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Abstract: We propose a novel framework for determining radiomics feature robustness by consid-
ering the effects of both biological and noise signals. This framework is preliminarily tested in a
study predicting the epidermal growth factor receptor (EGFR) mutation status in non-small cell
lung cancer (NSCLC) patients. Pairs of CT images (baseline, 3-week post therapy) of 46 NSCLC
patients with known EGFR mutation status were collected and a FDA-customized anthropomorphic
thoracic phantom was scanned on two vendors’ scanners at four different tube currents. Delta
radiomics features were extracted from the NSCLC patient CTs and reproducible, non-redundant,
and informative features were identified. The feature value differences between EGFR mutant and
EGFR wildtype patients were quantitatively measured as the biological signal. Similarly, radiomics
features were extracted from the phantom CTs. A pairwise comparison between settings resulted in
a feature value difference that was quantitatively measured as the noise signal. Biological signals
were compared to noise signals at each setting to determine if the distributions were significantly
different by two-sample t-test, and thus robust. Four optimal features were selected to predict
EGFR mutation status, Tumor-Mass, Sigmoid-Offset-Mean, Gabor-Energy and DWT-Energy, which
quantified tumor mass, tumor-parenchyma density transition at boundary, line-like pattern inside
tumor and intratumoral heterogeneity, respectively. The first three variables showed robustness
across the majority of studied CT acquisition parameters. The textual feature DWT-Energy was less
robust. The proposed framework was able to determine robustness of radiomics features at specific
settings by comparing biological signal to noise signal. Identification of robust radiomics features
may improve the generalizability of radiomics models in future studies.

Keywords: radiomics; reproducibility; robustness; NSCLC; phantom; EGFR

1. Introduction

Since its conception, radiomics [1,2] has made an enormous impact on establishing
medical images as quantitative data and led to the creation of algorithmic models capable
of performing diagnostic [3,4], prognostic [5,6], histological [7–9], and even genomic
classification [10,11]. However, reproducibility and repeatability of radiomics features and
generalizability of radiomics models have been sources of concern and a major barrier
to clinical translation [12,13]. In addition to reproducibility and repeatability, identifying
robustness is crucial to finding features and building models that will withstand the test of
external validation [14].

CT scan parameters are known to affect radiomics features, but the details are com-
plex [12,15,16]. For example, we have shown that in general, radiomics features can be

Tomography 2021, 7, 55–64. https://doi.org/10.3390/tomography7010005 https://www.mdpi.com/journal/tomography

https://www.mdpi.com/journal/tomography
https://www.mdpi.com
https://orcid.org/0000-0002-6170-1949
https://doi.org/10.3390/tomography7010005
https://doi.org/10.3390/tomography7010005
https://doi.org/10.3390/tomography7010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/tomography7010005
https://www.mdpi.com/journal/tomography
https://www.mdpi.com/2379-1381/7/1/5?type=check_update&version=1


Tomography 2021, 7 56

more reproducible between images of different slice thicknesses than at different recon-
struction kernels [12,15]. This also changes depending on the type of radiomics feature
and the specific scanning parameter called into question. In addition to slice thickness and
reconstruction kernel, tube current, radiation dose, and many other parameters have also
been studied for their impact on radiomics feature reproducibility [16–18].

It has been suggested that only reproducible features be included in training predictive
models [19]. Current methods of establishing the reproducibility of radiomics features
revolve around using test-retest analysis on phantoms or patients [15,18]. However, it
is difficult to capture all of the variety and variability of CT scanning and acquisition
parameters and their effects on radiomics features in a dedicated reproducibility study.
In addition, there is disagreement between studies on the reproducibility of features and
whether slice thickness or reconstruction kernel has a stronger effect on these features [17].
Given the variety of acquisition settings and the ethical implications of obtaining multiple
repeat CT scans on patients, phantom models may be preferable to human subjects for
radiomics studies for current CT scanners and for future generations of scanners.

