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A B S T R A C T   

The Adolescent Brain Cognitive Development (ABCD) Study is a longitudinal neuroimaging study of unprece-
dented scale that is in the process of following over 11,000 youth from middle childhood though age 20. 
However, a design feature of the study’s stop-signal task violates "context independence", an assumption critical 
to current non-parametric methods for estimating stop-signal reaction time (SSRT), a key measure of inhibitory 
ability in the study. This has led some experts to call for the task to be changed and for previously collected data 
to be used with caution. We present a cognitive process modeling framework, the RDEX-ABCD model, that 
provides a parsimonious explanation for the impact of this design feature on “go” stimulus processing and 
successfully accounts for key behavioral trends in the ABCD data. Simulation studies using this model suggest 
that failing to account for the context independence violations in the ABCD design can lead to erroneous in-
ferences in several realistic scenarios. However, we demonstrate that RDEX-ABCD effectively addresses these 
violations and can be used to accurately measure SSRT along with an array of additional mechanistic parameters 
of interest (e.g., attention to the stop signal, cognitive efficiency), advancing investigators’ ability to draw valid 
and nuanced inferences from ABCD data. 
Availability of data and materials: Data from the ABCD Study are available through the NIH Data Archive (NDA): 
nda.nih.gov/abcd. Code for all analyses featured in this study is openly available on the Open Science Framework 
(OSF): osf.io/2h8a7/.   

1. Introduction 

Response inhibition, the ability to stop prepotent responses or ac-
tions that are no longer contextually appropriate, is a foundational 
component of self-control (Miyake et al., 2000; Ridderinkhof et al., 
2004; Verbruggen et al., 2014) that is of key interest in research on 
multiple clinical conditions, including Attention-Deficit/Hyperactivity 
Disorder (ADHD) and problematic substance use (Boonstra et al., 
2010; Gorenstein and Newman, 1980; Mahmood et al., 2013; Nigg, 
2017). The stop-signal paradigm (Logan et al., 1984; Verbruggen and 
Logan, 2008), one of the most widely employed laboratory measures of 
response inhibition, probes this ability in the context of a two-choice 
decision task. On a minority of “stop” trials a visual or auditory “stop 
signal” indicating that participants must withhold their response is 
presented after a variable delay following the onset of the choice stim-
ulus (the “stop-signal delay” or SSD). Depending on both the SSD and the 

participant’s inhibitory ability, either inhibition fails, and a choice 
response is made (a “signal response”), or the response is successfully 
withheld. 

An appealing feature of the stop-signal paradigm is that it was 
explicitly designed with a process model in mind that can be leveraged 
to precisely measure inhibitory ability: the “independent race model” 
(Logan, 1994; Logan et al., 1984; Logan and Cowan, 1984). This model 
posits that, on stop trials, a “go” process triggered by the choice stimulus 
races a “stop” process triggered by the stop signal. When the stop process 
wins the response is inhibited, whereas inhibition fails when the go 
process finishes first (Fig. 1A). By making only limited assumptions 
about the distributions of finishing times for these processes, including a 
“context independence” assumption that the go process is the same 
regardless of whether or not there is a stop signal, the speed of the latent 
stop process, or “stop-signal reaction time” (SSRT), can be easily esti-
mated (Logan, 1994; Matzke et al., 2018). Such “non-parametric” SSRT 
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estimates are used in many neuroscientific and clinical applications to 
measure individuals’ response inhibition (Aron and Poldrack, 2006; 
Lipszyc and Schachar, 2010; Nigg et al., 2006). 

