz Biotechnology; Dallas, TX; catalog #sc-1081), or mouse anti-

phosphoSTAT5 (Millipore Sigma; Burlington MA; catalog #05-495) primary antibodies 

(1:1000 dilution) overnight at 4°C. Results were visualized with appropriate horseradish 

peroxidase-conjugated secondary antibodies (1:15,000 dilution) (Jackson ImmunoResearch 

Laboratories; West Grove, PA) and SuperSignal Chemiluminescent Substrate (ThermoFisher 

Scientific; Waltham, MA; catalog# 34580), using a Mini-Med film processor. All 

immunoblots were performed in triplicate.

Serum and tissue adipokine arrays

Adipokine protein expression levels in serum (n=3 per genotype) or eWAT (n=6–7 per 

genotype) were assessed using mouse Proteome Profiler Adipokine Array kits (R&D 

Systems; Minneapolis, MN; catalog# ARY013) according to manufacturer’s instructions. 

Briefly, eWAT was homogenized in PBS with 10 μg/mL each aprotinin, leupeptin, and 

pepstatin. After homogenization, Triton X-100 was added to each sample at 1% final 

concentration. Samples were frozen at −80°C, thawed, and centrifuged at 10,000 × g for 5 

minutes at 4°C to remove cellular debris. Sample protein concentrations were quantified 

using a bicinchoninic acid assay with bovine serum albumin as the standard (Sigma-Aldrich, 

St. Louis, MO). Serum assays were performed using 100ul of mouse serum as specified in 

the kit instructions. Membranes were incubated with chemiluminescence reagents and then 

exposed to autoradiography film for times ranging from one to five minutes. Film from the 

five-minute exposure was used for densitometry analyses, which were performed with Image 

Studio Lite software (Version 3.1; Li-Cor; Lincoln, NE). Densitometry values for each 

adipokine were normalized to values for the reference spot on each membrane. Resulting 

values were then compared between genotypes.

Isolation of eWAT SVCs for immunophenotyping

Freshly excised eWAT was weighed, pooled (2–3 mice per pooled sample; 4 pooled samples 

per genotype), and fractionated using previously described methods (10, 13), with minor 

modifications (14) as briefly described here. Tissues were minced in ice-cold digestion 

buffer (low glucose DMEM without phenol red; 5% heat-inactivated FBS; 1 mg/ml Type II 

collagenase), transferred to 50 ml conical tubes, and placed into a shaking water bath at 

37°C. Tissues were digested for 45 minutes at 100 rpm, with tubes being shaken vigorously 

by hand every 10 minutes. In the last 5 minutes of the digestion procedure, EDTA was added 

at a final concentration of 10mM. Each slurry was then passed through a pre-wet 100 μM 

cell strainer into a 50-ml conical tube and the strainer rinsed with 10 ml PBS. Slurries were 

centrifuged at 500xg for 10 minutes at 4°C. After centrifugation, floating adipocytes and 

supernatant were removed and RBC lysis buffer was added to the remaining SVF pellet and 

incubated for 5 minutes. Lysis buffer was neutralized with PBS, the SVF mixture passed 

through a 40μm cell strainer into a 50 ml tube, the strainer rinsed twice with 5 ml PBS, and 
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the tubes centrifuged at 500xg for 10 minutes at 4°C. The resulting SVF pellet was 

resuspended in 3 ml of PBS and placed on ice for processing for flow cytometry analyses. 

Viable cells were counted on a hemacytometer using trypan blue exclusion.

Flow cytometry analysis of SVCs

SVCs (5 × 105 – 1 × 106 cells per tube) were isolated as described above and suspended in 

flow cytometry staining buffer (eBioscience/Thermo Fisher; Waltham, MA; catalog 

#00-4222) and incubated in Fc block for 10 minutes on ice. Cells were stained with 

appropriate antibodies for 45 minutes at 4°C in the dark. All flow cytometry antibodies are 

listed in Table 2. Stained SVCs were washed twice in PBS, fixed in 1% paraformaldehyde in 

PBS, and analyzed on FACS Aria or FACS Calibur flow cytometers using Flow Jo software 

(Version 10.0; TreeStar; Ashland, OR). Adipose tissue macrophages are identified as 

CD45+, CD64+ (14, 15). Adipose tissue T cells are identified as CD45+, CD3+ (15). 

