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Abstract

Among different stochastic user equilibrium (SUE) traffic assignment models, the Logit-

based stochastic user equilibrium (SUE) is extensively investigated by researchers. It is

constantly formulated as the low-level problem to describe the drivers’ route choice behavior

in bi-level problems such as network design, toll optimization et al. The Probit-based SUE

model receives far less attention compared with Logit-based model albeit the assignment

result is more consistent with drivers’ behavior. It is well-known that due to the identical and

irrelevant alternative (IIA) assumption, the Logit-based SUE model is incapable to deal with

route overlapping problem and cannot account for perception variance with respect to trips.

This paper aims to explore the network capacity with Probit-based traffic assignment model

and investigate the differences of it is with Logit-based SUE traffic assignment models. The

network capacity is formulated as a bi-level programming where the up-level program is to

maximize the network capacity through optimizing input parameters (O-D multiplies and

signal splits) while the low-level program is the Logit-based or Probit-based SUE problem

formulated to model the drivers’ route choice. A heuristic algorithm based on sensitivity anal-

ysis of SUE problem is detailed presented to solve the proposed bi-level program. Three

numerical example networks are used to discuss the differences of network capacity

between Logit-based SUE constraint and Probit-based SUE constraint. This study finds that

while the network capacity show different results between Probit-based SUE and Logit-

based SUE constraints, the variation pattern of network capacity with respect to increased

level of travelers’ information for general network under the two type of SUE problems is the

same, and with certain level of travelers’ information, both of them can achieve the same

maximum network capacity.

1. Introduction

Network capacity aims to describe the maximum demand that can be accommodated by the

road network. It can be measured by the greatest common multiplier of existing origin-

destination (O-D) demand that can be achieved without exceeding a prescribed degree of
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saturation on each links while taking users’ route choice into account [1]. Like the indicators

such as travel time, queue length etc., network capacity is also a very important indicator to

evaluate the network performance. For example, on infrastructure planning, an underlying

guideline to design the road network and determine the number of lanes on particular link is

that they should have enough capacity to accommodate the demand in future. One advantage

of study of network capacity is, it helps to find the potential links that may block the traffic,

and determine the optimal investment strategy to improve the total capacity of the network.

Besides, for congested urban traffic network, it is also able to relieve traffic congestion level by

determining optimum inputs such as the signal timings (circle time, splits etc.), link capacity

increase etc.

Wong and Yang [2] first proposed the concept of reserve capacity of a general signal-con-

trolled road network under time-stationary conditions with deterministic user equilibrium

(DUE) problem. It is defined as the maximum common multiplier of existing O-D demands

that the network can accommodate under certain constrains. They designed a bi-level pro-

gramming model to describe the network reserve capacity problem and proposed a heuristic

algorithm based on sensitivity analysis of DUE problem to find the optimal settings of signal

splits to maximize the network capacity. This concept is redefined by Gao and Song [3]. It

found that if the multipliers of different O-D demand could be varied independently, the net-

work can achieve larger capacity under the same condition proposed by Wong and Yang[2].

Chiou [4] studied the network capacity with optimal signal setting problem, it is formulated as

bi-level mathematical program and a projected gradient approach was proposed to solve this

problem. To find the optimal number of lanes assigned to each flow direction in a road, Wang

and Deng [5] studied the network capacity problem with reversible lanes. It is formulated as a

bi-level programing problem where low-level problem is a DUE problem proposed to describe

the drives’ route choice, and the upper-level problem is a mixed integer programing problem

aiming to find the optimal signal settings (i.e., signal circle and signal splits) and number of

lanes in each direction of a reversible road to maximize the network capacity.

The pre-mentioned literatures all studied the network capacity problem at the DUE condi-

tion. In order to overcome the unpractical assumptions associate with DUE (i.e., all drivers

have perfect knowledge of traffic condition and choose the paths with minimum cost between

corresponding O-D pair), numerous literatures extended the research of network capacity

with Logit-based SUE problem where the travelers are assumed to make route choice to mini-

mize their perceived travel cost (see e.g., [6–9]). They found that the network capacity at SUE

state is comparatively larger than it is at DUE when provided certain level of traveler’s infor-

mation. Besides, Wang et al. [7] also reveals that with the same total budget to improve the

capacity of links in the network, the resulted optimal network capacity at SUE condition is

larger than that at the DUE condition. The other studies in this branch could be found by

Chootinan et al. [10] which takes the link capacity as a random variable and study the proba-

bility of a certain level of traffic demand that the road network can accommodate at SUE

condition.

It should note that while some researchers notice the unpractical assumption of DUE prob-

lem and use the Logit-based SUE problem, the Logit-based SUE problem still can’t realistically

capture the travelers’ route choice behavior. Due to the independent and irrelevant alternatives

(IIA) assumption, the Logit-based SUE problem has an inherent defect that it lacks of sensitiv-

ity to network topology and assigns too much flow on the overlapped routes. Besides, the route

choice probabilities given by Logit-based SUE problem only depend on absolute difference of

route travel time and take no account of the relative difference which is more important [11].

