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Abstract: (1) Background: Autoimmune thyroid diseases (AITDs) are female predominant and much
attention has been focused on G protein-coupled receptor 174 (GPR174) and integral membrane
protein 2A (ITM2A) on the X chromosome as Grave’s disease (GD) susceptible locus. (2) Methods:
We genotyped four single nucleotide polymorphisms (SNPs), rs3810712, rs3810711, rs3827440,
and rs5912838, of GPR174 and ITM2A in 115 Korean children with AITD (M = 25 and F = 90; GD = 74
(14.7 ± 3.6 years), HD = 41 (13.4 ± 3.2 years); GD-thyroid-associated ophthalmopathy (TAO) = 40,
GD-non-TAO=34) and 204 healthy Korean individuals (M = 104 and F = 100). The data were
analyzed by sex-stratified or combined. (3) Results: Three SNPs, rs3810712, rs3810711 and rs3827440,
were found to be in perfect linkage disequilibrium (D’ = 1, r2 = 1). In AITD, HD, GD, GD-TAO, and
GD-non-TAO patients, rs3827440 TT/T and rs5912838 AA/A were susceptible and rs3827440 CC/C
and rs5912838 CC/C were protective genotypes. When analyzed by sex, rs3827440 TT and rs5912838
AA were susceptible and rs3827440 CC and rs5912838 CC were protective genotypes in female AITD,
GD, GD-TAO, and GD-non-TAO subjects. In male AITD patients, rs3827440 T and rs5912838 A
were susceptible and rs3827440 C and rs5912838 C were protective genotypes. (4) Conclusions:
Polymorphisms in GPR174 and ITM2A genes on the X chromosome might be associated with AITD
in Korean children.

Keywords: autoimmune thyroid disease; gender; GPR174 and ITM2A

1. Introduction

Autoimmune thyroid disease (AITD) may occur when genetically susceptible individuals are
exposed to environmental triggers such as infection, iodine, or stress [1]. The genetic factor has a major
role in AITD etiology and the heritability of Graves’ disease (GD) has been reported to be 79% [2].
AITD encompasses GD and Hashimoto’s thyroiditis (HD) [3]. HD seems to involve a CD4 Th1 response.
The effects of antibodies and effector T cells specific for thyroid antigens lead to the progressive
destruction of normal thyroid tissue. The autoimmune response in GD is biased towards a CD4 Th2
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response and is focused on antibody production. The production of anti-thyroid Stimulating Hormone
(TSH) receptor antibodies promotes chronic overproduction of thyroid hormone [3]. However, the fact
that GD and HD are commonly observed in the same family tree reflects a similar genetic basis for
these diseases [4,5]. In early onset autoimmune disease, genetic susceptibility might be greater concern
than in late onset cases [6]. We have reported an increase in allele frequencies of HLA-B*46, -DRB1*08,
and -Cw*01 [7]. The statistical significance in our previous study was much higher than observed in
other studies conducted on Korean adults [8], which might suggest that early-onset AITD is more
influenced by genetic factors than late-onset AITD.

The female predominance in autoimmune disease has long been recognized and the most striking
sex differences in prevalence are observed in AITD (>80% women) [9,10]. However, the biology
of sexual dimorphism in AITD is not clearly understood. Recently, a great deal of attention has
focused on sexual dimorphism in the immune response. Sex dimorphisms in immune response
appear to be partially associated with direct genetic differences such as X chromosome and linked
genes, and sex hormone and sex-specific regulation of immune-related genes [11]. The X chromosome
contains approximately 1000 genes, including many immune-related genes that encode receptors
and associated proteins, immune response-related proteins and transcriptional and translational
regulator [12]. Some genes located on the X chromosome may play an important role in susceptibility
to GD [13]. Furthermore, X chromosome inactivation and skewing might be important contributors to
the increased risk for AITD in females [14–16].

Previous studies found associations with genes on the X chromosome in patients with AITD.
Associations of AITD have been reported with polymorphisms of FOXP3 in Caucasian [17] and
Japanese [18], TLR7 in a Chinese Cantonese population [19] and IRAK1 in Chinese [20]. We also
reported that polymorphisms of IRAK1 gene on X chromosome is associated with HD in Korean
children [21]. Recently, the rs3827440 and rs5912838 single nucleotide polymorphisms (SNPs) in
G protein-coupled receptor 174 (GPR174) and integral membrane protein 2A (ITM2A) on the X
chromosome were suggested to be GD-susceptible loci after the major histocompatibility complex
region [13,22]. However, to the best of our knowledge, there have been no reports on possible
associations of GPR174 and ITM2A polymorphisms with AITD in Korean children. In this study,
we investigated the role of GPR174 and ITM2A polymorphisms (rs3810712, rs3810711, rs3827440,
rs5912838) with AITD in Korean children (Figure 1A).
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Figure 1. (A), G protein-coupled receptor 174 (GPR174) and integral membrane protein 2A (ITM2A)
variants region have been reported from GRCh37.p13 (hg19). rs3810712, 5 prime untranslated region
(‘UTR) variant, C>G,T; rs3810711, 5′UTR variant, T>C,G; rs3827440, missense variant, T>A,C,G;
rs5912838, 3′UTR variant, A>C,G; (B), block and frequency of linkage disequilibrium (LD) of selected
four single nucleotide polymorphisms (SNPs) in GPR174. Boxes are colored deep red if the D’ values
are high, which means LD is more strong. Especially, rs3810712, rs3810711 and rs3827440 were found
to be in perfect linkage disequilibrium (D’ = 1, r2 = 1).
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2. Materials and Methods

2.1. Subjects

The present study is a noninterventional registry study. There were 206 patients diagnosed with
AITD who agreed to participate in this study between March 2009 and August 2019 in the pediatric
endocrine clinic at Seoul St. Mary’s and St. Vincent’s Hospitals. Among these 206, subjects who had
blood sample insufficient for genetic study (n = 91) were excluded. Ultimately, our study included
115 patients (90 females and 25 males) diagnosed with AITD (41 HD and 74 GD cases). The mean
age (±SD) of GD patients at enrollment was 14.7 ± 3.6 years and HD patients was 13.4 ± 3.2 years.
Among the 74 GD patients, 40 patients had thyroid associated ophthalmopathy (TAO) (Table 1).

Table 1. Characteristics of 115 autoimmune thyroid disease (AITD) patients and controls.