Adipose tissue B cells are identified as CD45+, CD19+, and B220+. Preadipocytes were 

identified as CD45-, CD31-, Sca1+ (16) and endothelial cells were identified as CD45-, 

CD31+. Samples were analyzed on FACS Aria or FACS Calibur flow cytometers. Data were 

analyzed using FlowJo software (Version 10.0; TreeStar; Ashland, OR). Gating strategies for 

flow cytometry analyses are based on those previously described for adipose SVCs (3, 14, 

15); auto fluorescence (no antibody) controls, single stain controls, and fluorescence minus 

one isotype controls were used in each immunophenotyping panel for compensation settings 

and to determine gating. Data were normalized per gram of eWAT or as a percentage of 

SVCs, as indicated.

Statistical analyses

GraphPad Prism software was used for all statistical analyses (Version 7.0; GraphPad 

Software; La Jolla, CA), and results are expressed as mean ± SEM. Differences between 

genotypes were analyzed using the Student’s t-test, with results considered significant when 

p<0.05.

RESULTS

In this study, we examined the phenotypic effects of adipocyte-specific oncostatin M 

receptor loss (OSMRFKO) in chow-fed male mice and littermate control OSMRfl/fl mice. 

Specifically, we examined tissue weight, insulin responsiveness, adipokine production, and 

stromal cell immunophenotypes in epididymal fat pads (eWAT), as well as serum adipokine 

production.

Adipose and non-adipose expression of oncostatin receptor subunits

We observed significant decreases in OSMR gene and protein expression in two white fat 

depots from OSMRFKO mice when compared to OSMRfl/fl mice (Figures 1A and 1B). The 

levels of gp130 gene and protein expression did not differ significantly between the control 

and knockout mice. There were no significant differences in either OSMR or gp130 gene 

and protein expression between genotypes in brown adipose tissue (Figures 1A & 1B) or in 

non-adipose tissues examined (Figures 1C & 1D). Notably, expression of OSM itself was 
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significantly increased in the eWAT of OSMRFKO mice (Figure 1E); this increase in OSM 

expression also occurs in obese high-fat fed OSMRFKO mice (10).

Adipose tissue response to an acute OSM challenge

Acute OSM injection in OSMRfl/fl mice resulted in robust phosphorylation of STAT3 and 

STAT5 tyrosine residues in eWAT. The reduced STAT phosphorylation in OSMRFKO mice 

(Figures 2A and 2B) indicated a substantial decrease in responsiveness to an OSM 

challenge. The observed effect on STAT5 phosphorylation was significant (p=0.0084; Figure 

2B), while the effect on STAT3 followed the same trend but did not reach significance 

(p=0.074; Figure 2B). These data also suggest that adipocyte OSMR is responsible for the 

majority of OSM signaling in eWAT. Notably, basal levels of STAT3 and STAT5 tyrosine 

phosphorylation in vehicle-injected mice were lower in the OSMRFKO group (Figures 2A 

and 2B). OSM is known to induce ERKs 1&2 phosphorylation, but we did not observe a 

significant reduction in ERK activation following acute OSM injection in OSMRFKO mice 

compared to floxed littermate controls.

Body weight and blood glucose

Body weights did not significantly differ between OSMRfl/fl and OSMRFKO mice in any of 

the experimental cohorts at the time of sacrifice (Figure 3A). Fasting blood glucose levels 

also were not different between the two genotypes at the time of sacrifice (Figure 3B).

Insulin sensitivity and adipokine levels

As a measure of insulin sensitivity, we examined insulin-stimulated Akt phosphorylation in 

eWAT. Seven mice from each genotype were given intraperitoneal vehicle or insulin 

injections and sacrificed 10 minutes later. Most of the insulin-injected OSMFKO mice had 

reduced Akt phosphorylation compared to floxed controls. However, when the results from 

all the mice were quantitated, the effects did not reach statistical significance (Figure 3C). 

There were no differences in total Akt levels (Figure 3C and 3D). Further, we did observe 

any significant changes in eWAT Glut1 or Glut4 gene expression levels [Glut1 relative 

expression: 1.082 ± 0.125 AU (OSMRfl/fl) vs 1.028 ±0.061 AU (OSMRFKO); Glut4 relative 

expression: 1.222 ± 0.237 AU (OSMRfl/fl) vs 1.238 ± 0.139 AU (OSMRFKO)] in eWAT.

Significant increases in CRP, ICAM-1, IGFBP6, and LCN2 were observed in OSMRFKO 

eWAT (Figure 4A), while ICAM-1 and FETA were elevated in OSMRFKO serum (Figure 

4B). The elevated ICAM-1 in both serum and eWAT in OSMRFKO mice suggests that the 

eWAT may be the source of increasing circulating ICAM-1, although additional studies are 

required to confirm this hypothesis.