Previous reproducibility and robustness studies have focused on the effect of different
scanning settings on radiomics features, also known as the random noise generated from
CT acquisition parameters. However, this only describes the consistency of radiomics
features relative to itself, that is, if the random noise is kept under a certain threshold. This
adequately demonstrates reproducibility, but does not provide any information on whether
a feature can still distinguish two classes under different circumstances. For example, a
previous radiomics study on liver nodule classification from abdominal CT scans showed
that a sizable number of features could be significantly influenced by the quality of image
contrast-enhancement [20], i.e., the noise introduced by variations in contrast-enhancement
may more significantly alter the overall imaging phenotype than the underlying change of
tumor biology. In order to determine robustness, there is a need to consider the magnitude
of noise relative to the biological signal and exclude features that are more influenced by
noise than biology.

Therefore, we propose a new framework for determining the robustness of radiomics
features by assessing the relationship between biological and noise signals. If the charac-
terized signal between two biological groups is significantly higher than the noise signals
generated across different CT acquisition parameters, the radiomics feature was determined
to be robust. Furthermore, we investigated the usefulness of the proposed framework in a
real medical application by evaluating reproducible radiomics features to non-invasively
predict epidermal growth factor receptor (EGFR) mutant status in non-small cell lung
cancer (NSCLC) patients.

2. Methods
2.1. Study Design

The overview of our study design is presented in Figure 1. Our work consisted of
three parts: (A) data collection, (B) feature identification on NSCLC patients, and (C)
robustness validation of identified features via phantoms. Our main innovation was the
third part which involved the calculation and comparison of biological and noise signals.
We defined the biological signal as the difference between patient groups of EGFR wildtype
and mutant and the noise signal as the difference of phantom lesions between two different
scanning conditions.
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Figure 1. Overview of study design. The overall study design consisted of three parts: (A) data 
collection, (B) feature identification on non-small cell lung cancer (NSCLC) patients, and (C) ro-
bustness validation of identified features via phantoms. In (C), lines between elements represented 
absolute difference of feature value between two elements. 
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sponse with EGFR exon 19 and 21 mutations and to select patients for adjuvant therapy” 
that was IRB approved [21]. In this study, only fully de-identified data were used for the 
analysis. As only de-identified imaging data were made available for this study, it is not 
considered a human study. Detailed characteristics of patients can be found in previously 
published literature [22], which utilized this patient data to investigate the value of early 
change in tumor volume as an imaging biomarker for response assessment. 

Patients were included if they had a smoking history of less than 15 pack years, or if 
their tumors had histologic features suggestive of bronchioalveolar cancer. They received 
gefitinib daily for 3 weeks before surgery and discontinued it 2 days before their opera-
tion. The EGFR mutation status of resected tumor tissues were analyzed and determined 
using a PCR-based method described in a previous publication [21]. Among the 46 pa-
tients, 20 patients had tumors with EGFR wildtype and 26 patients had tumors with EGFR 
mutants (primary tumor, one per patient). Baseline scanning was done within 2 weeks 
before gefitinib initiation and a single follow-up scanning was done prior to surgery and 
about three weeks post therapy. Baseline and follow-up non-contrast enhanced CT imag-
ing were performed for all patients using a LightSpeed 16 scanner (GE Medical Systems, 
Milwaukee, WI) during a breath-hold. Both baseline and follow-up scanning were recon-
structed into CT images with 1.25 mm slice thickness and a sharp reconstruction kernel. 

