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The lack of interpretability and trust is a much-criticized feature of
deep neural networks. In fully connected nets, the signaling be-
tween inner layers is scrambled because backpropagation training
does not require perceptrons to be arranged in any particular or-
der. The result is a black box; this problem is particularly severe in
scientific computing and digital signal processing (DSP), where
neural nets perform abstract mathematical transformations that
do not reduce to features or concepts. We present here a group-
theoretical procedure that attempts to bring inner-layer signaling
into a human-readable form, the assumption being that this form
exists and has identifiable and quantifiable features—for example,
smoothness or locality. We applied the proposed method to DEER-
Net (a DSP network used in electron spin resonance) and managed
to descramble it. We found considerable internal sophistication:
the network spontaneously invents a bandpass filter, a notch fil-
ter, a frequency axis rescaling transformation, frequency-division
multiplexing, group embedding, spectral filtering regularization,
and a map from harmonic functions into Chebyshev polynomials—
in 10 min of unattended training from a random initial guess.

machine learning | interpretability | digital signal processing | electron spin
resonance

Popular as the practice may be, simply training a neural net to
perform a task, without giving an explanation of how it works,

is increasingly frowned upon (1, 2)—neural network training is
often just regression using the chain rule (3), and the resulting
black box does not fit comfortably into the methodological
framework (4, 5) of science and engineering. The concerns about
deep neural nets are interpretability and trust, for which, at the
moment, not even the definitions are settled. We can approxi-
mately define interpretability as “the possibility of finding out why
and how it works” in the reductionist (4) and critical rationalist (5)
sense, and trust as “rigorous quantification of uncertainties in
the output.” Other related notions—intelligibility (6), algorithmic
transparency (7), decomposability (6), attributability (8), trans-
ferability (9), and robustness (10)—may be viewed as aspects
of those two general themes. Ultimately, the right answer for
the right reasons is needed, accompanied by a measure of
certainty (11).
A fully connected feed-forward artificial neural network with

an input vector x and an output vector y is equivalent to the
following function:

y = FnWnFn−1Wn−1⋯F1W1x, [1]

where Wk are weight matrices, Fk are nonlinear activation func-
tions, and bias vectors are not specified because, in this case, they
are equivalent to having one extra input line. It is convenient to
supply and receive arrays of input and output vectors; those will
be denoted X and Y, respectively. The horizontal dimension of
W1 is ordered in the same way as x; the vertical dimension of Wn
is ordered in the same way as y; all other dimensions of Wk are
not ordered because backpropagation training does not require
them to be, and the initial guess is random. We call such weight
matrices “scrambled”: they are two linear transformations—one

from the left and one from the right—away from a representa-
tion with ordered input and output.

Descrambler Group
We assume that neural networks are interpretable—that, for
each layer k, a transformation P exists that brings the signal array
FkWk ··· F1W1X into a form that clarifies, to a competent human,
the function of the preceding layers. We call this a “descram-
bling” transformation. The activation functions are not varied in
the training process, and, therefore, this transformation must be
applied to the weight matrices and judged on the output signals,
for which some interpretability metric must be designed.
The transformation should be linear, so that linear combina-

tions of signals are descrambled consistently. Information should
not be lost, and therefore the transformation must be invertible.
Transformations may be applied sequentially, and there exists a
unit transformation that does nothing. That is the definition of a
group which we will call the descrambler group. At the kth layer
of the network, it must be a subgroup of the general linear group
of all automorphisms of a dk-dimensional vector space, where dk
is the output dimension of the layer. It should be a supergroup of
the permutation group of dk perceptrons within the layer, but
should preferably be continuous and connected because discrete
optimization is hard. Of those, SO(dk)—the connected group of
all proper orthogonal transformations of a dk-dimensional vector
space—is particularly promising, because physical signals are
often defined up to an orthogonal transformation (e.g., cosine
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transform) and because the elements of SO(dk) are continuous
and differentiable functions of a finite number of real parameters.
The act of wiretapping the network at a particular layer then

consists of inserting a unit operator P−1P before or after a weight
matrix:

Y = FnWn⋯FkP−1PWk⋯F1W1X
or

Y = FnWn⋯P−1PFkWk⋯F1W1X
, [2]

and maximizing or minimizing such a function Λ of PWk ···
F1W1X or PFkWk ··· F1W1X, as would quantify the features form-
ing the basis of the interpretation, for example

P = arg{min
max }Λ(PWk⋯F1W1X). [3]

Much creativity may be needed to construct that function: it
must take a signal and return a quantitative figure of merit for
some problem- or domain-specific definition of “interpretable.”
This could be a function involving measures of smoothness, pe-
riodicity, monotonicity, locality, autocorrelation, Shannon en-
tropy, deviation from the expected statistics on luminosity and
chromaticity, etc.
In our context—digital signal processing—the smoothness of

the time-domain signal is a promising metric: a transformation
that makes every intermediate signal across a large input library
simultaneously smooth is also likely to make them physically
meaningful. We have chosen Tikhonov smoothness—the
squared Euclidean norm of the second derivative—as the metric
to be minimized:

Λ(v) = ‖Dv‖2, [4]

where D is a representation of the second derivative operator on
a finite grid with dk points; we use Fourier spectral differentia-
tion matrices (12).
When multiple output vectors are concatenated into a matrix,

the sum of squares of their Euclidean norms is the square of the
Frobenius norm of that matrix. Therefore, applied to the output
array of the kth layer of the network, the Tikhonov smoothness
criterion becomes:

P = argmin
P

‖DPWk⋯F1W1X‖2F, ‖A‖2F = Tr(ATA), [5]

where ||_||F denotes Frobenius norm, and X is a large enough
array of input vectors (in practice, the entire training database).
Importantly, Eq. 5 is not equivalent to smoothing the columns of
the weight matrix by minimizing ‖DPWk‖2F. This is because only
smoothness in the outgoing data is sought—a weaker require-
ment. Eq. 5 is also a weaker requirement than placing a Tikho-
nov penalty on the weight matrix at the training stage—an
interpretable matrix need not itself be smooth, it only needs to
produce intelligible signaling. Accordingly, the metrics being op-
timized in Eqs. 3 and 5 refer not to the weight matrices, but to
the intermediate signal arrays.
In the absence of constraints, the obvious solution to Eq. 5 is

P = 0—this is why a group-theoretical approach is needed, where
P is generated by the Lie algebra of the descrambler group, and
thus constrained to be nonsingular. However, the usual expo-
nential map P = exp(Q) has expensive derivatives and numerical
accuracy problems in finite precision arithmetic. We have
therefore opted for a different connection between SO(dk) and
its algebra, called Cayley transform (13):

P = 1 −Q
1 +Q

, [6]

where the numerator acts first, and Q is an antisymmetric matrix.
Cayley transform is less sensitive to extreme eigenvalues than the
matrix exponential. It is also easier to differentiate (SI Appendix,
Section S1) with respect to Q. The general case remains as in Eq.
3, for example

Q = arg{min
max }Λ(1 −Q

1 +Q
Wk⋯F1W1X), [7]

and the specific case of hoping for Tikhonov smoothness in the
output of the weight matrix of a particular layer is equivalent to
minimizing

ηT(Q) =
⃦⃦⃦
D
1 −Q
1 +Q

Wk⋯F1W1X

⃦⃦⃦2

F

, [8]

with respect to the real antisymmetric matrix Q. The gradient
∂ηT/∂Q is cheap (SI Appendix, Section S1), meaning that quasi-
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Fig. 1. A typical DEER dataset from structural biology work, where distance measurement in biomolecules is often done by inserting magnetic tags and
recording their dynamics under the action of the distance-dependent magnetic dipolar interaction (19). Left shows the electron spin echo modulation be-
tween two iodocateamido-PROXYL spin labels attached to the incoming cysteines in the V96C, I143C double mutant of Light Harvesting Complex II in n-octyl-
β-D-glucoside micelles (33). Center shows distance probability densities returned by an ensemble of independently trained neural networks in DEERNet (18).
Right contains statistics across the neural network ensemble. Expt., experimental; a.u., arbitrary units.
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Newton optimizers like low-memory Broyden-Fletcher-Goldfarb-
Shanno method (14) may be used. Memory utilization is likewise
not a problem—Frobenius norm-square is additive with respect to
the columns of X, which may be fed into the calculation one by
one or in batches. Thus, if a network can be trained on some
hardware, it can also be descrambled on the same hardware.