AITD (n = 115) Controls (n = 204)
GD (n = 74) HD (n = 41)

Females (%) 52 (70.3%) 38 (92.7%) 100 (49.0%)
Age at enrollment (years) 14.7 ± 3.6 13.4 ± 3.2 22.7 ± 3.8
Goiter (%) 62 (83.8%) 25 (61.0%)
T3 at diagnosis, 0.78–1.82 ng/mL 3.79 ± 2.05 1.22 ± 0.55 n.d.
Free T4 at diagnosis, 0.85–1.86 ng/dL 3.17 ± 1.32 1.07 ± 0.74 n.d.
TSH at diagnosis, 0.17–4.05 mIU/L 0.06 ± 0.20 30.57 ± 48.36 n.d.
TSHR Ab positive at diagnosis 72 (97.3%) n.d.
Tg Ab positive at diagnosis 32 (78%) n.d.
TPO Ab positive at diagnosis 36 (87.8%) n.d.
Clinically evident TAO (NOSPECS class II or higher), n (%) 40 (54.1%)
Remission 23 (31.1%)

Data are presented as Mean ± SD or n (%), Abbreviations: n.d., not done; AITD, autoimmune thyroid diseases;
GD, Graves’ disease; HD, Hashimoto’s disease; TSH, thyroid Stimulating Hormone; TSHR Ab, TSH receptor
antibody; TPO, Thyroid Peroxidase; TAO, thyroid associated ophthalmopathy; Remission, consistent with the
improvement of clinical features and restoration of euthyroidism or induction of hypothyroidism after ATD
therapy [23–25].

For the control group, 204 healthy and genetically unrelated Korean adults (100 females, 104 males)
without a history of AITD were included. The control group was mainly comprised of students
and staff from the Medical College of the Catholic University of Korea and hematopoietic stem cell
transplantation (HSCT) center. In general, the health status of students is considered to be free of special
problems. All subjects provided informed consent to participate in a genetic study. The Institutional
Review Board of the Catholic University of Korea approved our study (IRB Number: KC09FISI0042,
MC13SISI0126).

HD was diagnosed when at least three of Fisher’s criteria [26] were met: (1) goiter, (2) diffuse
goiter and decreased uptake at thyroid scan, (3) the presence of circulating thyroglobulin and/or
microsomal autoantibodies, and (4) hormonal evidence of hypothyroidism. GD diagnosis was based on
confirmation of clinical symptoms and the biochemical confirmation of hyperthyroidism, including the
observation of goiter, elevated 131I uptake by the thyroid gland, positive TSH receptor antibodies and
elevated thyroid hormone levels. In GD, a remission was defined as consistent with the improvement
of clinical features and restoration of euthyroidism or induction of hypothyroidism after ATD therapy.
We defined an intractable as hyperthyroidism persistent over 2 years of ATD therapy or relapsed
after ATD withdrawal or had been treated ATD for at least 5 years [23–25]. Patients who had
other autoimmune diseases, hematologic diseases and endocrine diseases were excluded. TAO was
diagnosed based on the presence of typical clinical features and classified according to the system
recommended by the American Thyroid Association Committee. Patients with no symptoms or only
lid lag sign were included in the without-TAO group [27]. Patients with soft tissue changes, proptosis,
extraocular muscle dysfunction, or the latter two symptoms, were considered to have TAO [28].
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2.2. DNA Extraction

Genomic DNA was extracted from 4 mL of peripheral blood mixed with ethylenediaminetetraacetic
acid using TIANamp Genomic DNA Extraction Kits (Tiangen Biotech Corporation, Beijing, China),
according to the manufacturer’s instructions. The concentration of the DNA solution was adjusted to
100 ng/µL, and the solution was stored at −20 ◦C. Samples were used as a polymerase chain reaction
(PCR) template for genotyping [29].

2.3. Target Gene Primer Design and Multiplex PCR

Four primers designed for GPR174 (rs3810712: C>T), GPR174 (rs3810711: T>C), GPR174 (rs3827440:
T>C), GPR174 and ITM2A (rs5912838: A>C) are listed in Table 2. Genomic DNA was acquired from a
variety of samples, and AITD pediatric patient and control groups were amenable to analysis using
a 50 ng PCR template, or less. The fist amplicons were made by a multiplex PCR process using a
Multiplex kit (Cat: 206143; Qiagen, Hilden, Germany) with other genes. In the first PCR, the extracted
genomic DNA was amplified in a ProFlex 96-Well PCR System (Thermo Fisher Scientific Waltham, MA,
USA) using the following PCR conditions: 1 cycle at 95 ◦C for 15 min and 40 cycles of denaturation
at 94 ◦C for 30 s, annealing at 63 ◦C for 90 s, and extension at 72 ◦C for 30 s. Final extension was
at 60 ◦C for 30 min. In order to enable MiSeq equipment (Illumina, San Diego, CA, USA) to read
nucleotides around the target SNP in the next step [30], the PCR2 was carried out with PCR1 amplicon
and Illumina universal primer [31]. The universal primer consists of tag, index and adapter sequences.
Using 8 bases for each index, to distinguish each sample of PCR1 amplicon, 8 forward primers and
6 reverse primers were employed as universal primers, resulting in 48 unique combinations for PCR2
(Table 2) [32]. The primer information is provided by Illumina, Inc. for SNP typing. The PCR2 primer
amplification was performed in a ProFlex 96-Well PCR System (Thermo Fisher Scientific) using the
following conditions: 1 cycle at 95 ◦C for 15 min and 35 cycles of denaturation at 95 ◦C for 30 s,
annealing at 59 ◦C for 30 s, and extension at 72 ◦C for 60 s.
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Table 2. Oligonucleotide sequences of primers for multiplex PCR amplifications.