The phantom images used in this study came from an anthropomorphic thoracic 
phantom that had been customized by the Quantitative Imaging Biomarkers Alliance 
(QIBA) task group led by FDA scientists [23] and acquired at Columbia University Vage-
los College of Physicians and Surgeons [24]. A subset of lung phantom lesions which con-
sisted of 24 lesions with two different sizes (10 and 20 mm effective diameter), four differ-
ent shapes (spherical, elliptical, lobular, and spiculated) and three different densities 
[−630, −10, and +100 Hounsfield Unit (HU)] were used. A detailed description of the used 
phantom lesions can be found in a previous preliminary study [24], within which the 
phantom was used to explore variability in CT characterization of tumors. The scanning 
protocols of the phantom are listed in Table 1. Two scanners, Scanner #1 (GE Light Speed 
Pro) and Scanner #2 (SIEMENS Sensation 16), were used to scan the phantom with varying 
effective mAs and fixed reconstruction kernel, slice interval and thickness, pixel spacing 
and tube voltage. 

Figure 1. Overview of study design. The overall study design consisted of three parts: (A) data col-
lection, (B) feature identification on non-small cell lung cancer (NSCLC) patients, and (C) robustness
validation of identified features via phantoms. In (C), lines between elements represented absolute
difference of feature value between two elements.

2.2. Patient and Phantom Data

The imaging data of 46 patients were collected in a previous clinical trial (NCT00588445),
“Prospective trial with preoperative gefitinib to correlate lung cancer response with EGFR
exon 19 and 21 mutations and to select patients for adjuvant therapy” that was IRB ap-
proved [21]. In this study, only fully de-identified data were used for the analysis. As
only de-identified imaging data were made available for this study, it is not considered a
human study. Detailed characteristics of patients can be found in previously published
literature [22], which utilized this patient data to investigate the value of early change in
tumor volume as an imaging biomarker for response assessment.

Patients were included if they had a smoking history of less than 15 pack years, or if
their tumors had histologic features suggestive of bronchioalveolar cancer. They received
gefitinib daily for 3 weeks before surgery and discontinued it 2 days before their operation.
The EGFR mutation status of resected tumor tissues were analyzed and determined using
a PCR-based method described in a previous publication [21]. Among the 46 patients,
20 patients had tumors with EGFR wildtype and 26 patients had tumors with EGFR mutants
(primary tumor, one per patient). Baseline scanning was done within 2 weeks before
gefitinib initiation and a single follow-up scanning was done prior to surgery and about
three weeks post therapy. Baseline and follow-up non-contrast enhanced CT imaging were
performed for all patients using a LightSpeed 16 scanner (GE Medical Systems, Milwaukee,
WI) during a breath-hold. Both baseline and follow-up scanning were reconstructed into
CT images with 1.25 mm slice thickness and a sharp reconstruction kernel.

The phantom images used in this study came from an anthropomorphic thoracic
phantom that had been customized by the Quantitative Imaging Biomarkers Alliance
(QIBA) task group led by FDA scientists [23] and acquired at Columbia University Vagelos
College of Physicians and Surgeons [24]. A subset of lung phantom lesions which consisted
of 24 lesions with two different sizes (10 and 20 mm effective diameter), four different
shapes (spherical, elliptical, lobular, and spiculated) and three different densities [−630,
−10, and +100 Hounsfield Unit (HU)] were used. A detailed description of the used
phantom lesions can be found in a previous preliminary study [24], within which the
phantom was used to explore variability in CT characterization of tumors. The scanning
protocols of the phantom are listed in Table 1. Two scanners, Scanner #1 (GE Light Speed
Pro) and Scanner #2 (SIEMENS Sensation 16), were used to scan the phantom with varying
effective mAs and fixed reconstruction kernel, slice interval and thickness, pixel spacing
and tube voltage.



Tomography 2021, 7 58

Table 1. Scan conditions used in CT data acquisition.

Scanning Machine Scanner #1 Scanner #2

Scanning Parameters
Tube voltage (kVp) 120 120

Pitch 1.375 1.2–1.3
X-ray Tube Current (mA) 395, 195, 100, 50 480, 260, 130, 65

CTDIvol (mGy) 23.4, 11.5, 5.9, 2.9 14.4, 7.2, 3.6, 1.8
Exposure Time (s) 0.7 0.5

Collimation Configuration 16 × 0.625 = 10 mm 16 × 0.75 = 12 mm
Reconstruction kernel LUNG B70f

Slice Interval (mm) 1.25 0.9
Slice Thickness (mm) 1.25 1
Pixel Spacing (mm) 0.7 0.7

Scanner #1 refers to the GE Lightspeed Pro model and Scanner #2 refers to the Siemens Sensation 16 model.