Fredholm Solver Networks and DEERNet
Consider the trajectory γ(x,t) for a property γ in a quantum
system with a parameter x. When the sample contains an en-
semble of systems with a probability density p(x) in that param-
eter, the result Γ(t) of the ensemble average measurement is
given by Fredholm’s integral (15):

Γ(t) = ∫ p(x)γ(x, t)dx, [9]

where γ(t,x) is sometimes called the “kernel”; its exact form de-
pends on the physics of the problem. This integral is at the heart
of applied quantum mechanics, used (directly or indirectly) for
interpretation of any physical experiment by a model with dis-
tributed parameters. Given an experimentally measured Γ(t),
extracting p(x) is hard: without regularization, this is an ill-
posed problem (16), and regularization brings in a host of other
complications (17). Deep neural networks perform unexpectedly
well here (18), but no explanation exists as to why.
Our instance of this problem came from structural biology:

molecular distance determination using double electron–
electron resonance (DEER) (19). We generated a large database
of realistic distance distributions and complications (noise,
baseline, etc.) and converted them into what the corresponding
experimental data would look like. Acting out of curiosity, we
put together a fully connected feed-forward neural net and
trained it to perform the inverse transformation—from noisy and
distorted Γ(t) back into p(x). Because the problem is ill-posed,
this was not supposed to be possible. The network did it anyway
(Fig. 1) and matched the best regularization solver there is (18).
Mathematicians had looked at such things—neural network

“surrogate” solutions to Fredholm equations had been attemp-
ted (20), and accuracy bounds are available (21). In 2013,
Jafarian and Nia (22) proposed a feedback network built around

a Taylor expansion of the solution; a feed-forward network
proposition was published in 2012 by Effati and Buzhabadi (23).
Both groups reported accurate solutions (22, 23), but neither
looked at applications or asked the question about how a neural
network actually manages to regularize the problem.
Given the precarious interpretability of quantum mechanics

itself, demanding it from a neural network trained on quantum
mechanics may seem unreasonable. However, this case is an
exception: electron spin dynamics is very well understood, and
the networks in question are uncommonly small—only 256 per-
ceptrons wide, with at most 10 layers (18). We have therefore
picked DEERNet as a test case for the descrambler group
method. The simple and clear case involving two fully connected
layers is discussed here; the case with three fully connected layers
is in SI Appendix, section S4.

Descrambling DEERNet
The simplest DEERNet has the following layer structure: vector
input > fully connected > sigmoidal function > fully connected >
logsig function > vector regression. The logsig activation func-
tion is necessary to ensure that the output (which has a physical
meaning of probability density) stays positive. The input and the
output are 256 elements wide, but the link dimension may be
reduced to 80 by eliminating insignificant singular values (24)
from the weight matrices of fully connected layers. The input
dimension of W1 is time-ordered (Fig. 1, Left), and the output
dimension of W2 is distance-ordered (Fig. 1, Right), but the link
dimension connecting W1 and W2 is scrambled.
Applying the descrambler group method to minimize the

second derivative norm of the output of W1 (Fig. 2, leftmost
panel) reveals a rich structure (Fig. 2, second panel from left)—
the interlocking wave pattern indicates that some kind of fre-
quency conversion is being performed on a signal that stays in the
time domain. Inserting forward (F+) and backward (F−) Fourier
transforms into the corresponding equation:

y = W1x ⇒ F+y = F+W1F−F+x, [10]