Gene
RS Number

(SNP)

SNP
Position

(hg19)
Direction Sequence (5′-3′) Span a

Specific

Tm Insert
Length

Amplicon
Size (bp)

PCR1 primer

GPR174 rs3810712 78,426,471 Forward ACACTCTTTCCCTACACGACGCTCTTCCGATCT
TTG GAA GGA ACA GCA GTT GAT TG 34

63

65
95

Reverse GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
ACG TGT AAT TAG CAG GCA TGA TTC TCT CTA 65

GPR174 rs3810711 78,426,488 Forward ACACTCTTTCCCTACACGACGCTCTTCCGATCT
TTG GAA GGA ACA GCA GTT GAT TGT GAA TTT A 34

65
95

Reverse GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
ACG TGT AAT TAG CAG GCA TGA TTC TCT CTA 65

GPR174 rs3827440 78,426,988 Forward ACACTCTTTCCCTACACGACGCTCTTCCGATCT
CCT GTG TAC TCT TTC CAC TCC TCA GAA 39

61
97

Reverse GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
GCC AGG TTG ACA TTC CTG GTA GGA AGA TCC A 66

ITM2A-GPR174
rs5912838 78,497,118 Forward ACACTCTTTCCCTACACGACGCTCTTCCGATCT

TTC CAC TTC ATG TTA GAT AAA TTT GGA TGT CA 25
66

86

Reverse GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
ACT ATG ATC ACA TTT CTC TGG ATA CTT GA 64

PCR2 Illumina adapters (sequencing) MiSeq_F AATGATACGGCGACCACCGAGATCTACAC - 59 - -
MiSeq_R CAAGCAGAAGACGGCATACGAGAT

Bold-face font indicates PCR1 primer region. Underlined regions indicate universal forward and reverse primer tags sequence. The universal primer consists of tag, index and adapter
sequences. Between the tag sequence and the Illumina adapter sequence exists an index sequence to specify each sample. Index sequences used in this study (5′-3′): forward (TATAGCCT,
ATAGAGGC, CCTATCCT, G GCTCTGA, AGGCGAAG, TAATCTTA, CAGGACGT, GTACTGAC) and reverse (ATTACTCG, TCCGGAGA, CGCTCATT, GAGATTCC, ATTCAGAA,
GAATTCGT); a span: the distance between forward and reverse primers on target sequence.
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2.4. Sequencing

We used Illumina MiSeq equipment for typing of target X chromosome genes. A sample sheet
was prepared on the MiSeq sequencer (Illumina) to provide run details [33]. A standard flow-cell was
inserted into the flow-cell chamber. The pooled sample was diluted with chilled HT1 (Hybridization
Buffer) to a concentration of 2 nM, and an equal amount of 0.2 N NaOH was added to denature the
sample; the mixture was incubated for 5 min. A PhiX control sample at 2 nM was denatured in the
same way. Both the sample and the PhiX were diluted to 8 pmol/L and 1% PhiX was added to the
sample. Then, 600 µL of the spiked sample with a final concentration of 8 pmol/L was pipetted into the
sample well on the MiSeq consumable cartridge before loading in the cooling section of the MiSeq
machine. Sequencing was performed on a MiSeq sequencer using 151 bp paired-end reads, including
an index run according to the manufacturer’s instructions (MiSeq System user guide part #15027617
Rev. C April 2012, MiSeq Reagent kit 300 cycles, Box1 (ref 15026431) and Box2 (ref 15026432)) [34].
To the validation, Sanger sequencing and Integrative Genomics Viewer (IGV) version 2.5.2 were
implemented [35].

2.5. Data Analysis

Data analysis was performed using the MiSeq output report binary alignment map (BAM)
file mapping Burrows-Wheeler Aligner (BWA) Whole Genome Sequencing v1.0. (Illumina) [36].
The proliferation of web-based integrative analysis frameworks has enabled users to perform complex
analyses directly through the web using Galaxy [37]. We performed the following steps:

Pre-process Next-generation sequencing (NGS)data:

(1) MAP with BWA and add read group reference: hg19 [36,38]. The sequence alignment/map format
(BAM) dataset was preprocessed from the Illumina MiSeq instrument.

(2) The sequence alignment/map format (BAM) dataset was uploaded in the Galaxy website.

Identify variable site:
The sequence alignment/map format (BAM) dataset uploaded in the Galaxy website was used.
(1) NAIVE VARIANT CALLER (Galaxy tool)
Options: restrict analysis to chrX; min number of reads to call variants? (irrelevant); min base

quality (BQ) >= 30; min mapping quality (MAPQ) >= 20; ploidy (irrelevant); only write positions with
alternate alleles? NO; report counts per strand.

(2) VARIANT ANNOTATOR (Galaxy tool)
Options: parse variant call format (VCF) () to extract counts, major, minor alleles and minor allele

frequency (MAF); MAF threshold >= 0%; coverage >= 0; do not filter sites.
(3) Filters
MAF >= 0.25% (in forward and reverse strands); CVRG >= 100x (Total coverage); SB <= 1

(strand bias).

2.6. Statistical Analysis

Allele frequencies were determined using Microsoft Office Excel. Fisher’s exact test was applied
when the expected frequency was lower than 5. The p value was multiplied by the number of alleles
observed to give a corrected p value (Pc), which accounts for the multiple comparisons performed.
A corrected p value of <0.05 was considered statistically significant. Haldane’s formula correction
was used when critical entries were equal to zero. The data from cases and controls were analyzed
by separate sex-stratified or all combined. Hardy–Weinberg equilibrium (HWE) of each SNP in
GPR174 and ITM2A were analyzed according to the calculation proposed by Graffelman and Weir [25].
All genotyped SNPs fit the HWE (see Supplementary Tables S1 and S2). To evaluate the presence of
linkage disequilibrium (LD) and block of haplotypes between polymorphisms on GPR174 and ITM2A,
LD and haplotypes were analyzed using the Haploview software, version 4.2 [39].
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Based on GPR174 and ITM2A SNPs MAF (minor allele frequency) of 25% in a dominant model
and predicted prevalence of AITD at 2% [40], unmatched case-control design, a total of 315 participants
is required to yield statistical power of 80% and type 1 error of 5%. The power of our study was
calculated based on an available sample size of 115 cases and 204 controls. The power of MAF 25.0 for
rs3810712, rs3810711, rs3827440 and rs5912838 were 0.71–0.83 in the odds ratio (OR) from 1.8 to 2.0.
In the OR from 0.2 to 0.5, it was 0.99–0.80. In GD cases, the power was 0.58–0.72 in the OR from 1.8 to
2.0. In the OR of 0.5, it was 0.67. Sample size and power were calculated using Quanto 1.2.4 software
(preventivemedicine.usc.edu/ Los Angeles, CA, USA).