Given this task’s popularity and the ability of SSRT to precisely index 
response inhibition, it is not surprising that the task has been included in 
one of the most ambitious research efforts of our time: the Adolescent 
Brain Cognitive Development (ABCD) Study (Casey et al., 2018; Garavan 
et al., 2018). ABCD is a multi-site collaboration in the United States that 
has recruited a diverse sample of over 11,000 9- and 10-year-old chil-
dren and aims to follow them prospectively through at least age 20 to 
acquire a rich array of longitudinal data from neuroimaging, cognitive, 
personality, psychiatric and sociocultural domains. Although initially 
conceived with the goal of assessing the impact of substance use on 
adolescents’ brains (Volkow et al., 2018), ABCD has grown into an un-
precedented interdisciplinary collaboration and open data source that is 
beginning to drive new insights in areas as diverse as network neuro-
science (Marek et al., 2019; Sripada et al., 2019), child psychopathology 
(Clark et al., 2021; Funkhouser et al., 2020; Mennies et al., 2020), and 
bilingualism (Dick et al., 2019). As several lines of work now underscore 
the importance of large, population-based samples for bolstering the 
reproducibility of behavioral and neuroscientific research (Button et al., 
2013; Etz and Vandekerckhove, 2016; Falk et al., 2013; Loken and 
Gelman, 2017; Marek et al., 2022; Poldrack and Gorgolewski, 2014), the 
ABCD Study presents a critical opportunity for scientists to characterize 
the clinical and neural correlates of response inhibition and related 
neurocognitive functions. 

However, concern has recently been raised that the design of the 
ABCD stop-signal task invalidates non-parametric SSRT estimates (Bis-
sett et al., 2021). Specifically, the ABCD task’s visual stop signal effec-
tively masks the “go” choice stimulus, violating the independent race 
model’s “context independence” assumption that the go choice process 
has identical properties across “go” and “stop” trials. As violations of this 
assumption can bias non-parametric estimates of SSRT, Bissett et al. 
(2021) have suggested that SSRT estimates from this task be interpreted 
with caution and have called for context independence violations in 
ABCD to be addressed either through novel cognitive models or changes 
in the task design. 

In this article, we develop such a novel model and show that it both 
describes the impact of the masking effect and mitigates its impact on 
substantive inferences about response inhibition. We begin by outlining 
key principles of cognitive process modeling and describing previous 
models of the stop signal task in the context of these principles. Next, we 
describe the context independence violation caused by the ABCD task 
design and motivate our modeling solution. We then apply our solution 
to empirical data from the ABCD study to evaluate its ability to describe 
key trends, elaborate its advantages relative to alternate models, and 
demonstrate its utility for drawing inferences about mechanisms of 
neurocognitive performance in ABCD. 

1.1. Key principles of cognitive process modeling 

Cognitive process modeling is the practice of specifying and testing 
formal (i.e., mathematically and/or computationally precise) models 
describing psychological mechanisms that give rise to observed 
behavior (Heathcote et al., 2015). Beyond providing clear and testable 
predictions about empirical data, one of the most valuable features of 
cognitive process models is that they can allow the mechanistic pro-
cesses they propose to be quantifiably measured. The original inde-
pendent race model of the stop-signal paradigm is a simple exemplar. By 
positing that the outcome of response inhibition is a function of a race 
between the latent go and stop processes, the latency of the latter pro-
cess (SSRT) provides an index of an individual’s ability to inhibit re-
sponses. Widely used “non-parametric” estimation procedures enable 
summary measures of SSRT to be inferred from simple behavioral sta-
tistics (e.g., mean RT on “go” trials and mean SSD) (Verbruggen et al., 
2019). In contrast, by employing specific parametric assumptions about 
the go and stop processes, the model-fitting approaches we focus on 
below provide a more flexible and complete account of the full distri-
butions of behavioral data (i.e., go RT and SSRT distributions). 

Although an extensive review of cognitive modeling practices is 
beyond the scope of this article (instead, see: Heathcote et al., 2015), 
several principles have critical relevance when considering models of 
the ABCD stop-signal task. First, for a cognitive model’s estimates of 
latent quantities to be useful for making inferences, the model itself must 
provide an adequate description of the observed data. One essential 
method for assessing a model’s fit involves plotting data predicted by the 
model against empirical data (Gelman et al., 1996) to determine 
whether the model is able to account for key empirical trends. For 
example, models of the stop-signal task must minimally account for the 
observed “inhibition function”, or the pattern – predicted by the race 
model – in which individuals’ probability of responding on stop trials 
increases with SSD (Matzke et al., 2018). Models specific to the ABCD 
task must also account for observed effects of the context independence 
violation on behavior (choice accuracy decreases at short SSDs, as 
detailed below). 