demonstrates that the input signal frequency spectrum F+x is
connected to the output signal frequency spectrum F+y by
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Fig. 2. Spontaneous emergence of a sophisticated digital filter in the first fully connected layer of a DEERNet (18) neural network. From left to right: raw
weight matrix of the input layer, descrambled weight matrix, symmetrized absolute value two-dimensional fast Fourier transform of the descrambled weight
matrix, and a zoom into the central portion of that Fourier transform with a cubic curve overlaid. The layer applies a low-pass filter to remove high-frequency
noise seen in the Left panel of Fig. 1; a notch filter at zero frequency to remove the nonoscillatory baseline; and also appears to be rearranging frequencies in
such a way as to effectively take the cubic root of the frequency axis within the filter band—apparently, to account for the fact that the quantum beat
frequency in DEER (19) is an inverse cubic function of the distance between the spins. Dim., dimension; m., matrix; fft., fast Fourier transform; descr.
descrambled; pts., points.
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F+W1F− matrix. Computing and plotting this matrix (Fig. 2, third
image from left) reveals the function of the first fully connected
layer: it applies a low-pass filter to eliminate high-frequency
noise, a notch filter at the zero frequency to eliminate the non-
oscillatory baseline, and performs frequency rearrangement in
such a way as to effectively take the cubic root of the frequency
axis within the filter band (Fig. 2, rightmost panel). The latter
operation appears to reflect the fact that the quantum beat fre-
quency in the kernel function of DEER depends on the cube of
the distance (19):

γ(r, t) =
̅̅̅̅̅̅̅̅
π

6Dt

√ [cos[Dt]FrC[ ̅̅̅̅̅̅̅̅
6Dt
π

√ ] + sin[Dt]FrS[ ̅̅̅̅̅̅̅̅
6Dt
π

√ ]]
D = μ0

4π
γ1γ2Z

r3
; FrC(x) = ∫

x

0
cos(t2)dt FrS(x) = ∫

x

0
sin(t2)dt ,

[11]

where γ1,2 are magnetogyric ratios of the two electrons, and r is
the inter-electron distance. All three operations are linear filters;
the network managed to pack them into one layer. The function
of the layer is now clear—baseline elimination, noise elimina-
tion, and signal preprocessing.
Since the preceding layer is a digital filter that keeps the signal

in the time domain, some form of time–distance transformation
is expected in the weight matrix of the second fully connected
layer (Fig. 3, Upper). Applying the descrambler group method to
minimize simultaneously the second derivative norm of the
output of the activation function of the previous layer, and the
second derivative along the link dimension of W2, does indeed
reveal a transformation (Fig. 3, Lower) that maps faster oscilla-
tions into shorter distances and slower oscillations into longer
distances.
A more detailed inspection reveals that both the rows and the

columns of the descrambled W2 are approximately orthogonal
(Fig. 4, Upper Left and Lower Left). This prompted us to run

singular value decomposition (SVD) to find out what the
descrambled weight matrix expects to receive and to send out.
SVD is useful after descrambling because its structure

W = USV†, [12]

naturally breaks the weight matrix down into an orthogonal set of
conjugate signals that it expects to receive (columns of V), am-
plification coefficients for the signals received (elements of the
diagonal matrix S), and an orthogonal set of signals that it ex-
pects to send out (columns of U) with those amplification coef-
ficients in response to each of the signals it has received (24).
SVD revealed that the conjugate input signals are sinusoids,
slightly distorted, likely due to imperfect training (Fig. 4, Upper
Right)—the network apparently invented frequency-division mul-
tiplexing. The output signals appear to be distorted Chebyshev
polynomials (Fig. 4, Lower Right).
Exactly why the network went specifically for Chebyshev