3. Results

3.1. Comparison of Genotype and Allele Frequencies of GPR174 and ITM2A SNPs on the X chromosome in
AITD Patients and Controls

All genotyped SNPs fit the HWE (see Supplementary Tables S1 and S2). Three SNPs, rs3810712,
rs3810711 and rs3827440, were found to be in perfect linkage disequilibrium (D’ = 1, r2 = 1) (Figure 1B).
In patients with AITD (n = 115), the genotype and allele frequencies of rs3827440 TT/T (Corrected P
(Pc) = 0.019), T (Pc = 0.000), rs5912838 AA/A (Pc = 0.032), and A (Pc = 0.000) were higher and those
of rs3827440 CC/C (Pc = 0.000), C (Pc = 0.000), rs5912838 CC/C (Pc = 0.000), and C (Pc = 0.000) were
lower than those in controls (n = 204) (Table 3).

Table 3. Genetic influence of GPR174 and ITM2A SNPs on X chromosome in AITD patients.

Controls AITD (GD and HD) *

Analysis
Type

n = 204 (%) n = 115 (%)
χ2 p-Value Pc OR

95CI
(Low)

95CI
(High)F100, M104 F90, M25

GPR174
rs3810712

C>T

F genotype
CC 28 (28.0) 39 (43.3) 4.879 0.027 0.082 2.0 1.1 3.6
CT 48 (48.0) 41 (45.6) 0.114 0.736 2.208 NA NA NA
TT 24 (24.0) 10 (11.1) 5.356 0.021 0.062 0.4 0.2 0.9

Comb
Genotype

CC/C 66 (32.4) 55 (47.8) 7.479 0.006 0.019 1.9 1.2 3.1
CT 48 (23.5) 41 (35.7) 5.373 0.020 0.061 1.8 1.1 3.0

TT/T 87 (42.6) 19 (16.5) 22.623 0.000 0.000 0.3 0.2 0.5

F
Allele

C 104 (52.0) 119 (66.1) 7.780 0.005 0.011 1.8 1.2 2.7
T 96 (48.0) 61 (33.9) 7.780 0.005 0.011 0.6 0.4 0.8

M
Allele

C 41 (39.4) 16 (64.0) 4.936 0.026 0.053 2.7 1.1 6.8
T 66 (63.5) 9 (36.0) 6.245 0.012 0.025 0.3 0.1 0.8

Comb
Allele

C 145 (47.7) 135 (65.9) 16.308 0.000 0.000 2.1 1.5 3.0
T 162 (53.3) 70 (34.1) 18.089 0.000 0.000 0.5 0.3 0.7

GPR174
rs3810711

T>C

F genotype
TT 28 (28.0) 39 (43.3) 4.879 0.027 0.082 2.0 1.1 3.6
TC 48 (48.0) 41 (45.6) 0.114 0.736 2.208 NA NA NA
CC 24 (24.0) 10 (11.1) 5.356 0.021 0.062 0.4 0.2 0.9

Comb
Genotype

TT/T 66 (32.4) 55 (47.8) 7.479 0.006 0.019 1.9 1.2 3.1
TC 48 (23.5) 41 (35.7) 5.373 0.020 0.061 1.8 1.1 3.0

CC/C 87 (42.6) 19 (16.5) 22.623 0.000 0.000 0.3 0.2 0.5
F

Allele
T 104 (52.0) 119 (66.1) 7.780 0.005 0.011 1.8 1.2 2.7
C 96 (48.0) 61 (33.9) 7.780 0.005 0.011 0.6 0.4 0.8

M
Allele

T 41 (39.4) 16 (64.0) 4.936 0.026 0.053 2.7 1.1 6.8
C 66 (63.5) 9 (36.0) 6.245 0.012 0.025 0.3 0.1 0.8

Comb
Allele

T 145 (47.7) 135 (65.9) 16.308 0.000 0.000 2.1 1.5 3.0
C 162 (53.3) 70 (34.1) 18.089 0.000 0.000 0.5 0.3 0.7

GPR174
rs3827440

T>C

F genotype
TT 28 (28.0) 39 (43.3) 4.879 0.027 0.082 2.0 1.1 3.6
TC 48 (48.0) 41 (45.6) 0.114 0.736 2.208 NA NA NA
CC 24 (24.0) 10 (11.1) 5.356 0.021 0.062 0.4 0.2 0.9

Comb
Genotype

TT/T 66 (32.4) 55 (47.8) 7.479 0.006 0.019 1.9 1.2 3.1
TC 48 (23.5) 41 (35.7) 5.373 0.020 0.061 1.8 1.1 3.0

CC/C 87 (42.6) 19 (16.5) 22.623 0.000 0.000 0.3 0.2 0.5
F

Allele
T 104 (52.0) 119 (66.1) 7.780 0.005 0.011 1.8 1.2 2.7
C 96 (48.0) 61 (33.9) 7.780 0.005 0.011 0.6 0.4 0.8

M
Allele

T 41 (39.4) 16 (64.0) 4.936 0.026 0.053 2.7 1.1 6.8
C 66 (63.5) 9 (36.0) 6.245 0.012 0.025 0.3 0.1 0.8

Comb
Allele

T 145 (47.7) 135 (65.9) 16.308 0.000 0.000 2.1 1.5 3.0
C 162 (53.3) 70 (34.1) 18.089 0.000 0.000 0.5 0.3 0.7
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Table 3. Cont.

Controls AITD (GD and HD) *

Analysis
Type

n = 204 (%) n = 115 (%)
χ2 p-Value Pc OR

95CI
(Low)

95CI
(High)F100, M104 F90, M25

ITM2A-GPR174
rs5912838

A>C

F genotype
AA 29 (29.0) 39 (43.3) 4.235 0.040 0.119 1.9 1.0 3.4
AC 44 (44.0) 41 (45.6) 0.046 0.830 2.489 NA NA NA
CC 27 (27.0) 10 (11.1) 7.626 0.006 0.017 0.3 0.2 0.7

Comb
Genotype

AA/A 68 (33.3) 55 (47.8) 6.520 0.011 0.032 1.8 1.1 2.9
AC 44 (21.6) 41 (35.7) 7.463 0.006 0.019 2.0 1.2 3.3

CC/C 89 (43.6) 19 (16.5) 24.129 0.000 0.000 0.3 0.1 0.4
F

Allele
A 102 (51.0) 119 (66.1) 8.890 0.003 0.006 1.9 1.2 2.8
C 98 (49.0) 61 (33.9) 8.890 0.003 0.006 0.5 0.4 0.8

M
Allele

A 42 (40.4) 16 (64.0) 4.542 0.033 0.066 2.6 1.1 6.5
C 65 (62.5) 9 (36.0) 5.787 0.016 0.032 0.34 0.1 0.8

Comb
Allele

A 144 (47.4) 135 (65.9) 16.891 0.000 0.000 2.1 1.5 3.1
C 163 (53.6) 70 (34.1) 18.703 0.000 0.000 0.4 0.3 0.6

GD, Grave’s disease; F, female; Comb, female and male; M, male; * Male allele analysis, which can be counted by
heterozygous allele as diploids; χ2, Chi squares; Pc, Bonferroni’s correction; NA, not applicable; OR, odds ratio.;
Total (number of reads supporting one of the four bases above) cut off>=100, MAF (frequency of minor allele)>=0.25.;
The value limited all Corrected P (Pc) < 0.005, and p < 0.05.