Second, when exploring the space of possible models that may 
explain a given cognitive task, the comparison of several quantitative 
and qualitative features of candidate models is critical (Heathcote et al., 
2015; Vandekerckhove et al., 2015). Quantitative comparisons typically 
involve the use of metrics that quantify tradeoffs between each candi-
date model’s descriptive accuracy and its complexity (Pitt and Myung, 
2002). Models of greater complexity (i.e., having greater numbers of 
parameters or more flexible functional forms) could become “overfit” by 
capturing unsystematic variance in a specific data set, which hampers 
their ability to be generalized to broader contexts (Vandekerckhove 
et al., 2015) and can lead to instability in parameter estimates (Heath-
cote et al., 2015). Therefore, most quantitative model comparison 

Fig. 1. Models of the stop signal task. (A) The original independent race model, consisting of a race between the go and stop processes while accounting for the stop 
signal delay (SSD). The stop process wins the first race shown, resulting in a successful inhibition, while the go process wins the second race, resulting in an incorrect 
“signal response”. (B) The Bayesian parametric estimation of stop-signal reaction time distributions (BEESTS: Matzke et al., 2013) framework models the entire 
distributions of go and stop process finishing times as ex-Gaussian (i.e., right-skewed normal) distributions. (C) An example of “trigger failure” leading to a signal 
response by preventing the stop process from entering the race. (D) The racing-diffusion (Logan et al., 2014) model’s explanation of an example stop trial; accu-
mulators gather noisy evidence over time for the choices matching and mismatching the go stimulus as well as for the stop process. In this case, the accumulator for 
the matching go choice process reaches threshold before the stop process accumulator, causing a signal response to be made. (E) The “hybrid” racing-diffusion 
ex-Gaussian (RDEX) model framework (Tanis et al., 2022) that combines an evidence-accumulation model of the go process with an ex-Gaussian model of stop 
process finishing times. Go RTs result from a race between accumulators that gather noisy evidence for the choices matching and mismatching the stimulus (in this 
example, a right-facing arrow) at average rates of v+ and v-, respectively, until one accumulator crosses a response threshold. Stop process finishing times are drawn 
from a Gaussian distribution specified by mean (μ) and standard deviation (σ) parameters and convolved with an exponential distribution with mean τ. (F) The 
RDEX-ABCD model’s explanation for the impact of context independence violations on stop trials. Evidence signals for the matching and mismatching accumulators 
on stop trials of a given SSD are the sum of a processing speed component that drives evidence accumulation for both choices equally and a discrimination component 
that favors the choice matching the presented stimulus. Processing speed is determined by parameter v0 and is identical across all SSDs. The discrimination 
component is completely absent (equal to 0) at a 0 s SSD, as the choice stimulus is not presented, but increases linearly at the same rate g for both matching and 
mismatching components until they reach the level of v+ and v-on go trials. Therefore, the match and mismatch rates are identical on 0 s SSD trials and gradually 
move apart from each other at longer SSDs until they become equal to their go trial levels. 
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metrics, such as the deviance information criterion (DIC) (Spiegelhalter 
et al., 2002), attempt to prevent overfitting by penalizing for model 
complexity. However, all quantitative metrics have limitations and must 
therefore be considered alongside key qualitative features of candidate 
models (Heathcote et al., 2015). These include the coherence and 
theoretical precedent of a model’s underlying assumptions, its consis-
tency with well-characterized behavioral phenomena, and whether the 
mechanisms proposed by the model could be eschewed in favor of a 
more parsimonious explanation (Vandekerckhove et al., 2015). 