Adipokine expression in 3T3-L1 adipocytes

The lack of adipocyte OSMR signaling is associated with increased OSM expression in 

eWAT of OSMRFKO mice, both in the current study (Figure 1E) and with high-fat diet 

feeding (10). As shown in Figure 4A, OSMRFKO increased LCN2 levels in eWAT. To 

determine if OSM could induce Lcn2 gene expression in a cell-autonomous manner, we 

studied the effects of OSM in cultured adipocytes. We observed that a 6-hour treatment with 

OSM strongly induced Lcn2 expression in 3T3-L1 adipocytes. Use of the MEK inhibitor, 
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U0126, demonstrated that this effect was primarily ERK-dependent (Figure 5A). The 

efficacy of ERK inhibition was confirmed by western blotting that demonstrated a 

significant reduction in ERK phosphorylation following inhibitor treatment (data not 

shown). OSM, however, did not induce Igfbp6 expression in adipocytes (Figure 5B). 

Interestingly, OSM induced Icam1 expression and ERK inhibition further increased this 

effect (Figure 5C). Previous studies have reported Crp and FetA expression and secretion by 

adipocytes (17, 18); however, we were not able to detect either gene in our experiments in 

3T3-L1 adipocytes.

Immunophenotyping of SVC populations

Though eWAT weights did not differ (Figure 6A), OSMRfl/fl mice had a significantly higher 

number of SVCs per gram of eWAT than OSMRFKO mice (Figure 6B). However, 

immunophenotyping analyses indicated significantly higher CD45+ leukocytes in 

OSMRFKO eWAT when compared to OSMRfl/fl eWAT (Figure 6B). While not significant, 

there were trends towards increased CD19+/B220+ B cells (p=0.07) and increased CD3+ T 

cells in OSMRFKO eWAT when compared to OSMRfl/fl control mice (Figures 6C and 6D, 

respectively). No obvious trends were observed in CD64+ adipose tissue macrophages or in 

endothelial cells between groups (Figures 6E and 6F). Although not statistically significant, 

a modest increase in Sca1+ preadipocytes was observed in the OSMRFKO mice (Figure 6G).

DISCUSSION

Our previous work indicates that OSMRFKO mice exhibit systemic insulin resistance and 

adipose tissue inflammation when challenged with a high-fat diet (10). Here, we studied the 

phenotype of OSMRFKO mice in the absence of a high-fat diet challenge and more closely 

examined the adipose tissue inflammatory profile in the OSMRFKO mouse. There are several 

significant observations from this study. Notably, adipocyte-specific OSMR deletion does 

not alter body mass or fasting blood glucose, but does modestly blunt adipose tissue insulin 

sensitivity in chow-fed mice. In addition, adipose tissue and serum pro-inflammatory 

adipokine expression levels are increased in chow-fed OSMRFKO mice. These results are 

consistent with the significant increase in the number of adipose tissue leukocytes (Figure 

6B) and the trend towards increased T cell and B cell numbers, despite no changes in 

adipose tissue weight. The observed phenotypic effects in chow-fed OSMRFKO mice are not 

due to alterations in gp130 expression in adipose tissue or in gp130 and/or OSMR 

expression in non-adipose tissues. Taken together, these results and our previous data (10) 

demonstrate that the adipose tissue dysfunction in OSMRFKO mouse is characteristic of the 

genotype itself and occurs in the absence of obesity.

Our current results in OSMRFKO mice contrast with those of the global OSMR knockout 

mice fed a chow diet (19). Global OSMR knockout mice of similar age to the OSMRFKO 

mice in our study have increases in body mass, eWAT and iWAT mass, liver mass, and food 

intake when compared to OSMRfl/fl mice (19). We did not observe changes in any of these 

parameters in chow-fed OSMRFKO mice. Further, global OSMR knockout mice also exhibit 

significant increases in blood glucose and serum insulin and are generally glucose intolerant 

and insulin resistant (19), while our OSMRFKO mice are not. However, much like the 
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OSMRFKO mice, global OSMR knockout mice exhibit increased adipose tissue 

inflammation. The vast differences in these phenotypes underscore the importance of OSMR 

in hematopoiesis, liver development, and other developmental functions, and suggest that 

many of the metabolic effects observed in the global OSMR knockout mice are due to non-

adipocyte effects (19, 20, 21). Some of the molecular mechanisms by which specific 

disruption of adipocyte OSM-OSMR signaling axis promotes adipose tissue dysfunction still 

remain unclear, although our current data provide new information.