In female AITD patients (n = 90), the genotype and allele frequencies of rs3827440 TT (p = 0.027),
T (Pc = 0.011), rs5912838 AA (p = 0.040), and A (Pc = 0.006) were higher and those of rs3827440 CC
(p = 0.021), C (Pc = 0.011), rs5912838 CC (Pc = 0.017), and C (Pc = 0.006) were lower than those of female
controls (n = 100). In male AITD patients (n = 25), the allele frequencies of rs3827440 T (p = 0.026),
and rs5912838 A (p = 0.033) were higher and those of rs3827440 C (Pc = 0.025), and rs5912838 C
(Pc = 0.032) were lower than those in male controls (n = 104).

3.2. Comparison of Genotype and Allele Frequencies of GPR174 and ITM2A SNPs on X chromosome in GD
Patients with or without TAO and Controls

In patients with GD (n = 74), the genotype and allele frequencies of rs3827440 TT/T (Pc = 0.006),
T (Pc = 0.000), rs5912838 AA/A (Pc = 0.010) and A (Pc = 0.000) were higher and those of rs3827440
CC/C (Pc = 0.000), C (Pc = 0.000), rs5912838 CC/C (Pc = 0.000), and C (Pc = 0.000) were lower than
those of controls (n = 204). In patients with GD-TAO (n = 40), the genotype and allele frequencies
of rs3827440 T (Pc = 0.008), and rs5912838 A (Pc = 0.007) were higher and those of rs3827440 CC/C
(Pc = 0.008), C (Pc = 0.005), rs5912838 CC/C (Pc = 0.006), and C (Pc = 0.004) were lower than those
of controls (n = 204). In patients with GD non-TAO (n = 34), the genotype and allele frequencies of
rs3827440 TT/T (Pc = 0.009), T (Pc = 0.000), rs5912838 AA/A (Pc = 0.013), and A (Pc = 0.000) were
higher and those of rs3827440 CC/C (Pc = 0.002), C (Pc = 0.000), rs5912838 CC/C (Pc = 0.001), and C
(Pc = 0.000) were lower than those of controls (n = 204).

In female GD patients (n = 52), the genotype and allele frequencies of rs3827440 TT (Pc = 0.022),
T (Pc = 0.001), rs5912838 AA (Pc = 0.032), and A (Pc = 0.000) were higher and those of rs3827440 CC
(Pc = 0.005), C (Pc = 0.001), and rs5912838 CC (Pc = 0.002), C (Pc = 0.000) were lower than those of
female controls (n = 100). In female GD-TAO patients (n = 27), the genotype and allele frequencies
of rs3827440 T (Pc = 0.032), and rs5912838 A (Pc = 0.022) were higher and those of rs3827440 CC
(p = 0.019), C (Pc = 0.032), and rs5912838 CC (Pc = 0.029), C (Pc = 0.022) were lower than those of
female controls (n = 100). In female GD-non TAO patients (n = 25), the genotype and allele frequencies
of rs3827440 TT (Pc = 0.024), T (Pc = 0.004), rs5912838 AA (Pc = 0.033), and A (Pc = 0.003) were higher
and those of rs3827440 CC (p = 0.025), C (Pc = 0.004) rs5912838 CC (Pc = 0.041), and C (Pc = 0.003)
were lower than those of female controls (n = 100) (Tables 4 and 5). In female GD remission patients
(n = 23), there was no significant difference in rs3827440 TT and rs5912838 AA genotype frequencies
compared with intractable groups (n = 51)
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Table 4. Genotype(2n) influence of GPR174 and ITM2A SNPs on X chromosome in GD patients with or without TAO.

Controls GD GD_TAO GD_w/o TAO

Genotype
Analysis

Total n = 204 Total n = 74
χ2 p-Value Pc OR

95CI
(Low)

95CI
(High)

Total n = 40
χ2 p-Value Pc OR

95CI
(Low)

95CI
(High)

Total n = 34
χ2 p-Value Pc OR

95CI
(Low)

95CI
(High)F100 M104 (%) F52 M22 (%) F27 M13 (%) F25 M9 (%)

GPR174
rs3810712

C>T

F
CC 28 (28.0) 26 (50.0) 7.229 0.007 0.022 2.6 1.3 5.2 12 (44.4) 2.665 0.103 0.308 NA NA NA 14 (56.0) 7.028 0.008 0.024 3.3 1.3 8.1
CT 48 (48.0) 24 (46.2) 0.047 0.829 2.486 NA NA NA 14 (51.9) 0.126 0.722 2.167 NA NA NA 10 (40.0) 0.515 0.473 1.419 NA NA NA
TT 24 (24.0) 2 (3.8) 9.800 0.002 0.005 0.1 0.0 0.6 1 (3.7) 5.539 0.019 0.056 0.1 0.0 0.9 1 (4.0) 5.000 0.025 0.076 0.1 0.0 1.0

Comb
CC/C 66 (32.4) 39 (52.7) 9.567 0.002 0.006 2.3 1.4 4.0 19 (47.5) 3.380 0.066 0.198 NA NA NA 20 (58.8) 8.849 0.003 0.009 3.0 1.4 6.3

TC 48 (23.5) 24 (32.4) 0.047 0.829 2.486 NA NA NA 14 (35.0) 0.126 0.722 2.167 NA NA NA 10 (29.4) 0.515 0.473 1.419 NA NA NA
TT/T 87 (42.6) 11 (14.9) 18.841 0.000 0.000 0.2 0.1 0.5 7 (17.5) 8.930 0.003 0.008 0.3 0.1 0.7 4 (11.8) 11.769 0.001 0.002 0.2 0.1 0.5