Generally, compared with Logit-based SUE models, the traffic assignment result provided by

the Probit-based model is believed to be more consistent with the real-world observation,
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which overcomes the IIA problems stated above. However, few researches so far have been

done considering the network capacity with Probit-based SUE problem. As a matter of fact, to

the authors’ knowledge, few researches incorporate the Probit-based SUE problem as the route

choice model to study the bi-level network design problem. One possible reason is perhaps

because the Probit-based SUE problem has no close-form formulation of route choice proba-

bilities and is hard to solve for the optimal solution (usually Monte Carlo technique is applied),

which increases the difficulty to design the solution algorithm for the bi-level programming

problem. Notice that a traffic assignment model that better captures driver route choice behav-

ior is critical for practical value (such as optimal settings of signal splits, link capacity expan-

sion etc.) of network design problems, the Probit-based SUE problem deserves more attention.

This paper continues our previous research of network capacity [7] by assuming that the

drivers all make their route choices based on Probit-based SUE principles. A bi-level program-

ming is formulated to describe the network capacity with Probit-based SUE problem, and a

heuristic solution algorithm based on sensitivity analysis of the Probit-based SUE problem

are proposed to solve the bi-level programming problem. The relationship between network

capacity and the quality of driver’s information is explored subsequently. Moreover, the maxi-

mum network capacity at both Probit-based and Logit-based SUE condition is explored and

the differences between them in certain network topology are examined and demonstrated

with a few small numerical examples.

The contributions of this study are twofold: first, we studied the road network capacity by

incorporating Probit-based SUE model, the assignment result of which is more consistent

with the real world. We also propose a SAB method to solve the bi-level network capacity with

Probit-based SUE problem. It can efficiently find the optimal settings of network inputs (such

as signal splits, link capacity expansion etc.) to maximize the network capacity. Second, we

compare the variation pattern of network capacity when level of drivers’ information changes.

The level of drivers’ information in previous study [1,7] is found to be an important parameter

that significantly impacts the network capacity. This study demonstrates with theoretical anal-

ysis that when level of drivers’ information changes, the variation pattern of network capacity

between Logit-based SUE and Probit-based SUE constraints are the same. This study also

finds that perfect knowledge of traffic condition may not contribute to network capacity. The

network capacity achieves the maximum value when travelers’ information is controlled at cer-

tain level. This is because non-perfect information motivates travelers to use the additional

capacity on some links more effectively. The findings can assist transportation planners to

design policies to relieve the traffic congestion.

The remainder of this article is structured as follows: in the next section, the network capac-

ity with Probit-based SUE problem is discussed and formulated. In Section 3, a heuristic

method based on sensitivity analysis for SUE problem is explicitly presented to solve the pro-

posed bi-level network capacity problem. Section 4 presents three numerical examples to

illustrate the general application of proposed methods for network capacity problem and com-

parison is conducted between network capacity with Probit-based and Logit-based SUE prob-

lem. The last section concludes the paper.

2. Reserve capacity with Probit-based SUE problem

At equilibrium state, the link flow is perturbed by demand multipliers vector u and a vector of

perturbed parameters (such as link capacity, free flow travel time). Consider a signalized road

network, the signal timings in the intersections impact the maximum traffic flow that can go

through in one unit time (for example, one hour). Thereby, they can be seen as the perturbed

parameters that can affect the equilibrium link flow. Let λ denote the vector of signal splits.

Network capacity with probit-based stochastic user equilibrium problem
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Then the link flow could be formulated as a function of the O-D demand multipliers and signal

splits. In order to ensure the delays and queues are acceptable at the equilibrium condition, the

link flows that approach to the signalized intersection must satisfy capacity constraint given as

follows:

vaðu;λÞ � rasaðlaÞ a 2 A ð1Þ

where �A is the set of links in the network; ρa is the preset maximum saturation rate on link a,

a 2 A; λa is the signal split of link a; sa(λa) denotes the capacity of link a, it is a function of sig-

nal split λa; In addition to the link flow constraint, the green time at signal-controlled intersec-

tions and O-D demands should satisfy some linear conditions, given as follows:

lmin � la � lmax a 2 �A ð2Þ

mrs � m0 8r; s ð3Þ

where �A is the set of signalized links in the network. λmin is the minimum green split, λmax is

the maximum green split. r is an origin node and s is a destination node. μ0 is the minimum

O-D demand multiplier. For simplicity, the signal lost time is not considered in the paper.

Thus, green split would satisfy the following relationship:

XNj

n¼1

lnj ¼ 1 j 2 J ð4Þ

where J is the set of all signalized intersections in the network; j is an signalized intersection on

the road network, j 2 J; Nj denotes the preset number of phases on signalized intersection j.
In this study, we use the definition of reserve capacity given by Gao and Song [3], that is,

the demand multipliers between each O-D pair could be different. This concept relaxes

requirement of common multiplier in Wong and Yang [2] by allowing the maximum through-

put to be scaled by individual O–D pairs [12]. Under this definition, the mathematical pro-

gramming for network capacity with SUE problem is formulated as follows:

max z ¼
X

8r;s

ursq
0

rs ð5aÞ

s:t

vaðu;λÞ � pasaðlaÞ a 2 �A

mrs � m0 8r; s

XNj

n¼1

lnj ¼ 1 j 2 J

lmin � la � lmax a 2 �A

8
>>>>>>><

>>>>>>>:

ð5bÞ

where urs denotes the O-D multiplier of O-D pair r-s, q0
rs is the initial O-D demand between

O-D pair r-s; ursq0
rs is multiplied O-D demand. va(u,λ) is obtained by solving the following

equivalent Probit-based (also for Logit-based SUE problem) SUE problem (Sheffi, 1985)

min Z ¼
X

a2A

vataðva; laÞ �
X

a

ðva

0

taðx; laÞdx �
X

r;s

ursq
0

rsSrsðc
rsðvÞÞ ð5cÞ

where va denotes the flow on link a; ta is the travel cost on link a; λa is the signal splits of link

a; Srs(crs(v)) denotes the expected perceived travel between O-D pair r − s. It is a function of

travel time of all routes between O-D pair r − s.
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3. Solution algorithm for network capacity problem

3.1 Sensitivity analysis based (SAB) algorithm for bi-level network

capacity problem

Due to the intrinsically non-convexity, the bi-level programing problem (5) is very difficult to

solve for a globally optimal solution. Besides, the functional term va(u, λ) in upper level prob-

lem (5b) is implicit, which can only be obtained by solving the Probit-based SUE problem.

This increases the difficulty to direct solve the upper-level problem. In literature, the bi-level

network capacity problems are generally solved with genetic algorithm (GA) (see e.g., [1, 5, 6,

13, 14]). However, GA is a random search technique that optimizing the solutions based on

nature selection, it converges very slowly when high accuracy is required, thus is computation-

ally expensive. Compared with GA, the SAB algorithm is much more preferable. It searches

the optimal solution along the direction that the object function is minimized. The SAB

method is previously used extensively for network capacity with DUE problem [2, 3]. The effi-

ciency and applicability of this method in solving various bi-level optimization problems in

transportation domain are also explored in many literatures [5, 9, 15–18]. In this study, we will

use the SAB algorithm to solve the proposed network capacity problem (5).

The main idea of SAB method is to use a linear function to approximate the nonlinear and

implicit function of equilibrium link flow va(u, λ) in the upper-level program (5b). To achieve

this, the derivatives of equilibrium link flows with respect to perturbed parameters (i.e. O-D

demand multipliers, signal splits) should be obtained in advance. Assume the derivations have

been calculated at current feasible point(v�, u�, λ�), then, according to the first-order Taylor

approximation, the implicit functional form va(u, λ) can be estimated as

vaðu;λÞ � vaðu
�; λ�Þ þ

X

a2�A

@vaðu�; λ
�Þ

@la
ðla � l

�

aÞ þ
X

8r;s

@vaðu�; λ
�Þ

@urs
ðurs � u�rsÞ ð6Þ

Substituting Eq (6) into the upper-level problem (5b), the upper-level problem will become

an ordinary linear programming problem with the variable signal splits and O-D demand mul-

tipliers. This ordinary problem can be solved by the simplex method, thus one can get a new

improved point (v�1, u�1, λ�1) from which a new linear programming problem is again gener-

ated and can be again solved by the same method. Repeat the steps, the algorithm converges to

an optimal solution. Denote v as the vector of all link flows. The steps for implementing SAB

method to solve the bi-level network capacity problem (5) are summarized as follows:

Step 1 Determine an initial set of the values (u�, λ�). Set n = 0.

Step 2 Using method of successive averages (MSA) [11] to solve the lower-level SUE problem

for given un, and λn and hence get vn, 8 a 2 A.

Step 3 Calculate the derivatives @v/@u, and @v/@λ with the sensitivity analysis method for

Probit-base SUE problem.

Step 4 Formulate local linear approximations of the upper-level link flow term va(u, λ) with the

derivative information, and use simplex method to solve the resulted linear programming

to obtain the new O-D demands multipliers vector un+1 and signal splits vector λn+1.

Step5 If max|(un+1 − un)/un|� ε1, and max|(λn+1 –λn)/λn|� ε2, then stop, where ε1, ε2 are pre-

determined tolerance. Otherwise let n = n + 1 and return to Step 1.

The main difficulty to solve problem (5) with the above steps is to obtain the derivatives of

equilibrium link flow with respect to signal splits la; 8a 2 �A and O-D multiplier μrs,8r,s This

Network capacity with probit-based stochastic user equilibrium problem
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could be done by operating the sensitivity analysis of Probit-based SUE problem (i.e., problem

(5c)). Sensitivity analysis is to measure how much the target objective would be alternated by

one unit change of the explanatory variable. Sensitivity analysis for traffic assignment model

could be dated back to the work done by Tobin and Friesz [19]. They developed the analytical

formulation to obtain the gradient of equilibrium link flow with respect to perturbed parame-

ters at DUE state. By using the same method, the formulation for sensitivity analysis of DUE

problem with elastic demand problem is studied in [20]. Wang et al. [21] derived the formula-

tion for second-order sensitivity analysis of DUE problem. Du et al. [22] discussed the analyti-

cal approach for sensitivity analysis of equilibrium trip distribution–assignment model with

variable destination costs. Ying and Miyagi [23] formulated a computationally efficient link-

based algorithm for sensitivity analysis of Logit-based SUE by adopting Dial’s algorithm [24].