A third key principle is that a cognitive process model’s parameters 
can only be used to quantify individual or group differences in psy-
chological mechanisms if it is a measurement model: one with a suffi-
ciently precise one-to-one mapping between data-generating parameters 
and parameters estimated by fitting the model to the design from which 
empirical data will be obtained (Matzke et al., 2020). A cognitive model 
that accounts for task data well and is supported by the model com-
parison procedures described above but is unable to provide precise and 
accurate parameter estimates in a realistic design is unlikely to be useful 
for measurement purposes in substantive applications. Hence, estab-
lishing that a model’s parameters can be used to quantify differences in 
psychological constructs requires parameter-recovery studies, in which 
data from realistic designs are simulated and the ability of the model and 
associated estimation procedure to precisely and accurately infer 
parameter values from simulated data is carefully evaluated (Heathcote 
et al., 2015). 

Several strategies can help researchers improve the estimation and 
measurement properties of cognitive models. Collecting a large amount 
of data at the individual level (many separate trials) improves parameter 
estimation and prevents over-fitting by better matching the complexity 
of models and data (Smith and Little, 2018). Unfortunately, this is often 
not possible when developmental and clinical populations of interest 
can only devote a limited amount of time to a task or when, as in the case 
of ABCD, the data have already been collected. In these cases Bayesian 
model estimation methods can be beneficial by providing a principled 
and quantitative way of using prior knowledge to constrain parameter 
estimates (Lee and Wagenmakers, 2014). As we will demonstrate, 
Bayesian methods facilitate the measurement properties of cognitive 
models for the ABCD stop-signal task, but do not eliminate the need to 
carefully consider the tradeoffs involved in using empirical data with 
limited observations at the individual level. 

1.2. Cognitive process models of the stop-signal task 

As noted above, non-parametric estimation of the independent race 
model is a foundational measurement tool for providing researchers 
with an index of inhibitory efficiency in the form of SSRT. However, 
more recently, several parametric modeling frameworks have been 
proposed to provide a more comprehensive description of cognitive 
processes involved in the stop-signal task. 

One is BEESTS (Matzke et al., 2013), a Bayesian parametric approach 
that models the full distributions of finishing times for the go and stop 
processes as ex-Gaussian distributions (Fig. 1B). The ex-Gaussian dis-
tribution, which typically provides an accurate descriptive account of 
empirical response time (RT) distributions (Heathcote et al., 1991), is 
the sum of a normal distribution (with mean, μ, and standard deviation, 
σ) and an exponential distribution (with mean τ), where the latter pro-
duces the positive skew characteristic of RTs. Beyond providing a more 
comprehensive account of empirical data, BEESTS also allows for the 
estimation of another mechanism that influences inhibitory perfor-
mance: “trigger failure”, in which inattention prevents the stop signal 
from triggering the inhibitory process, precluding it from entering the 
race (Fig. 4C). Trigger failures have long been recognized as a possibility 
(Band et al., 2003; Logan, 1994), but only recently has the BEESTS 
framework allowed researchers to quantify their non-trivial prevalence 
(Matzke, Love et al., 2017). This work shows that failing to account for 
trigger failures can bias non-parametric SSRT and that trigger failures 

largely explain poor stop-signal task performance in schizophrenia 
(Matzke et al., 2017) and ADHD (Weigard et al., 2019), which was 
previously attributed to inhibitory deficits due to bias in non-parametric 
SSRT estimates. Hence, trigger failure in the BEESTS framework illus-
trates key advantages of a comprehensive parametric approach for 
describing the array of factors that contribute to stop-signal task per-
formance and allowing their distinct contributions to effects of interest 
to be precisely measured. 