As a first step toward examining drivers of the adipose tissue dysfunction in chow-fed 

OSMRFKO mice, we generated adipokine profiles using antibody arrays. We analyzed 38 

adipokines, and found four of them were differentially expressed at significant levels: C-

reactive protein (CRP), intercellular adhesion molecule 1 (ICAM-1), insulin-like growth 

factor binding protein 6 (IGFBP6), and lipocalin 2 (LCN2). Various cell types produce these 

proteins, all of which have established effects in inflammation. Immune cells can produce all 

four of these proteins; however, adipocytes are reported to produce at least two of them 

(CRP and LCN2). CRP is an acute phase protein synthesized primarily by the liver in 

response to cytokines or other inflammatory stimuli. Previous reports suggest that 

adipocytes can produce CRP in response to inflammatory stimuli (17, 18), although we were 

unable to detect Crp gene expression in our in vitro 3T3-L1 adipocyte experiments. 

Adipocytes produce LCN2 in response to pro-inflammatory cytokine exposure (22, 23, 24) 

and several immune cell types also produce LCN2 (25). However, substantial evidence 

indicates that circulating LCN2 is liver–derived and produced in response to infection or 

injury (26, 27), so it is not surprising that the changes we observed in LCN2 levels in this 

study were only at the level of the eWAT itself and not in serum (Figure 4B). The role of 

LCN2 in adipose tissue is generally thought to be pro-inflammatory, since increasing its 

expression promotes neutrophil recruitment and induces pro-inflammatory cytokine 

production (28, 29), although anti-inflammatory effects have been reported in other tissues 

(30, 31). Our in vitro studies clearly indicate that OSM potently induces adipocyte LCN2 

expression and that this induction is ERK-dependent (Figure 5A). TNFα and IFNγ are also 

potent inducers of LCN2 in cultured murine adipocytes (23).

ICAM-1 is a cell surface glycoprotein found on endothelial cells and leukocytes that is 

induced by pro-inflammatory cytokine production and interacts with β-integrins to facilitate 

leukocyte migration (32). Several studies report that adipocytes can express ICAM-1 (33, 

34, 35). Our in vitro experiments indicated that, while Icam1 gene expression was very low 

in basal conditions, but OSM treatment substantially induced Icam1 mRNA levels in 

adipocytes (Figure 5). The significant elevations of ICAM-1 in both serum and eWAT in 

OSMRFKO mice when compared to floxed controls (Figure 4) is consistent with the elevated 

OSM levels we observe in in OSMRFKO mice. Our flow cytometry data also demonstrated 

increased leukocyte numbers in OSMRFKO adipose tissue. Given its known functions in 

leukocyte migration and recruitment, we hypothesize that ICAM-1 is either induced in 

adipocytes by immune cell-derived factors, produced by immune cells alone, or both, and 

may act to effectively trap leukocytes in the eWAT of the OSMRFKO mouse. Further studies 

are required to evaluate this hypothesis.
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Increased levels of fetuin A (FETA), a negative acute phase protein primarily secreted from 

liver (36), are associated with metabolic syndrome and insulin resistance in humans and 

animals (37, 38, 39). In adipose tissue, FETA serves as an endogenous toll-like receptor 4 

(TLR4) ligand, where it binds fatty acids for presentation to TLR4 and subsequently triggers 

pro-inflammatory cytokine production via the NF-kB pathway (38). FETA can also promote 

macrophage migration into adipose tissue (37) and directly interfere with insulin receptor 

action to mediate insulin resistance (39). Data from these previous studies coincide with 

results obtained in OSMRFKO mice where we observed significant increases in serum FETA 

(Figure 4B) and a modest blunting of eWAT insulin signaling in comparison to OSMRfl/fl 

mice.

A family of six IGFBPs controls the activity of insulin-like growth factors; the IGFBPs all 

serve to inhibit IGF actions. Of these IGFBPs, IGFBP6 has garnered interest for its high 

specificity for IGF-II and for its IGF-independent roles, such as the promotion of apoptosis 

and inhibition of angiogenesis (40, 41). Literature addressing the possible role of IGFBP6 in 

adipose tissue is scant; however, recent evidence suggests that in some inflammatory 

conditions IGFBP6 may be a possible chemotactic factor (40). In this study, we observed 

significant increases in IGFBP6 levels in OSMRFKO eWAT when compared to OSMRfl/fl 

eWAT. It is possible that, if IGFBP6 acts with chemotactic ability in adipose tissue, the 

increased IGFBP6 in OSMRFKO eWAT could be partially responsible for the significantly 

higher number of leukocytes measured in the tissue.