GPR174
rs3810711

T>C

F
TT 28 (28.0) 26 (50.0) 7.229 0.007 0.022 2.6 1.3 5.2 12 (44.4) 2.665 0.103 0.308 NA NA NA 14 (56.0) 7.028 0.008 0.024 3.3 1.3 8.1
TC 48 (48.0) 24 (46.2) 0.047 0.829 2.486 NA NA NA 14 (51.9) 0.126 0.722 2.167 NA NA NA 10 (40.0) 0.515 0.473 1.419 NA NA NA
CC 24 (24.0) 2 (3.8) 9.800 0.002 0.005 0.1 0.0 0.6 1 (3.7) 5.539 0.019 0.056 0.1 0.0 0.9 1 (4.0) 5.000 0.025 0.076 0.1 0.0 1.0

Comb
TT/T 66 (32.4) 39 (52.7) 9.567 0.002 0.006 2.3 1.4 4.0 19 (47.5) 3.380 0.066 0.198 NA NA NA 20 (58.8) 8.849 0.003 0.009 3.0 1.4 6.3
TC 48 (23.5) 24 (32.4) 0.047 0.829 2.486 NA NA NA 14 (35.0) 0.126 0.722 2.167 NA NA NA 10 (29.4) 0.515 0.473 1.419 NA NA NA

CC/C 87 (42.6) 11 (14.9) 18.841 0.000 0.000 0.2 0.1 0.5 7 (17.5) 8.930 0.003 0.008 0.3 0.1 0.7 4 (11.8) 11.769 0.001 0.002 0.2 0.1 0.5

GPR174
rs3827440

T>C

F
TT 28 (28.0) 26 (50.0) 7.229 0.007 0.022 2.6 1.3 5.2 12 (44.4) 2.665 0.103 0.308 NA NA NA 14 (56.0) 7.028 0.008 0.024 3.3 1.3 8.1
TC 48 (48.0) 24 (46.2) 0.047 0.829 2.486 NA NA NA 14 (51.9) 0.126 0.722 2.167 NA NA NA 10 (40.0) 0.515 0.473 1.419 NA NA NA
CC 24 (24.0) 2 (3.8) 9.800 0.002 0.005 0.1 0.0 0.6 1 (3.7) 5.539 0.019 0.056 0.1 0.0 0.9 1 (4.0) 5.000 0.025 0.076 0.1 0.0 1.0

Comb
TT/T 66 (32.4) 39 (52.7) 9.567 0.002 0.006 2.3 1.4 4.0 19 (47.5) 3.380 0.066 0.198 NA NA NA 20 (58.8) 8.849 0.003 0.009 3.0 1.4 6.3
TC 48 (23.5) 24 (32.4) 0.047 0.829 2.486 NA NA NA 14 (35.0) 0.126 0.722 2.167 NA NA NA 10 (29.4) 0.515 0.473 1.419 NA NA NA

CC/C 87 (42.6) 11 (14.9) 18.841 0.000 0.000 0.2 0.1 0.5 7 (17.5) 8.930 0.003 0.008 0.3 0.1 0.7 4 (11.8) 11.769 0.001 0.002 0.2 0.1 0.5

ITM2A-GPR174
rs5912838

A>C

F
AA 29 (29.0) 26 (50.0) 6.534 0.011 0.032 2.4 1.2 4.9 12 (44.4 2.320 0.128 0.383 NA NA NA 14 (56.0) 6.461 0.011 0.033 3.1 1.3 7.7
AC 44 (44.0) 24 (46.2) 0.064 0.800 2.400 NA NA NA 14 (51.9 0.528 0.467 1.402 NA NA NA 10 (40.0) 0.130 0.718 2.154 NA NA NA
CC 27 (27.0) 2 (3.8) 11.879 0.001 0.002 0.1 0.0 0.5 1 (3.7) 6.713 0.010 0.029 0.1 0.0 0.8 1 (4.0) 6.087 0.014 0.041 0.1 0.0 0.9

Comb
AA/A 68 (33.3) 39 (52.7) 8.605 0.003 0.010 2.2 1.3 3.8 19 (47.5) 2.925 0.087 0.262 NA NA NA 20 (58.8) 8.126 0.004 0.013 2.9 1.4 6.0

AC 44 (21.6) 24 (32.4) 0.064 0.800 2.400 NA NA NA 14 (35.0) 0.528 0.467 1.402 NA NA NA 10 (29.4) 0.130 0.718 2.154 NA NA NA
CC/C 89 (43.6) 11 (14.9) 19.505 0.000 0.000 0.2 0.1 0.5 7 (17.5) 9.566 0.002 0.006 0.3 0.1 0.6 4 (11.8) 12.428 0.000 0.001 0.2 0.1 0.5

GD, Grave’s disease; TAO, thyroid-associated ophthalmopathy; F, female; Comb, female and male; M, male; χ2, Chi squares; Pc, Bonferroni’s correction; NA, not applicable; OR, odds ratio;
w/o, without; CI, confidential interval; total (number of reads supporting one of the four bases above) cut off>=100, MAF (frequency of minor allele) >= 0.25. The value limited all
Pc < 0.005, and p < 0.05.
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Table 5. Allele(n) influence of GPR174 and ITM2A SNPs on X chromosome in GD patients with or without TAO.

Controls GD GD_TAO GD_w/o TAO

Total n = 204 Total n = 74
χ2 p-Value Pc OR

95CI
(Low)

95CI
(High)

Total n = 40
χ2 p-Value Pc OR

95CI
(Low)

95CI
(High)

Total n = 34
χ2 p-Value Pc OR

95CI
(Low)

95CI
(High)Allele F100 M104 (%) F52 M22 (%) F27 M13 (%) F25 M9 (%)

GPR174
rs3810712

C>T

F
C 104 (52.0) 76 (73.1) 12.585 0.000 0.001 2.5 1.5 4.2 38 (70.4) 5.821 0.016 0.032 2.2 1.1 4.2 38 (76.0) 9.390 0.002 0.004 2.9 1.4 5.9
T 96 (48.0) 28 (26.9) 12.585 0.000 0.001 0.4 0.2 0.7 16 (29.6) 5.821 0.016 0.032 0.5 0.2 0.9 12 (24.0) 9.390 0.002 0.004 0.3 0.2 0.7