A second parametric approach draws on evidence-accumulation 
models (Donkin and Brown, 2018), a widely applied class of models 
that assume responses on cognitive tasks are the result of gathering noisy 
evidence for each possible response option over time until a critical 
threshold of evidence for one option is reached. Within this framework, 
Logan and colleagues (Logan et al., 2014) proposed an independent 
racing-diffusion model that assumes stop trial performance results from 
two go-process accumulators, which gather evidence for each possible 
response in the go choice task, and a stop accumulator racing towards a 
threshold (Fig. 4D). This provides a more detailed description of pro-
cesses that cannot be easily distinguished by ex-Gaussian parameters, 
including the rate of evidence accumulation for response options versus 
the amount of evidence an individual requires to make a response 
(Matzke and Wagenmakers, 2009). Unfortunately, however, more 
recent work shows that parameter-recovery performance for this model 
is so poor that it cannot be used to quantify (differences in) the psy-
chological processes represented by the model parameters even when 
each participant performs thousands of trials (Matzke et al., 2020); 
despite providing a detailed mechanistic description of performance in 
the stop-signal task and fitting well to empirical data, the 
racing-diffusion model cannot be used as a measurement model. 

To harness the racing-diffusion model’s psychologically plausible 
description of the go process while preserving the good measurement 
properties of simpler models, Tanis et al. (2022) recently developed a 
“hybrid” approach in which the go choice is described with a 
racing-diffusion evidence-accumulation process but the distribution of 
finishing times for the stop process is modeled as an ex-Gaussian dis-
tribution (Fig. 1E). The resulting racing-diffusion ex-Gaussian (RDEX) 
model has been shown to provide precise and accurate estimates of 
parameters that provide an evidence-accumulation account of go 
choices as well as the parameters that describe the distribution of 
stopping latencies (including mean SSRT) in realistic task designs (Tanis 
et al., 2022). Therefore, this framework provides an ideal starting point 
for developing a measurement model that can account for how the ABCD 
task design impacts the go process. 

1.3. Motivation for the RDEX-ABCD model 

In the ABCD stop-signal task, which is completed during functional 
magnetic resonance imaging (fMRI), children are presented right- or 
left-facing arrows and instructed to respond with the direction of the 
arrows via a button box. On stop trials (60 of 360 total trials), an 
upward-facing arrow, serving as a visual stop signal, replaces the choice 
stimulus at an SSD determined by a staircase algorithm: increasing or 
decreasing by 50 ms depending, respectively, on whether or not the last 
inhibition was successful (Logan, 1994). Replacing the choice stimulus 
with the stop signal impacts individuals’ ability to successfully complete 
the go choice task by limiting the availability of the choice stimulus to 
the SSD duration. When SSD = 0, the choice stimulus is never presented 
and the choice accuracy for responses is therefore necessarily at chance. 
Choice accuracy increases with SSD to an asymptotic level at SSDs of 
approximately 0.3–0.4 s (Bissett et al., 2021). In contrast, on go trials the 
presentation time of the choice stimulus is set to the shorter of 1 s or the 
participant’s response, so the information necessary for accurate 
responding is equally present on every go trial. This constitutes a 
violation of the traditional race model’s assumption of “context inde-
pendence”, as the go process is clearly not the same between go trials 
and stop trials of short SSDs, and therefore calls non-parametric SSRT 

A. Weigard et al.                                                                                                                                                                                                                                



Developmental Cognitive Neuroscience 59 (2023) 101191

5

estimates obtained via the race model into question. 
Parametric models such as BEESTS, racing-diffusion, and RDEX 

usually assume context independence because doing so allows infor-
mation provided by go trials to improve the accuracy of stop-process 
parameter estimation. Importantly, however, they do not necessarily 
need to assume independence if parameters representing how the go 
process is altered on stop trials can be accurately estimated, as has been 
recently demonstrated in the context of anticipated response inhibition 
tasks (Matzke et al., 2021). Therefore, a parametric model that can ac-
count for the impact of context independence violations on stop trials 
with short SSDs could potentially provide valid SSRT estimates in ABCD. 
Given the difficulties of estimating parameters when data are sparse (in 
this case, 60 stop trials per person, which is just above the recommended 
minimum for standard stop-signal tasks (Verbruggen et al., 2019)), the 
key challenge is to develop a model that both explains the impact of the 
ABCD task design and allows for accurate recovery of parameters using 
available ABCD data. 