Collectively, our prominent adipokine array results suggest a local pro-inflammatory 

environment in the adipose tissue of the OSMRFKO mouse that occurs in the absence of 

obesity. In further support of these observations, flow cytometry analyses revealed elevations 

of leukocytes, B cells, and T cells in OSMRFKO eWAT (Figure 6). While it remains unclear 

as to which cells in the adipose tissue are responsible for the increased adipokine production, 

it is clear that the loss of adipocyte OSM-OSMR signaling disrupts adipose tissue 

homeostasis in the absence of obesity. Likely, more than one cell type is contributing to this 

effect, as there is known crosstalk among cell types in adipose tissue. Future studies will 

more closely examine each cell type in the adipose tissue of the OSMRFKO mouse to better 

determine their roles in contributing to disrupted adipose tissue homeostasis. Despite the 

evident adipose tissue dysfunction in chow-fed OSMRFKO mice, a systemic metabolic 

challenge, such as an obesogenic diet, is required to produce whole-body insulin resistance 

while perpetuating adipose tissue inflammation in these animals (10). Taken together, these 

results and our previous results strongly suggest the need for intact adipocyte OSM-OSMR 

signaling in maintaining adipose tissue homeostasis.
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What is already known about this subject?

• Adipose tissue oncostatin M (OSM) protein and gene expression are 

significantly induced in obese rodents and in people with obesity.

• Obese mice with adipocyte-specific deletion of the oncostatin M receptor 

(OSMR) exhibit systemic insulin resistance and increased adipose tissue 

immune cell infiltration.

What does our study add?

• Altered pro-inflammatory adipokine production observed in the adipocyte-

specific OSMR knockout mouse occurs in the absence of high-fat diet-

induced obesity.

• Adipose tissue immune cell infiltration and adipose tissue dysfunction are 

present in non-obese adipocyte-specific OSMR knockout mice.
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Figure 1. Expression levels of OSMR and gp130 are not altered in non-adipose tissues
Tissue expression of OSMR and gp130 in various adipose depots at the A) gene and B) 

protein levels in OSMRfl/fl (CTL) and OSMRFKO (KO) chow-fed mice. Non-adipose tissue 

expression of OSMR and gp130 at the C) gene and D) protein levels was also measured. E) 

Gene expression of OSM itself was also measured in various adipose depots. Total RNA in 

various tissues was purified and analyzed by real-time PCR. Cyclophilin A (Ppia) was used 

as an endogenous control. Protein (100 ug for adipose tissues, 50 ug for all other tissues) 

was subjected to Western blot analysis. Data are shown as mean ± SEM. For PCR, n=8 per 

genotype (eWAT), n=3–4 per genotype (inguinal WAT (iWAT), brown adipose tissue (BAT), 

other tissues). ***p < 0.001, *p<0.05 vs. OSMRfl/fl. AU, arbitrary units.
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Figure 2. OSMRFKO mice are less responsive to an acute OSM challenge
A) Effects of acute OSM or vehicle injection (15 min) on STAT and ERK phosphorylation in 

eWAT of chow-fed OSMRfl/fl (n=4) or OSMRFKO mice (n=4). 75 ug protein was subjected 

to Western blot analysis. B) Densitometry analyses were conducted using Image Studio 

software. Data are shown as mean ± SEM and are representative of two independent 

experiments. AU, arbitrary units.
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Figure 3. OSMRFKO mice exhibit a modest blunting of insulin-induced Akt phosphorylation
A) Body weights, B) 4-hour fasting blood glucose, and C) protein expression levels of Akt, 

phosphoAkt, and phosphoERK in eWAT from chow-fed OSMRfl/fl and OSMRFKO (KO) 

mice. Body weights and blood glucose levels were not significantly different between 

genotypes. 100 ug protein was subjected to Western blot analysis. KO mice exhibited a 

slight diminution in Akt phosphorylation (S473) in eWAT. Densitometry analysis of D) 

pAkt/Akt ratio was conducted using Image Studio software. For vehicle injections, n=3 per 

genotype and for insulin injections, n=4 per genotype. Data are shown as mean ± SEM. AU, 