M
C 41 (39.4) 13 (59.1) 2.868 0.090 0.181 NA NA NA 7 (53.8) 0.994 0.319 0.638 NA NA NA 6 (66.7) 2.531 0.112 0.223 NA NA NA
T 66 (63.5) 9 (40.9) 3.833 0.050 0.100 NA NA NA 6 (46.2) 1.463 0.227 0.453 NA NA NA 3 (33.3) 3.162 0.075 0.151 NA NA NA

Comb
C 145 (47.7) 89 (70.6) 18.894 0.000 0.000 2.6 1.7 4.1 45 (67.2) 8.327 0.004 0.008 2.2 1.3 3.9 44 (74.6) 14.304 0.000 0.000 3.2 1.7 6.0
T 162 (53.3) 37 (29.4) 20.508 0.000 0.000 0.4 0.2 0.6 22 (32.8) 9.188 0.002 0.005 0.4 0.2 0.7 15 (25.4) 15.356 0.000 0.000 0.3 0.2 0.6

GPR174
rs3810711

T>C

F
T 104 (52.0) 76 (73.1) 12.585 0.000 0.001 2.5 1.5 4.2 38 (70.4) 5.821 0.016 0.032 2.2 1.1 4.2 38 (76.0) 9.390 0.002 0.004 2.9 1.4 5.9
C 96 (48.0) 28 (26.9) 12.585 0.000 0.001 0.4 0.2 0.7 16 (29.6) 5.821 0.016 0.032 0.5 0.2 0.9 12 (24.0) 9.390 0.002 0.004 0.3 0.2 0.7

M
T 41 (39.4) 13 (59.1) 2.868 0.090 0.181 NA NA NA 7 (53.8) 0.994 0.319 0.638 NA NA NA 6 (66.7) 2.531 0.112 0.223 NA NA NA
C 66 (63.5) 9 (40.9) 3.833 0.050 0.100 NA NA NA 6 (46.2) 1.463 0.227 0.453 NA NA NA 3 (33.3) 3.162 0.075 0.151 NA NA NA

Comb
T 145 (47.7) 89 (70.6) 18.894 0.000 0.000 2.6 1.7 4.1 45 (67.2) 8.327 0.004 0.008 2.2 1.3 3.9 44 (74.6) 14.304 0.000 0.000 3.2 1.7 6.0
C 162 (53.3) 37 (29.4) 20.508 0.000 0.000 0.4 0.2 0.6 22 (32.8) 9.188 0.002 0.005 0.4 0.2 0.7 15 (25.4) 15.356 0.000 0.000 0.3 0.2 0.6

GPR174
rs3827440

T>C

F
T 104 (52.0) 76 (73.1) 12.585 0.000 0.001 2.5 1.5 4.2 38 (70.4) 5.821 0.016 0.032 2.2 1.1 4.2 38 (76.0) 9.390 0.002 0.004 2.9 1.4 5.9
C 96 (48.0) 28 (26.9) 12.585 0.000 0.001 0.4 0.2 0.7 16 (29.6) 5.821 0.016 0.032 0.5 0.2 0.9 12 (24.0) 9.390 0.002 0.004 0.3 0.2 0.7

M
T 41 (39.4) 13 (59.1) 2.868 0.090 0.181 NA NA NA 7 (53.8) 0.994 0.319 0.638 NA NA NA 6 (66.7) 2.531 0.112 0.223 NA NA NA
C 66 (63.5) 9 (40.9) 3.833 0.050 0.100 NA NA NA 6 (46.2) 1.463 0.227 0.453 NA NA NA 3 (33.3) 3.162 0.075 0.151 NA NA NA

Comb
T 145 (47.7) 89 (70.6) 18.894 0.000 0.000 2.6 1.7 4.1 45 (67.2) 8.327 0.004 0.008 2.2 1.3 3.9 44 (74.6) 14.304 0.000 0.000 3.2 1.7 6.0
C 162 (53.3) 37 (29.4) 20.508 0.000 0.000 0.4 0.2 0.6 22 (32.8) 9.188 0.002 0.005 0.4 0.2 0.7 15 (25.4) 15.356 0.000 0.000 0.3 0.2 0.6

ITM2A-GPR174
rs5912838

A>C

F
A 102 (51.0) 76 (73.1) 13.741 0.000 0.000 2.6 1.6 4.4 38 (70.4) 6.449 0.011 0.022 2.3 1.2 4.4 38 (76.0) 10.146 0.001 0.003 3.0 1.5 6.2
C 98 (49.0) 28 (26.9) 13.741 0.000 0.000 0.4 0.2 0.6 16 (29.6) 6.449 0.011 0.022 0.4 0.2 0.8 12 (24.0) 10.146 0.001 0.003 0.3 0.2 0.7

M
A 42 (40.4) 13 (59.1) 2.583 0.108 0.216 NA NA NA 7 (53.8) 0.860 0.354 0.707 NA NA NA 6 (66.7) 2.342 0.126 0.252 NA NA NA
C 65 (62.5) 9 (40.9) 3.492 0.062 0.123 NA NA NA 6 (46.2) 1.294 0.255 0.511 NA NA NA 3 (33.3) 2.940 0.086 0.173 NA NA NA

Comb
A 144 (47.4) 89 (70.6) 19.425 0.000 0.000 2.7 1.7 4.2 45 (67.2) 8.609 0.003 0.007 2.3 1.3 4.0 44 (74.6) 14.650 0.000 0.000 3.3 1.7 6.1
C 163 (53.6) 37 (29.4) 21.062 0.000 0.000 0.4 0.2 0.6 22 (32.8) 9.485 0.002 0.004 0.4 0.2 0.7 15 (25.4) 15.717 0.000 0.000 0.3 0.2 0.6

GD, Grave’s disease; TAO, thyroid-associated ophthalmopathy; F, female; Comb, female and male; M, male; Male allele analysis, which can be counted by heterozygous allele as diploids;
χ2, Chi squares; Pc, Bonferroni’s correction; NA, not applicable; OR, odds ratio; w/o, without; CI, confidential interval; total (number of reads supporting one of the four bases above) cut off
>= 100, MAF (frequency of minor allele) >= 0.25.The value limited all Pc < 0.005, and p < 0.05.
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3.3. Comparison of Genotype and Allele Frequencies of GPR174 and ITM2A SNPs on X chromosome in HD
Patients and Controls

In patients with HD (n = 41), the genotype frequencies of rs3827440 CC/C (Pc = 0.017), and rs5912838
CC/C (Pc = 0.012) were lower than those of controls (n = 204)

3.4. LD and Haplotype Analysis of the Four GPR174 and ITM2A SNPs

All four SNPs, rs3810712, rs3810711, rs3827440 and rs5912838, were in strong LD (D’ = 0.9–1,
r2 = 0.92) (Figure 1B). rs3810712, rs3810711, and rs3827440 were found to be in perfect LD (D’ = 1, r2 = 1).
The haplotype frequencies of the GPR174 and ITM2A gene in pediatric patients with AITD and controls
are shown in Table 6. The haplotype (CTTA) frequencies of GPR174 and ITM2A rs3810712, rs3810711,
rs3827440, and rs5912838 were higher in AITD patients than in controls (r2 = 20.29, p = 0.000).