Bissett et al. (2021), who first detailed the context independence 
violation in ABCD, posit three possibilities for how replacement of the go 
stimulus with the visual stop signal affects cognitive processing in the 
ABCD task. The first, “slowed go processing” account holds that the rate 
of evidence accumulation for the go process is slowed at shorter SSDs 
because of less efficient information processing. The second, “guessing” 
account holds that the go process on stop trials is a mixture of guesses 
and stimulus-driven responses, with 100 % of responses being guesses at 
SSD= 0 and this proportion gradually decreasing as SSDs get longer. 
Finally, they posit a “confusion” account, in which participants are un-
sure of how to respond at short SSDs, leading to a slowing in both the 
stop and go process as SSDs decrease. 

Of these accounts, the first is uniquely well-supported by prior 
evidence-accumulation modeling of visual masking effects on percep-
tual choice (Ratcliff and Rouder, 2000; Smith and Ratcliff, 2009; Smith 
and Sewell, 2013). Such models assume that when briefly presented 
visual stimuli are interrupted by a mask a noisy representation of the 
stimulus persists in visual short-term memory after the choice stimulus 
disappears. The strength and quality of this representation is determined 
by the stimulus presentation time, which is supported by findings that 
the average rate of evidence accumulation increases with greater 
duration (Ratcliff and Rouder, 2000; Smith and Ratcliff, 2009; Smith 
and Sewell, 2013). Therefore, as the presentation time of the ABCD go 
stimulus decreases, poorer representations would be expected to cause 
the rate of evidence accumulation for choices to decrease. 

Here, we combine these well-established models of visual-masking 
effects (Ratcliff and Rouder, 2000; Smith and Ratcliff, 2009; Smith 
and Sewell, 2013) with the RDEX model (Tanis et al., 2022) to develop 
“RDEX-ABCD” (Fig. 1E), a modeling framework for describing and 
measuring the mechanisms through which replacement of the choice 
stimulus impacts performance on ABCD stop trials. As in the standard 
RDEX model, we assume that go responses are the result of a race be-
tween evidence accumulators that match and mismatch the choice 
stimulus, rates of which are determined by v+ and v- parameters, 
respectively, and assume that additive infinitesimal Gaussian noise 
causes evidence totals to fluctuate during accumulation (Tillman et al., 
2020). When one of the accumulators reaches a threshold amount, set at 
parameter B, the corresponding choice is selected. Choice RT is the sum 
of the time for the winning accumulator to reach threshold and 
non-decision time (t0), which is made up of the time to initially encode 
the stimulus into a form suitable for obtaining decision-relevant evi-
dence and the time to produce a motor response. On stop trials, we adopt 
the RDEX model’s assumption that the go accumulators race a stop 
process with finishing times that follow an ex-Gaussian distribution 
defined by parameters μ, σ, and τ. As the ex-Gaussian can take on 

negative values, we imposed a fixed lower bound of 0.05 s on the stop 
racer’s ex-Gaussian distribution.1 

We accommodated the violation of context independence in the 
ABCD task with additional parameters that account for the effect of vi-
sual masking on evidence accumulation for go choices at short SSDs. 
Although estimating go process evidence accumulation rates separately 
for stop trials of different SSDs could, in principle, address context in-
dependence violations in ABCD, such estimates are unlikely to be suf-
ficiently reliable because of the sparsity of stop trials at individual SSDs. 
Instead, we posit a parsimonious and psychologically plausible growth 
model in which accumulation rates change with SSD up to an asymptotic 
level that matches go trials with no masking. That is, we assume context 
independence only when the effect of masking is negligible. Accumu-
lation rates in the racing-diffusion model can be defined as the sum of 
two parts, a discriminative component, which differentially favors the 
option that matches the stimulus over the option that mismatches the 
stimulus, and a processing speed component, which favors each option 
equally and ensures that even very difficult choices with little or no 
discriminative information produce a timely response (Mazurek et al., 
2003; van Ravenzwaaij et al., 2019). We assume that only processing 
speed (with associated rate v0) is present when SSD = 0 and that the 
discriminative component gradually grows with SSD up to an asymptote 
as the visual short-term memory representation of the stimulus 
strengthens. The asymptote corresponds to the time at which choice 
accuracy stops improving with SSD, which is typically in the range 
0.3–0.4 s in the ABCD design (Bissett et al., 2021). By assuming that 
asymptotic discrimination and processing speed are the same for go and 
stop trials, the model achieves efficient estimation by leveraging infor-
mation obtained on the more common go trials to constrain parameter 
estimates for stop trials. 