polynomials is unclear, but they provide the explanation of how
regularization is done inside DEERNet: the ranks of the Che-
byshev polynomials seen in the output signal library are smaller
than the ranks that can, in principle, be digitized on the
256-point output grid. Thus, a degree of smoothness is enforced
in the output signal—the procedure is reminiscent of spectral
filtering regularization, which is also apparent in that the rank of
the weight matrices is significantly smaller than the input di-
mension. This procedure has a modicum of elegance: the log-
sigmoidal transfer function of the output layer in DEERNet
neatly converts Chebyshev polynomials into patterns of peaks, as
required by the physics of the problem (19). Importantly, SVD is
only informative here after descrambling: singular vectors of a
scrambled matrix are scrambled too.
The network is now completely interpreted: the first fully

connected layer is a digital filter that performs denoising, base-
line elimination, and frequency-axis rearrangement, and then
sends the signal, in a frequency-multiplexed form, to the second
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Fig. 3. Spontaneous emergence of a time–distance transform in the weight
matrix of the second fully connected layer of DEERNet (18). Once the
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fully connected layer, which performs a regularized time–
distance transformation into Chebyshev polynomials that the
final log-sigmoidal transfer function converts into the patterns of
peaks seen in Fig. 1, Right.
To confirm the correctness of the DEERNet functionality

interpretation, we have assembled a combination of digital filters
that replicates the functionality of the first fully connected layer
and a time–distance transformation that replicates the func-
tionality of the second one.
To emulate the first fully connected layer, we used standard

finite impulse response (FIR) filters with pass and reject bands
(Fig. 5) chosen to correspond approximately to the patterns seen
in Fig. 2. The frequency axis rescaling transform and the regu-
larized time–distance transform are both linear and were
therefore combined into one matrix T that was obtained as a
regularized pseudoinverse:

T f1 . . . fn[ ] = p1 . . . pn[ ], n ≫ dim T( )
⇓

‖TF − P‖2F + λ‖T‖2F = min

⇓

T = FFT + λ1( )−1 FPT( )[ ]T
[13]

where pk are linearly independent-distance probability density
distributions represented as vectors on a finite grid, and fn are
the corresponding solutions of Eq. 9, also discretized on a finite
grid. The regularization parameter λ was obtained using the
L-curve method (17). Although some parameters (filter orders
and bands, pseudoinverse regularization factor) were chosen em-
pirically, they all now have a clear rational interpretation—thus,
a physically meaningful data processing method was obtained
from a descrambler group interpretation of a neural network.
The performance of the rationally constructed transform se-

quence is illustrated in Fig. 6—it is clear that the performance is
similar to that shown by the neural network ensemble in Fig. 1.
Across a large database of inputs that we had inspected, the rational
method does require occasional pass and reject band adjustments in
the digital filters to match the performance of the neural network,
but those adjustments always have a physical explanation.
Further examples (a DEERNet with three fully connected

layers and a network designed to eliminate additive noise from
human voice recordings) may be found in SI Appendix. For the

small networks analyzed in this work, descrambling results do not
depend on the initialization—up to insignificant details (circular
shifts in the descrambled link dimension, overall signs, phases of
frequency components), we found the interpretation to be the
same for each of the 100 independently initialized and trained
nets that DEERNet is using for confidence interval estimation. It
is possible that larger networks would differ in the strategies that
they discover; we have not observed this yet.

Conclusions and Outlook
The descrambler group method made it possible to interpret the
functioning of a fully connected neural network. During its
training, a simple DEERNet appears to have invented a band-
pass filter, a notch filter, a frequency axis rescaling transformation,
frequency-division multiplexing, spectral filtering regularization,
and a map from harmonic functions into Chebyshev polynomials.
As far as we can tell, a deeper DEERNet (SI Appendix, Section
S4) also invented group embedding.
That these tiny networks should develop this amount of in-

stantly recognizable mathematics and communications engineering
in 10 min of unattended training from a random initial guess is
unexpected. The functionality appears to be localized and readable
to humans, meaning that reductionism (4) and critical rationalism (5)
need not be abandoned, at least for the smaller neural networks. An
ironic observation is that the act of interpreting the inner working of
a static neural net apparently obviates the need for it: the same filters
and transforms may now be applied rationally. It is also apparent
that the number of effective parameters in the procedures that
neural networks invent is much smaller than the raw number of
network parameters; this agrees with the prior art (24–27).
A key strength of the descrambler group method is its appli-