Table 6. Four GPR174 and ITM2A SNPs haplotype frequencies identified in controls and AITD patents.

Haplotype Freq.
Case, Control
Ratio Counts

Case, Control
Frequencies Chi Square p-Value

AITD Control AITD Control

+ - + -
CTTA 0.537 135.0:70.0 137.0:164.0 0.658 0.455 20.29 0.000
TCCC 0.445 70.0:135.0 155.0:146.0 0.341 0.515 14.87 0.000

4. Discussion

GPR174, which is located in the Xq21.1 region, encodes a protein member of the P2Y receptor
family. Lyso-phosphatidyl-serine secreted by the immune system acts as a ligand for GPR174.
GPR174 is extensively expressed in the immune system and thyroid tissue and inhibits the production
of the T-helper 1 cytokine [13]. ITM2A, which is encoded by a gene also located in the Xq21.1
region, is expressed by CD4+ T cells and plays a role in the activation of T cells [41]. The SNP
rs3827440 of GPR174 is a nucleotide transition in the single exon of GPR174 that causes an amino acid
substitution [13]. The amino acid substitution in GPR174 maps to the second extracellular loop region,
which is required for ligand recognition and receptor activation, and this mutation may alter these
activities [42]. A nucleotide transition (519T>C) in rs3827440 causes serine [TCT]> proline [CCT] [43].
The SNPs rs3810711 and rs3810712 are both located in the 5′ UTR of GPR174. The SNP rs5912838,
located between the immune receptor GPR174 and ITM2A, was identified as an important signal on
Xq21.1 associated with GC in a Chinese Han population [22]. Two SNPs, rs3810711 and rs3810712,
both located in the 5′ UTR of GPR174, have been reported in perfect LD with rs3827440 [13]. In the
present study, we also found rs3827440 to be in perfect LD with rs3810711 and rs3810712 and in strong
LD with rs5912838 (Figure 1B).

Our study revealed that rs3827440 TT/T and rs5912838 AA/A were disease-susceptible genotypes
and rs3827440 CC/C and rs5912838 CC/C were disease-protective genotypes in the overall AITD, HD,
GD, GD-TAO and GD-non-TAO patient groups. When cases and controls were analyzed according
to sex, rs3827440 TT and rs5912838 AA were disease-susceptible genotypes and rs3827440 CC and
rs5912838 CC showed disease-protective genotypes in female AITD, GD, GD-TAO, and GD-non-TAO
patients. In male AITD patients, rs3827440 T and rs5912838 A were disease-susceptible genotypes
and rs3827440 C and rs5912838 C were disease-protective genotypes. The T allele of rs3827440 in
GPR174 has been suggested to be GD susceptible in both Chinese and Polish population [22,44].
Chu et al. found that freshly isolated peripheral blood cells from both female homozygous carriers
and male carriers of the risk allele T rs3827440 showed a higher level of GPR174 expression [13].
Ye et al. showed that the transcription level of ITM2A in PBMCs from volunteers was regulated by
the different alleles of rs3827440 and its linked SNP rs5912838 [45]. Lyso-phosphatidyl-serine acts via
GPR174 and Gs α subunit to suppress IL-2 production by activated T cells and limit upregulation of the
activation markers CD25 and CD69 [46]. Some studies suggested GPR174 as an abundantly expressed
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gas-dependent receptor that can negatively regulate naive T-cell activation [46]. Thus, GPR174 could
mediate an important regulatory pathway connected to central T cell development and peripheral
function [47]. In additions, the GPR174 and ITM2A transcripts in CD4 and CD8 T, Natural killer
(NK), and monocyte cells with rs3827440 CC or rs5912838 CC genotypes were lower than those with
rs3827440 TT or rs5912838 AA genotypes (https://dice-database.org/eqtls). These results might suggest
that rs3827440 TT or rs5912838 AA could be more the causative variants in AITD children in males,
females and a combination of the sexes.

In genomic linkage and association studies, the X chromosome is less well studied than autosomes,
predominantly because of the higher complexity of analyses [47]. Traits and markers on the
X chromosome are different from autosomal markers with respect to HWE [48]. The complicating
factor for assessing deviation from HWE is that males are hemizygous, and have only one allele on
X-chromosomal markers outside of the pseudoautosomal regions, while females have two alleles on
the autosomes [49]. Some ignore male subjects and conduct tests for HWE in females only. However,
this reduces the sample size and results in a loss of power, and if males are neglected, deviation from
HWE cannot be thoroughly investigated [49]. In this present study, we confirmed that the data were in
HWE using the calculation proposed by Graffelman and Weir [25]. We specifically analyzed data from
cases and controls by sex-stratification or a combination of the sexes to assess the role of GPR174 and
ITM2A in immunopathogenesis of female-predominant AITD. To the best of our knowledge, this is the
first report of an association between GPR174 and ITM2A SNPs and children with AITD. However,
there are limitations of the small sample size, and the controls were not investigated via laboratory
methods to exclude subclinical cases of AITD in this study. To confirm the role of GPR174 and ITM2A
genes in AITD, further studies on gene expression of immune cells with ethnically diverse populations
including large numbers of patients are necessary.

In conclusion, we found that rs3827440 TT/T and rs5912838 AA/A in GPR174 and ITM2A genes on
the X chromosome were disease-susceptible genotypes and rs3827440 CC/C and rs5912838 CC/C were
disease-protective genotypes among female, male and combined AITD patient groups. In investigating
X chromosome data, full use of samples and detailed analysis of data are necessary for case and control
disease association genetic studies. These results suggest that polymorphisms in GPR174 and ITM2A
genes on the X chromosome play a role in the immunopathogenesis of female-predominant AITD in
Korean children.
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