The scanning conditions used for the phantom settings were varied by using an x-ray
tube current of 395, 195, 100, and 50 mA for Scanner #1 and 480, 260, 130, and 65 mA for
Scanner #2. The exposure time was 0.7 s for Scanner #1 and 0.5 s for the Scanner #2. These
settings were chosen to obtain roughly equivalent tube current-time product (mAs), which
is proportional to the radiation output, between the two scanners in order to make fair
comparisons [25]. As a result, the conditions varied can be narrowed down to 4 roughly
equivalent tube current-time products, or effective mAs, between the 2 different scanners.

2.3. Radiomics Feature Identification on NSCLS Patients

The identification of radiomics features mainly consisted of three procedures: (1) tu-
mor segmentation, (2) feature extraction and (3) feature selection.

First, an experienced radiologist with more 25 years of experience in chest CT in-
terpretation segmented each lesion on both baseline and follow-up CT images by using
an imaging platform that integrated a semi-automated lung nodule segmentation algo-
rithm [26,27]. The radiologist was blinded to mutation status. Each nodule was segmented
on the CT images under the lung (width, 1500 HU; level,−500 HU) and mediastinal (width,
400 HU; level, 80 HU) window/level settings. Phantom and patient lung lesions were
segmented using the same procedure.

Second, an in-house feature extraction software, implemented on the Matlab platform
(version 2017b, Mathworks, Natick, MA, USA), was used to extract the 1160 quantitative
features from both baseline and follow-up from each segmented tumor [12]. In particular,
to characterize tumor response phenotypes, delta features were used. The delta feature
values were defined as the baseline feature values minus the follow-up feature values [28]
(See Figure 1, part B). These delta features characterized tumor phenotypic changes in terms
of size (e.g., volume, largest diameter), boundary sharpness (e.g., sigmoid slope), shape
(e.g., eccentricity, compactness), and texture patterns (e.g., gray level co-occurrence matrix
(GLCM)). The implementation of these features is detailed in previous publications [7,8,12].

Third, the selection of radiomics features consisted of two steps: (1) remove non-
reproducible features, (2) determine non-redundant and informative features. First, re-
producibility analysis on test-retest CT dataset [29] were performed, and features with
a concordance correlation coefficient smaller than 0.85 were excluded [12]. Second, a
hierarchical cluster analysis was performed to determine non-redundant and informative
features [15,18,30]. The hierarchical cluster analysis consisted of three steps: (1) calculate
spearman’s rank correlations between features, (2) organize features into clusters using
unsupervised hierarchical clustering based on feature correlations, i.e., features with cor-
relation larger than 0.85 were assigned to the same clustering group, and (3) univariance
analysis based on area under the receiver operating curve (AUC) were performed. Only
features with the highest AUC within each cluster that also had an AUC larger than 0.7
were selected as the representatives, i.e., the non-redundant and informative features.
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2.4. Robustness Validation of Robust Features via Phantoms

We defined robustness as a feature’s ability to be free from the influence of random
noise. In this case, random noise is the variability in feature value due to different imaging
conditions. In order to not be impacted by the noise, a feature’s biological signal must
significantly outweigh random variability. The robustness validation consisted of two
steps, calculation of biological and noise signals and comparison between the two.

First, the biological signals (BS) were calculated by measuring the differences in
feature values between the two groups, which in this case are lung lesions that are EGFR
mutants versus lung lesions that are EGFR wildtype, as defined in Equation (1) (See
Figure 1, part C). The noise signals (NS) were calculated by measuring the difference in
feature values solely from using a different scanner or tube current, as defined in Equation
(2) (See Figure 1, part C).