cability to fully connected layers—those are harder to interpret
than convolutional layers, which inherit partial order from the
convolution stride. Due to their importance in image processing,
the existing interpretability scoring methods tend to focus on
convolutional nets (28). Other established methods—for exam-
ple, concept activation vectors (29) and saliency maps (30)—are
specific to object detection and classification networks where
identifiable concepts exist. This is not necessarily the case in
digital signal processing networks like DEERNet that apply ab-
stract nonlinear maps between vector spaces.
There is also a difference between finding out why an answer is

produced and finding out how. The approach presented here is
more firmly grounded in formal mathematics than many of the
current explainable artificial intelligence techniques, of which
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Fig. 5. Digital filters used in the recreation of the functionality of the first fully connected layer of DEERNet. (Left) Notch filter at zero frequency, imple-
mented as order 256 direct-form FIR high-pass filter with passband edge at 0.008 and stopband edge at 0.001 normalized frequency units. (Right) Order
32 direct-form FIR low-pass filter with passband edge at 0.01 and stopband edge at 0.3 normalized frequency units. Filters were created and analyzed by using
the Signal Processing Toolbox of Matlab R2020a.
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some are variations of “poke it with a stick and see what hap-
pens” empiricism—that is what differentiating the network with
respect to an input, output, or a parameter fundamentally is:
increment something, look at the change in behavior. Much of
the prior art deals specifically with expert, recommender, and
classifier systems, and, thus, with extracting rule lists, decision
trees, and taxonomies (31). It is sometimes possible, by very
careful design reminiscent of the modeling used in physical sci-
ences, to create classifier nets that are interpretable by con-
struction (32). None of that is relevant to networks that evolve
unknown mathematical transforms between abstract signal
spaces—descrambler groups offer an opportunity here, because
they run on generic mathematical properties of those signals.
Descrambler groups also improve on the principal component
analysis, which for weight matrices is essentially SVD. A
scrambled weight matrix has scrambled singular vectors—only
rank is then revealed by SVD; it can be informative (24), but only
in the sense of telling the user to increase or reduce the layer
dimension. However, after a descrambling transformation, sin-
gular vectors of fully connected layers become interpretable.
The definition of the descrambling target functional in general

is entirely at the user’s discretion—the functional in Eq. 8 is only
one of many possibilities. For example, in situations when
frequency-domain data are expected at both the input and the
output of an acoustic filter network, it is reasonable to seek a
transformation of the intermediate signal space that makes in-
termediate signals maximally similar to the input ones. In that
representation, the weight matrix W is expected to be diagonally
dominant; this may be achieved by seeking an orthogonal
transformation of the output space that achieves maximum di-
agonal sum or maximum diagonal norm square for the weight
matrix:

ηMDS Q( ) = Tr PW[ ]
ηMDNS Q( ) = ‖diag PW( )‖22.

P = 1 − Q
1 + Q

[14]

An example of using this approach for a network designed to
remove additive noise from human speech is given in SI Appen-
dix, section S5.
A discomfiting aspect of the present work is the amount of

domain-specific expertise that was required to recognize the
functionality of the descrambled weight matrices. It could be
argued that the matrix in the second image of Fig. 2 is still
uninterpretable to a nonspecialist. That is an improvement,
though—the matrix in the first image was uninterpretable to
everyone. We recommend a staged approach: the role of each
layer should first be established empirically by using the prior art
cited above, and then the weight matrix descrambled to find out
the implementation details. The availability of such methods
opens a way to deeper study of neural networks because the
training stage can now be followed by the interpretation stage. So
far, we have only seen our networks invent the mathematics that
is known to humans. It is possible that, at some point, previously
unknown mathematics would make an appearance: neural nets
can likely be mined for new knowledge.

Data Availability. The source code of DEERNet and its
descrambler routines are available as a part of the open-source
Spinach package (spindynamics.org).
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