This method is incorporated in the SAB algorithm to solve the bi-level network capacity with

Logit-based SUE problem proposed in [7]. However, it is not applicable here since the low-

level problem of the proposed network capacity problem is Probit-based SUE instead of Logit-

based SUE. Clark and Watling [25, 26] develop another sensitivity analysis method for SUE

problem by adopting first-order sensitivity approximation of a general nonlinear program pro-

posed by Fiacco [27]. This method is capable to obtain derivative of equilibrium link flows

with respect to perturbation parameters at both Logit-based and Probit-based SUE condition.

Hence, it is suffice to calculate derivatives of equilibrium link flows with respect to signal splits

la; 8a 2 �A, and O-D multiplier μrs,8r,s in Eq (6). For completeness, in the following, we will

briefly present the procedures for sensitivity analysis with Probit-based SUE problem.

3.2 Sensitivity analysis for Probit-based SUE

Given a nonlinear programming formulation p3(ε), where ε is a disturbed parameter which

provide small changes in formulation of the objective function or the constraints,

minx zðx; εÞ

s.t

giðx; εÞ � 0 ði ¼ 1; � � � ;mÞ

hjðx; εÞ ¼ 0 ðj ¼ 1; � � � ; nÞ

Let the ui be the Lagrange multiplier for inequality constraint gi(x, ε), and wj be the

Lagrange multiplier for inequality constraint gi(x, ε). Formulate this nonlinear program as the

equivalent Lagrangian expression

Lðx;u;w; εÞ ¼ zðx; εÞ �
X

i

migiðx; εÞ þ
X

j

wjhjðx; εÞ

If the nonlinear programming satisfies the four conditions explicitly presented by Fiacco

(1983) for implementing the first-order sensitivity approximation (for details, see Clark and

Watling (2001, 2002)), the sensitivity of the solutions and Lagrangian multipliers with respect

to disturbed parameter ε then can be calculated by:

rεx

rεu

rεw

2

6
4

3

7
5 ¼ � Mð0Þ� 1

Nð0Þ ð7Þ

whererεx is the derivatives of solutions with respect to parameter ε (dimension n);rεμ is

derivate of the m-vector of Lagrangian nonnegative multipliers with respect to ε;rεw is the

Network capacity with probit-based stochastic user equilibrium problem
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derivative of n-vector of Lagrangian equality multipliers with respect to parameter ε. The

matrices M and N (as functions of ε) are given by:

MðεÞ ¼

r2L � rgT
1
� � � � rgTm rhT

1
� � � rhTp

m1rg1 g1 0

..

. . .
.

0

mmrgm 0 gm
rh1 0

..

.
0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

NðεÞ ¼ � r2
xεL

T � m1rεgT1 � � � � mmrεgTm � rεhT1 � � � � rεhT
p

� �T

Clark and Walting [25, 26] proved that the Probit-based SUE model (5c) satisfies the four

conditions for implementing the first-order sensitivity approximation. Hence, Eq (7) can be

adopted to calculate the derivative of equilibrium link flow with respect to perturbation

parameters at Probit-based SUE state. Recall that problem (5c) is an unconstraint nonlinear

program. Thereby, most of the terms in matrices of M and N vanish. The only term remained

in matrix M(ε) and N(ε) arer2L andr2
vεL, respectively. The explicit expression forr2L is

given as:

r2L ¼ r2

vZ ¼
X

r;s

ursq
0

rs½ðrvtD
rs
Þð� rcP

rsÞðrvtΔ
rs
Þ
T
� þ rvtþr

2

vt � R ð8Þ

wherercP
rs is Jacobian of the route choice probability vector for O-D pair r-s; Δrs is the link-

route incidence matrix for O-D pair r-s; t is a vector of all link travel time;rvt denotes the

Jacobian matrix of link travel time with respect to link flow; R is a diagonal matrix, the ath

(8α) element in the main diagonal is
X

r;s

X

k
qrsP

rs
k d

rs
a;k þ va. In Eq (8), the method to calculate

the Jacobian of the route choice probability vector for O-D pair r-s (i.e.,rcP
rs) could be found

in [25, 26].

If the perturbed parameters are the O-D multipliers, then

r2

vm
L ¼ r2

vm
Z ¼ �

X

r;s

½q0

rsP
rsΔrsT
�rvt ð9Þ

If the perturbed parameters are the signal splits, then

r2
vl
L ¼ r2

vl
Z

¼ �
X

r;s

ursq
0

rs½ðrvtD
rs
Þð� rcP

rsÞrlc
rsðlÞ�rvt

ð10Þ

The derivative @vα/@urs,8α, r, s in Eq (6) can then be calculated with Eqs (8), (9) and (7)

(note M(ε) =r2L and NðεÞ ¼ r2
vl
L in this context) and the derivatives @va=@la; 8a 2 �A can

be obtained with Eqs (8), (10) and (7) (note NðεÞ ¼ r2
vl
L in this case).

Network capacity with probit-based stochastic user equilibrium problem
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4. Numerical examples

4.1 Numerical example 1

For comparison, the same numerical example network shown in Fig 1 is adopted in this study.