arbitrary units.
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Figure 4. Increased pro-inflammatory adipokine expression in eWAT and serum of OSMRFKO 

mice
Protein expression levels of various adipokines in A) eWAT (n=6–7 per genotype) and B) 

serum (n=3 per genotype) of chow-fed OSMRfl/fl (grey bars) and OSMRFKO (black bars) 

mice. CRP, ICAM-1, IGFBP6, and LCN2 expression levels were significantly increased in 

eWAT of the OSMRFKO mice when compared to OSMRfl/fl mice, and we observed 

significant increases in FETA and ICAM-1 in the serum of OSMRFKO mice when compared 

to OSMRfl/fl mice. Data are presented as mean ± SEM. *p<0.05 vs. OSMRfl/fl.
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Figure 5. Adipokine gene expression in 3T3-L1 adipocytes in response to OSM treatment and/or 
ERK inhibition
Fully differentiated 3T3-L1 adipocytes were treated with 1 nM or OSM or vehicle for 6 

hours in the presence/absence of the ERK inhibitor U0126. Gene expression levels of A) 

Lcn2, B) Igfbp6, C) Icam1, Crp, and FetA were assessed, but Crp and FetA were not 

detected. Total RNA was purified from cells and analyzed by real-time PCR. Ubiquitin b 

(Ubb) was used as an endogenous control.
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Figure 6. Leukocyte accumulation and altered immune cell populations in eWAT of OSMRFKO 

mice
A) Epididymal fat pad (eWAT) weight, B) number of SVF cells per gram eWAT and CD45+ 

leukocytes as determined by flow cytometry in chow-fed OSMRfl/fl (CTL; grey bars) and 

OSMRFKO (KO; black bars) mice (n=4 groups of pooled tissue per genotype; 2–3 mice per 

pool). Quantification of eWAT stromal vascular cells was performed using flow cytometry 

and data are presented as % SVCs for C) B cells (CD19+/B220+), D) T cells (CD3+), E) 

macrophages (CD64+), F) endothelial cells (CD31+), and G) preadipocytes (CD31-/Sca1+). 

Data presented are mean ± SEM. *p<0.05 and ** p<0.01 vs. OSMRfl/fl.
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Table 1

Sequences for qPCR primers used in this study.

Gene Forward Sequence Reverse Sequence

Crp CAG CAG CAT CCA TAG CCA T TGC TTC CAG AGA CAC ATA GGA

FetA (Ahsg) CTT CAG GGA TTC AAA CAG GTC T CAA AGC ATG GCA AGT GGT C

Glut1 (Slc2a1) AGT TCG GCT ATA ACA CTG GTG GTG GTG AGT GTG GTG GAT G

Glut4 (Slc2a4) TCT TAT TGC AGC GCC TGA G GAG AAT ACA GCT AGG ACC AGT G

gp130 AGG AGA AAT AGA AGC CAT AGT CG TGG AAG GAT CAG GAA CAT TAG G

Icam1 CTG TGC TTT GAG AAC TGT GG GGT CCT TGC CTA CTT GCT G

Igfbp6 TCT ATG TGC CAA ACT GTG ACC CTG AGT GCT TCC TTG ACC ATC

Lcn2 TGC AAG TGG CCA CCA CGG AC GCA TTG GTC GGT GGG GAC AGA GA

Osmr CGT TCC CCT GTG AGG CCG AG TCC TCC AAG ACT TCG CTT CGG G

Ppia CCA CTG TCG CTT TTC GCC GC TGC AAA CAG CTC GAA GGA GAC GC

Ubb CCA GTG GGC AGT GAT GG GCT TAC CAT GCA ACA AAA CCT
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Table 2

Flow cytometry antibodies used in this study.

Antibody Clone Vendor

CD45.2 104 eBioscience/ThermoFisher

CD64 X54-5/7.1 BD Biosciences

CD31 390 eBioscience/ThermoFisher

CD19 1D3 eBioscience/ThermoFisher

B220 RA3-6B2 eBioscience/ThermoFisher

CD3 145-2C11 eBioscience/ThermoFisher

Sca1 D7 eBioscience/ThermoFisher

CD16/CCD32 (Fc block) 93 eBioscience/ThermoFisher

Mouse IgG2aκ eBM2a eBioscience/ThermoFisher

Mouse IgG1κ P3.6.2.8.1 eBioscience/ThermoFisher

Rat IgG2aκ eBR2a eBioscience/ThermoFisher

Armenian hamster IgG eBio299Arm eBioscience/ThermoFisher
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