BS =
{

d
∣∣d = dist

(
xri, xsj

)
, i ∈ (1, . . . , nr), j ∈ (1, . . . , ns)

}
. (1)

In Equation (1), xri and xsj represent features calculated from patients of EGFR wild-
type and mutant, respectively. In addition, dist() represents the calculation of the absolute
difference between two feature values. nr and ns represent the total number of EGFR
wildtype and mutant patients, respectively. In our work, nr = 20 and ns = 26.

NSij =
{

d
∣∣d = dist

(
psi, psj

)
, s ∈

(
1, . . . , np

)}
, i ∈ (1, . . . , nc), j ∈ (1, . . . , nc), i > j. (2)

In Equation (2), psi and psj represent features calculated from phantom lesions under
two different scanning conditions i and j, respectively. np and nc represent the total number
of phantom lesions and scanning conditions, respectively. In our work, np = 24, and nc = 8
(two scanning machines multiply four different effective mAs).

Then, biological and noise signals were normalized by µBS + σBS (where µBS and σBS
represent the mean value and standard deviation computed from the biological signal
set BS), and compared by using a two-sample t-test. Comparisons were made in an
isolated pairwise fashion, e.g., 50 mAs versus 100 mAs. A significant difference in the
two distributions, defined using a p-value < 0.05, demonstrated that at those two scanning
conditions, the biological signal would be unaffected by the noise and maintain its ability
to distinguish the two groups. Features that had signal values significantly different from
noise values were considered to be robust at those scanning conditions whereas features
that had signal values that were not significantly different from noise values were deemed
to be not robust at those settings.

All procedures involved in this section were performed in MATLAB 2014a (Math-
Works Inc., Natick, MA, USA).

3. Results
3.1. Feature Selection

The radiomics features selected for being reproducible, non-redundant, and infor-
mative are included in Table 2. In total, 741 out of 1160 features had a CCC > 0.85 on
the test-retest dataset and were deemed reproducible in the initial screen. Four features,
Tumor-Mass, DWT-Energy, Sigmoid-Offset-Mean, and Gabor-Energy had an AUC > 0.7,
and were identified to be non-redundant and informative.
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Table 2. Identified non-redundant and informative radiomics features.

Feature Name AUC (95% CI) Feature Distribution on the EGFR
Mutant Group (Mean ± Std)

Feature Distributionon the EGFR
Wildtype Group (Mean ± Std)

Tumor-Mass 0.865 (0.605, 0.937) −4.07 ± 6.05 × 106 0.18 ± 3.19 × 106

DWT-Energy 0.821 (0.562, 0.934) 1.02 ± 1.73 × 109 −2.45 ± 9.20 × 109

Sigmoid-Offet-Mean 0.760 (0.529, 0.918) 13.12 ± 47.56 −33.34 ± 45.67
Gabor-Energy 0.738 (0.520, 0.887) 1.06 ± 2.01 × 105 −0.42 ± 1.98 × 105

Tumor-Mass quantifies the mass of the entire tumor, i.e., given the same volume, a
partial-solid tumor has a smaller tumor mass, while a solid tumor has a larger tumor mass.
In our study, Tumor-Mass is lower in the EGFR-mutant group, −4.07 ± 6.05 × 106, than in
the EGFR-wildtype group, 0.18 ± 3.19 × 106, indicating that tumors in the EGFR-mutant
group may consist of a more partial-solid component.

Sigmoid-Offset-Mean quantifies the sharpness of tumor boundary (i.e., intensity
transition across the lesion boundary [31]) by using a sigmoid function to fit the tumor
boundary in image. Accordingly, a low value indicates a sharp tumor boundary, while
a high value indicates a smooth tumor boundary. In our study, Sigmoid-Offset-Mean
decreased from 13.12 ± 47.56 in the EGFR-mutant group to −33.34 ± 45.67 in EGFR-
wildtype group, suggesting that tumors in EGFR-mutant group have a smoother tumor
boundary.