It is originally used by Wang et al.[7] to demonstrate the network capacity with Logit-based

SUE constraint. This numerical example network contains two O-D pairs, seven links and six

nodes, where nodes E and F are signal-controlled intersections. There are three paths for the

O-D pair A-B, i.e., route 1: AEB; route 2: AFB and route 3: AEFB, while there is only one path,

CEFD for O-D pair C-D. The current O-D demand form nodes A to B is 18 veh/min, and

from nodes C to D is 6 veh/min. The input data taken from Gao and Song [3] is summarized

in Table 1. Suppose intersections E and F are controlled by two independent splits, λ1 and λ2

Signal control variables for link 1, 2, 3 and 4 are represented by λ1, λ2, λ3, λ4. The lower and

upper bounds of signal splits are 0.05 and 0.95, respectively. The maximum degree of satura-

tion for all signal-controlled links is set the same as P = 0.9. The expected link travel time is a

Fig 1. The example road network.

doi:10.1371/journal.pone.0171158.g001

Table 1. Input data to the example network.

Link number α 1 2 3 4 5 6 7

Free-flow time t0a 2.0 1.0 2.0 3.0 1.0 2.0 1.0

Saturation flow sα 24 30 30 35 24 30 30

Link travel cost: taðva; laÞ ¼ t
0
a½1:0þ 0:5ðva=lasaÞ

2
�

doi:10.1371/journal.pone.0171158.t001

Network capacity with probit-based stochastic user equilibrium problem
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random variable that is assumed to be normally distributed with mean equals to the link travel

time and with variance that is proportional to the measured link travel time. Namely,

Ta � Nðta; ataÞ ð11Þ

where N(�) represents the normal distribution. α is the variance of the perceived travel time

(for one unit) over a road segment. Under this assumption, the covariance of route travel time

is then subjected to the following multivariate normal distribution:

Crs � MVNðtΔrs
; aΔrstΔrsT

Þ

The Probit-based SUE problem is generally solved with MSA method. However, unlike the

Logit-based model, the Probit-based SUE problem does not have an explicit function to repre-

sent the route choice probabilities. Thereby, it is generally solved with Monte-Carlo simulation

technique, where slight difference may exist for the solutions obtained by running the simula-

tion technique several times. This may impose some perturbations to the SAB method, making

it hard to converge. To address this problem, we fixed the standard normal sampling data in

Monte-Carlo simulation process and use the same sampling data in different iterations. With

this operation, the SAB method is able to give the same solutions with the same inputs. The

numerical result obtained at each iteration of SAB method at α = 1 is summarized in Table 2.

It shows that the SAB method converges after four iterations, very efficient to calculate the

optimal solution for the network capacity problem (5).

It deserves mentioning that the parameter α in Eq (11) represents the level of travelers’

information. When α increases, the variance of the perceived link travel time will increase,

Table 2. Numerical results for network capacity problem with SAB method at α = 1.

Iterations λ1 λ2 μAB μCD

1 0.500 0.500 1.000 1

2 0.778 0.801 2.043 1

3 0.778 0.801 2.024 1

4 0.778 0.804 2.024 1

doi:10.1371/journal.pone.0171158.t002

Table 3. Numerical results for problem (5) with different α.

α 0 0.01 0.03 0.05 0.068 0.1 0.3 0.5 1 2

λ1 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778

λ2 0.810 0.81 0.81 0.81 0.81 0.81 0.81 0.809 0.804 0.781

λ3 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222

λ4 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.191 0.196 0.219

uAB 2.093 2.117 2.132 2.141 2.148 2.135 2.091 2.067 2.024 1.946

uCD 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

v1 15.820 16.251 16.518 16.685 16.799 16.8 16.8 16.8 16.8 16.8

v2 21.857 21.857 21.857 21.857 21.855 21.628 20.844 20.412 19.633 18.224

v3 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000

v4 6.000 6.000 6.000 6.000 6.000 6.000 6.0002 6.001 6.175 6.900

v5 15.820 16.251 16.518 16.685 16.799 16.8 16.8 16.791 16.625 15.900

v6 21.857 21.857 21.857 21.857 21.855 21.628 20.844 20.421 19.808 19.124

v7 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000

doi:10.1371/journal.pone.0171158.t003
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implying that the quality of travelers’ information is reduced. Table 3 demonstrates the optimal

signal splits, O-D multiplies as well as equilibrium link flows when network capacity is

achieved with different α. It shows that when α = 0, at which condition the SUE problem turns

into be DUE problem, the corresponding optimal O-D multiplies are uAB = 2.093;uCD = 1, the

same as it is calculated by Gao and Song [3]. When α increases, the O-D multiplier uAB per-

turbs slightly while the O-D multiplier uCD is always fixed, contribute little to the varied net-

work capacity. Fig 2 describes the maximum network capacity and optimal O-D demands

between O-D pair A-B and C-D with different α. We can see that the network capacity first

increases monotonic with respect to increased α until it reaches the maximum value at α =

0.068, then it decreases monotonously as α continue to increases. In others words, the network

capacity increases when the level of travelers’ information increases within certain range, and

then decreases if more information is provided. It worth mentioning that network capacity is

not maximum at the DUE state where the drivers have perfect knowledge of traffic condition.