DWT-Energy and Gabor-Energy are two textual features quantifying the intratumoral
heterogeneity of the tumor. Large values of DWT-Energy and Gabor-Energy indicate high
heterogeneity within the tumor. As shown in Table 2, both DWT-Energy and Gabor-Energy
decreased from EGFR-mutant group to EGFR-wildtype group, indicating that EGFR mutant
tumors were more heterogenous than EGFR wildtype tumor.

3.2. Robustness Validation

Three out of the four selected features were demonstrated to be robust and unaffected
by the noise generated from using different scanning conditions. They were Tumor-Mass,
Sigmoid-Offset-Mean and Gabor-Energy. The comparisons between biological signal and
noise signal distributions for the four selected radiomics delta features are detailed in
Figure 2.
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Figure 2. Comparisons of biological and noise signals. The four tables show the comparison of
biological and noise signals for each of the 4 non-redundant and informative features. The top left
yellow highlighted cell in each table shows the average value of biological signal for that respective
feature. The average values of noise signal generated from each specific pairwise setting comparison
are shown in the tables. Cells highlighted in green had a p-value < 0.05 using the two-sample t-test,
whereas cells highlighted in red had a p-value > 0.05. (a–d) are the comparisons for the features,
Tumor-Mass, DWT-Energy, Sigmoid-offset-mean and Gabor-Energy, respectively.
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For Tumor-Mass, the biological signal distribution had a mean value of 0.418 and
the noise signal between the pairs of imaging settings had a distribution with mean
values no greater than 0.007. In addition, a two-sample t-test determined that the noise
signal distributions were all significantly different from the biological signal distribution
according to a p-value of <0.05. Sigmoid-Offset-Mean had a biological signal distribution
with a mean value of 0.592 and noise distributions with mean values no greater than
0.25. Similarly, a two-sample t-test determined that the biological signal and noise signal
distributions were significantly different. This difference suggests that at these settings, the
noise variability from using a different scanner or tube current will not significantly impact
the true biological signal’s ability to differentiate between the classes of EGFR mutant and
EGFR wildtype.

The Gabor-Energy feature had a biological signal distribution with a mean value of
0.558 and noise signal distributions with mean values no greater than 0.388. The majority of
noise signal distributions were significantly different from the biological signal distribution.
Only a single comparison between Scanner #1-50 mA and the Scanner #2-480 mA had
a noise signal distribution that failed to demonstrate a significant difference from the
biological signal distribution. In the majority of cases, the Gabor-Energy feature will
continue to differentiate between the classes of EGFR mutant and EGFR wildtype.

However, the DWT-Energy feature’s biological signal and random distributions were
for the most part, not significantly different. The biological signal distribution had a mean
value of 0.310 whereas the noise distribution mean values ranged from 0.02 to 0.49. There
were only three instances where the distributions were significantly different, Scanner
#1-100 vs. Scanner #1-50 mA, Scanner #1-195 vs. Scanner #1-100 mA and Scanner #2-130
mA vs. Scanner #2-65 mA. Non-significance indicates that the influence of noise has a
higher likelihood of impacting the biological signal, and casts doubt on whether that signal
retains its ability to distinguish the two classes in those circumstances. Although there
were some exceptions, the majority of pairwise setting comparison indicate that this feature
was not robust, as it could only generalize to CT images acquired by very similar scanning
parameters, e.g., 50 mAs to 100 mAs in Scanner #1 and 65 mAs to 130 mAs in Scanner #2.

4. Discussion

Use of radiomics in a clinical setting has long been hampered by repeatability and
reproducibility concerns. Feature robustness also needs to be considered in order to
maximize model generalizability. The aim of this study was to test a new framework
of screening radiomics features for repeatability, reproducibility, and robustness across
two scanner types and several different tube currents using phantom lung lesions. This
framework can be applied to a wide variety of settings and can point out features that are
resistant to the noise generated from different CT imaging acquisition parameters.