This is because better information allows a large portion of demand to use the fast route, thus

saturates the weakest link of that route, making it impossible to accommodate more traffic.

In order to make a comparision, the road network capacity at Logit-based SUE condition

is presented in Fig 3. These results are cited from Wang et al. [7]. Denote θ as the dispersion

parameter in the Logit-based SUE. Fig 3 shows that the network capacity firstly increases

monotonously with respect to θ and gets the best performance at θ = 2.208, then it decreases

slowly when θ continue to increase. Since the parameter θ in Logit-based SUE is a monotonic

increasing function of the level of travelers’ information, the perturbed pattern of network

capacity with respect to level of traveler’s information at Logit-based SUE condition is the

same as it is at Probit-based SUE condition, i.e., the network capacity increases when provide

the travelers with better quality of information, and after it researches the maximum, better

quality of information will decrease the network capacity. Figs 2 and 3 also reveals that, for

both Logit-based SUE and Probit-based SUE, network capacity has the same maximum value

(i.e., 44.657) veh/min when the traveler’s information is controlled at certain level.

Fig 2. O-D demands and network capacity at Probit-based SUE conditions with different α.

doi:10.1371/journal.pone.0171158.g002
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It should note that while the parameter θ and α represent the level of driver’s information

in Logit-based and Probit-based SUE, respectively, there is no criteria to quantitatively decide

the value of θ and α explicitly under the given level of driver’s information. Thereby, we cannot

compare difference of the network capacity between the Probit-based SUE and Logit-based

SUE under the same level of driver information. Nevertheless, as the route choice provided by

Probit-based SUE is more consistent with the real world observations than Logit-based SUE,

the network capacity obtained by this study is more practical.

4.2 Numerical example 2

Numerical example 1 demonstrates that the variation pattern of network capacity with respect

to level of travelers’ information at Probit-based SUE state is the same as it is at Logit-based

SUE state, and if provided certain quality of travelers’ information, they can reach the same

maximum value. An underlying question in this context is whether this phenomenon is com-

mon for a general network or is just restricted to the numerical example 1. Ge et al. [1] pointed

out that the link capacities as well as free flow travel time significantly impact the variation pat-

tern of network capacity when level of travelers’ information changes. In this example, we

assume the link capacities and free flow travel time are variable, and demonstrate how the net-

work capacity changes with respect to link capacity and free flow travel time at Probit-based

SUE condition. Due to the difficulty to directly formulate the explicit expressions of network

capacity with respect to those perturbed parameters, we just demonstrate with a small network

depicted in Fig 4 given by Ge et al. [1].

Fig 4 is a very simple network with only one O-D pair and two links. The link travel time is

used as the BPR function as following:

ta ¼ t0

a 1þ t
va
sa

� �b
" #

ð12Þ

Fig 3. O-D demands and network capacity at Logit-based SUE conditions with different θ.

doi:10.1371/journal.pone.0171158.g003
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Like numerical example 1, the covariance of expected perceived link travel time is assumed

to be proportional to average link travel time, and the scale factor is α, the distributional func-

tion for route R1 and route R2 are:

R1 � Nðt1; at1Þ

R2 � Nðt2; at2Þ

The route choices probabilities for route 1 and route 2 are formulated as:

P1 ¼ PrðR1 < R2Þ ¼ PrðR1 � R2 < 0Þ

P2 ¼ PrðR2 < R1Þ ¼ PrðR2 � R1 < 0Þ

Since there is no overlap between route 1 and route 2, therefore, the covariance of R1, R2 is

zero (i.e., cov(R1, R2) = 0). Then we have

R1 � R2 � Nðt1 � t2; aðt1 þ t2ÞÞ ð13aÞ

R2 � R1 � Nðt2 � t1; aðt2 þ t1ÞÞ ð13bÞ

According to Eq (13a) and (13b), we have

P1 ¼ F
t2 � t1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt1 þ t2Þ

p

 !

ð14aÞ

P2 ¼ 1 � P1 ð14bÞ

If both routes simultaneously reach their maximum allowable flow rates, then

vi ¼ rsi; i ¼ 1; 2 ð15Þ

Fig 4. Numerical network for example 2.

doi:10.1371/journal.pone.0171158.g004
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Substituting Eqs (15) and (12) into Eq (14), we have

P1 ¼ F
ðt0

2
� t0

1
Þð1þ trbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt0

2 þ t0
1Þð1þ trbÞ

p

 !

¼ F
ðt0

2
� t0

1
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ trbÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt0

2 þ t0
1Þ

p

 !

ð16aÞ

P2 ¼ 1 � F
ðt0

1
� t0

2
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ trbÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt0

2 þ t0
1Þ

p

 !

ð16bÞ

Based on Eq (16), we have

v1

v2

¼
q � P1

q � P2

¼
P1

P2

)
s1

s2

¼

F
ðt0

2
� t0

1
Þ

ffiffiffiffiffiffiffiffiffiffiffi
ð1þtrbÞ

p

ffiffiffiffiffiffiffiffiffiffiffi
aðt0

2
þt0

1
Þ

p

� �

F
ðt0

1
� t0

2
Þ

ffiffiffiffiffiffiffiffiffiffiffi
ð1þtrbÞ

p

ffiffiffiffiffiffiffiffiffiffiffi
aðt0

2
þt0

1
Þ

p

� � ¼

F
ðt0

2
� t0

1
Þ

ffiffiffiffiffiffiffiffiffiffiffi
ð1þtrbÞ

p

ffiffiffiffiffiffiffiffiffiffiffi
aðt0

2
þt0

1
Þ

p

� �

1 � F
ðt0

2
� t0

1
Þ

ffiffiffiffiffiffiffiffiffiffiffi
ð1þtrbÞ

p

ffiffiffiffiffiffiffiffiffiffiffi
aðt0

2
þt0

1
Þ

p

� � ð17Þ

Like it is demonstrated by Ge et al. [1], there are five cases to discuss according to Eq (17).

Case 1: t01 > t02; s1 > s2
In this case the slower route has greater capacity. This is a case that can be observed in every

city, where the expressway are often regarded as a fast route with smaller capacity compared

with a collection of parallel streets whose total capacity is larger but the average travel speed

is lower. The network capacity in this case, however, cannot reach the maximum since it

requires
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ trbÞ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðt02 þ t01Þ
q

< 0. In fact, the better the quality (i.e., the smaller α) of

the travelers’ information, the greater the underutilization of the capacity of the slower

route. Therefore, the network capacity will decreases monotonously with respect to

increased quality of travelers’ information.

Case 2: t01 > t02; s1 < s2
This case implies that the longer route also has smaller capacity. It is possible for the net-

work capacity to reach their maximum allowable flow rates simultaneously, provided that

F
ðt0

2
� t0

1
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ trbÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt0

2 þ t0
1Þ

p

 !

¼
s1

s1 þ s2

ð18Þ

The corresponding α� which maximizes the network capacity can be calculated with Eq

(18) by referring to the probability table of normal distribution. In this case, we can see that

the larger the absolute difference between α and α� (i.e., |α − α�|), the greater underutiliza-

tion of the capacity of the slower route. Therefore, the network capacity first increases

monotonously with respect to increased quality of travelers’ information (decreased α)

until it achieves the maximum value, and then it decreases monotonously in quality of trav-

elers’ information.

Case 3: t01 ¼ t02; s1 ¼ s2
In this case, the Eq (17) is held definitely. Therefore, the network capacity is always the

maximum value, and is independent with the level of travelers’ information.

Network capacity with probit-based stochastic user equilibrium problem
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Case 4: t01 ¼ t02; s1 6¼ s2
Under such conditions, Eq (17) does not hold, which implies there will always be unused

capacity on the route with larger capacity.

Case 5:t01 6¼ t02; s1 ¼ s2
In this case, Eq (17) is hold only when α! +/. Thereby, the network capacity is a mono-

tonic decreasing function with respect to level of travelers’ information.

For all the five cases listed above, the change pattern of the network capacity with respect to

level of travelers’ information at Probit-based SUE condition is the same as it is demonstrated

by Ge et al. [1] at Logit-based SUE condition. Besides, whether the network capacity can reach

the maximum value is also the same at the two types of SUE condition. Consequently, we can

draw a conclusion that for a general network, the variation pattern of network capacity with

respect to level of travelers’ information at Probit-based SUE condition is the same as it is at

Logit-based SUE condition, and if provided certain quality of travelers’ information, they can

reach the same maximum value.

4.3 Numerical example 3

Numerical example 2 demonstrates with a small network that, under different distribution of

link capacity and free flow travel time, the variation pattern of network capacity with respect

to level of traveler information at Probit-based SUE is always the same as it is in Logit-based

SUE. But in some very special cases, they may be different from each other. It is well known

that there are two inherent drawbacks of the Logit model, i.e., (1) unable to account for over-

lapping (or correlation) among routes, and (2) unable to account for perception variance with

respect to routes of different lengths. This two drawbacks may lead to significant different flow

distribution outcome, and thus may result in different variation pattern of network capacity in

traveler’ information level. The following loop-hole network will be used to demonstrate this

claim.

The loop-hole network (Fig 5) is constantly used to illustrate the different traffic flow distri-

bution between Probit-based SUE and Logit-based SUE. It only has one O-D pair (A-C) and

three routes, i.e., route 1: link1; route 2: link 2-link 3 and route 3: link 2-link 4. The three routes

all have the same free flow travel time and the capacity on link 2 is double of the capacity of

other links. The network inputs are listed in Table 4. The free flow travel time on link 2, 3, 4

are assumed to be variable. The network capacity with Probit-based SUE problem can be for-

mulated as Eq (5) without signal timing constraints (i.e., Eqs (2) and (4)). The initial O-D

demand for O-D pair is 6, and the maximum saturation rate of all the links is set as 0.9.

For this network, no matter what the free flow travel time on link 3 (i.e., z) and the Logit

split θ are, the network capacity at Logit-based SUE state always stay at the maximum value it

can obtain (i.e., 21.6) and route flow on the three routes are the same which is 7.2. The varia-

tion pattern of the network capacity with respect to travelers’ information in this network sub-

jects to case 3 described in numerical example 2, that is, it is independent with the level of

travelers’ information. It should note that the equilibrium route flow solution given by Logit-

based SUE problem in this numerical example is not consistent with the real world. As z

approaches to 0, the route 2 and route 3 merges into one route. Hence, the aggregate possibility

to choose the two routes should be around 1/2. The Logit model, however, assigns one-third of

the flow to each route regardless of the network topology, which overestimates the flow on the

two overlapping routes. The unsatisfactory result occurs mainly because the Logit-based SUE

can not address routes overlapping problem.