Our proposed framework builds upon using a test-retest dataset to screen for re-
producibility, a standard feature selection strategy, and adds robustness validation by
comparing the magnitude of the biological signal relative to the noise from different CT
acquisition parameters, which were obtained using phantom lung lesions. Demonstrating
that noise generated from a cross-setting analysis is minimal compared to the biological
signal will provide evidence that radiomics features will be robust across those settings.
In our pilot example using radiomics to predict EGFR mutation status in patients with
NSCLC, we extracted 1160 quantitative features, of which only 741 were considered to be
reproducible, and only four were ultimately selected to be non-redundant and informative.
In our robustness validation, we found that three out of the four selected features had
biological signals that were significantly greater than the noise variation detected across
the studied tube currents and scanner types. The DWT-Energy feature failed to show
a significant difference between the biological signal distribution and the noise signal
distributions. This suggests that noise from the use of different settings may impact the
biological signal’s ability to differentiate between the two classes of EGFR mutant and
wildtype. As a result, incorporation of this feature in a classification model may limit the
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model’s performance to only within CTs using the same (or close) tube current and scanner
from which it was trained on. On the other hand, demonstration of robustness for the
other three features suggest that classification performance will be sustained even in CTs
that were obtained using a different tube current or scanner. Theoretically, this means that
models built from these robust features will also maintain their performance in cases of
external validation where CT acquisition parameters commonly differ from the original
training data.

The use of phantom studies to evaluate feature reproducibility has been suggested
many times and is a part of the radiomics quality score (RQS) suggested by Lambin
et al. [32]. We have previously demonstrated the use of lung and liver phantom le-
sions to evaluate the effect of parameters such as slice thickness on selected radiomics
features [33,34]. This framework adds on to the common use of test-retest datasets for re-
producibility and demonstrates a method to determine feature robustness at a wide variety
of CT acquisition settings using phantom lung lesions. Use of this framework in future
radiomics studies will identify robust features that may contribute to higher generalizabil-
ity of prediction models, especially in external validation settings in which CT acquisition
settings may differ. This may be a critical step towards the future implementation of
radiomics in clinical settings.

In our work, univariance analysis was performed instead of multivariance analysis.
The reason is that, compared to multivariance analysis, univariance analysis has two
advantages: (a) univariance analysis has lower risk of overfitting when performed on a
small amount of data; (b) in the field of medical image analysis, univariance analysis is
more interpretable and easily understood.

Our study has some limitations. The framework was tested in a case study involving
predicting EGFR mutation status in patients with NSCLC and had a relatively small number
of patient cases and a single-center design. Our case study also only demonstrated the
effect of tube current and two scanner types, but the framework can be applied to any
setting or variable in question as well as to other biologic differences and populations. The
appropriate use of a variety of phantoms is critical to establishing the true range of noise
from different settings, but the use of FDA-customized lung lesion phantoms may not be
feasible at all institutions. In addition, we have not demonstrated how selection of robust
features will affect model performance in a validation setting with different CT acquisition
parameters, although theoretically we expect that it should improve performance. Future
work will involve incorporating this framework in radiomics studies with a larger sample
size and an external validation dataset to test the potential improvement in performance.

5. Conclusions

In conclusion, our study proposes and tests a novel framework for identifying robust
radiomics features in a case study predicting tumor treatment response in NSCLC patients
after treatment with Gefitinib using phantom lung lesions. We found that even though
selected features for classification in this experiment were determined to be reproducible,
non-redundant, and informative, not all features were robust to noise effects from the
use of different tube currents and scanner types. Our described method may increase the
generalizability of prediction models by identifying robust features, but additional studies
are needed to assess the true impact of feature robustness on model performance.
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