Network capacity with probit-based stochastic user equilibrium problem
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In the following, we will discuss the network capacity at Probit-based SUE condition for

this numerical network. The expected perceived link travel time is still assumed to be propor-

tional to average link travel time with scale factor α. Fig 6 presents the network capacity with

Probit-based SUE problem at different combinations of α and z. It clearly demonstrates that

when the network degraded into three identical links (the probabilities to choose the three

routes are the same in this scenario), the network capacity always remain the maximum value

(i.e., 21.6) no matter how α changes. However, for fixed α, the network capacity decreases dra-

matically as z decreases. This is because the lower the z, the higher the probability that drivers

would take route 2 and route 3 as one route. As a result, the probability to choose route 1 will

increase (see Fig 7), and the flow that distributed to route 2 and route 3 reduces, thus the equi-

librium link flows at Probit-based SUE condition cannot make full use of the physical link

capacity. Fig 6 also denotes that for fixed z, z 6¼ 0, the network capacity increases monoto-

nously with respect to α, indicating that the network capacity at Probit-based SUE condition

decreases as travelers’ information level increases. Consequently, the variation pattern of net-

work capacity with respect to level of traveler’s information at Probit-based SUE condition in

this numerical network is different from it is at Logit-based SUE condition.

The different variation pattern occurs because the Logit-based model lack of sensitivity to

network topology, it assigns too much flow to the overlapped routes in the network. Recall

that BPR function is an increasing function of the link flows, the route overlapping problem of

Logit model can be greatly relieved in a congested network [28]. Therefore, for a general net-

work, there should be no significant difference between the equilibrium route flows at Logit-

based SUE and Probit-based SUE when maximum network capacity is reached. As a matter of

Fig 5. The loop-hole network.

doi:10.1371/journal.pone.0171158.g005

Table 4. Input data for numerical example network.

Link a 1 2 3 4

Free flow travel time t0a 12 12 –ζ ζ ζ
Link capacity sa 8 16 8 8

Link travel time taðvaÞ ¼ t
0
a½1:0þ 0:15ðva=saÞ

4
�

doi:10.1371/journal.pone.0171158.t004
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Fig 6. Network capacity with different α and ς.

doi:10.1371/journal.pone.0171158.g006

Fig 7. Probability of choosing route 1 with different α and ς.

doi:10.1371/journal.pone.0171158.g007
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fact, the numerical example network 3 is a very special network with idealistic input data. Test

shows that once the link capacity can’t satisfy the relationship, i.e, s1 = s3 = s4 = 0.5s2, the varia-

tion pattern of network capacity with respect to level of travelers’ information at Probit-based

SUE condition would be the same as it is at Logit-based SUE condition, and if provided certain

quality of travelers’ information, they can achieve the same maximum value. Therefore, for

general networks, although there may exist many overlapped routes, the variation pattern of

network capacity with respect to travelers’ information at the two types SUE conditions will

always be the same.

Experimental data presented in the above-mentioned figures and tables are obtained

directly by running the program source code of the numerical experiment. In this study, the

experiment program is written by Matlab 2010. The Matlab program source codes for numeri-

cal example 1 and 3 are saved on S1 and S2 Files, respectively. Experimental data for Fig 2,

Tables 2 and 3 is saved on S3 File.

5. Conclusion

This paper studies the network capacity with Probit-based SUE problem. It is descripted as a

bi-level programming problem, where the upper-level program is to maximize the network

capacity through optimizing O-D multiplies and signal splits while the low-level program is

the Probit-based SUE problem formulated to model the drivers’ route choice. A heuristic

method based on sensitivity analysis for Probit-based SUE problem is explicitly presented to

solve the bi-level network problem. Numerical applications on three example networks find

that while network capacity could be different between Probit-based SUE and Logit-based

SUE problem with some special network structure and inputs, the variation pattern of network

capacity with respect to increased level of travelers’ information for general networks under

the two SUE problems is the same. Besides, the maximum network capacity with both the

Probit-based SUE and Logit-based SUE constraints can be the same under proper settings of

level of travelers’ information. This study also finds that the network capacity cannot reach the

maximum value when drivers have perfect knowledge of traffic condition, because better

information allows a large portion of demand to use the fast route, thus saturates the weakest

link of that route, making it impossible to accommodate more traffic.

This study can be used to find the optimal settings of network inputs to maximize network

capacity, thereby mitigating the network congestion to certain extend. The analysis of three

numerical example shows that, the impact of traveler’s information level on network capacity

has no major difference using Probit-based SUE and Logit-based SUE problem. However, as it

is hard to quantitatively decide the value of α and θ in Probit-based and Logit-based SUE prob-

lem, respectively, for given level of traveler’s information, we cannot explore how the different

route choice behavior of the two SUE problems would impact network capacity. This problem

will be examined in our future study.
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