As illustrated in Fig. 1 F, we posit that a simple linear growth process 
describes the increase in discriminative information at longer presen-
tation durations as changes in matching and mismatching accumulator 
rates with the same absolute slope g, taking them both from v0 at SSD 
= 0 to their respective asymptotic values of v+ and v- at longer SSDs. We 
demonstrate below that, with the relatively few trials per participant 
available in the ABCD data, more flexible non-linear growth functions 
that require more parameters to be estimated showed evidence of 
overfitting, whereas the linear model had both good measurement 
properties and provided a sufficiently accurate fit. 

To summarize, the core RDEX-ABCD model proposes two novel pa-
rameters to accommodate the context-independence violation: pro-
cessing speed (v0) and the rate of growth in discriminative perceptual 
information (g) as SSD increases. The remaining parameters are shared 
with the original RDEX model (Tanis et al., 2022): asymptotic matching 
(v+) and mismatching (v-) rates, non-decision time (t0) and threshold (B) 
for the choice accumulators, and the ex-Gaussian parameters for the stop 
runner (μ, σ, τ). Given prior evidence for the prevalence of trigger fail-
ures in stop signal data, we also include a parameter for the probability 
of trigger failure (ptf) and confirm via model comparison and parameter 
estimation that this probability is nontrivial in the ABCD sample. 
Further, we also account for the probability of “omissions”, or of failing 
to respond to the go stimulus, with a “go failure” parameter (pgf). 
Although relatively rare, go failures have been shown to bias estimates 
of inhibition in the standard stop-signal paradigm if neglected (Matzke 
et al., 2019; Tannock et al., 1995). 

Of the possibilities Bissett and colleagues (2021) highlight, the 
RDEX-ABCD model explicitly formalizes their slowed-go-processing 
account. RDEX-ABCD also features a version of guessing in that evi-
dence accumulation rates for matching and mismatching choices are 
identical on 0-SSD trials, leading to guess responses that are driven only 
by processing speed. In contrast, however, Bissett and colleagues’ 

1 Assuming bounds from 0 to 0.1 s did not impact results as the probability of 
such fast stop processes was negligible. 
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original guessing-based account assumes guesses are mixed with fully 
stimulus-driven responses even at short SSDs. We did not adopt this 
approach given findings that little discriminative information is avail-
able at short presentation times (e.g., 0.05–0.10 s (Smith and Ratcliff, 
2009)). Although we initially considered extensions to RDEX-ABCD that 
could allow SSRT to differ at shorter SSDs, as suggested by the proposed 
“confusion” account (Bissett et al., 2021), we provide evidence that the 
core RDEX-ABCD model parsimoniously explains key trends in the ABCD 
data without the need for such complex extensions. 

The next sections describe the application of RDEX-ABCD and com-
parison models to empirical ABCD data. We show that the model pro-
vides a good description of key trends on stop trials, including the SSD 
effect on choice accuracy that is the hallmark of the context indepen-
dence violation, and shows clear advantages relative to comparison 
models. We next use simulations of the RDEX-ABCD model to demon-
strate that ignoring growth in perceptual choice information in the 
ABCD design can lead to consequential biases in non-parametric SSRT 
estimates. Crucially, we show that our model can overcome these 
measurement difficulties and allow data from the ABCD sample to be 
used to obtain unbiased estimates not only of SSRT, but also other 
processes of interest. 

2. Materials and methods 

2.1. Participants, inclusion criteria, and subsample selection 

The ABCD Study is a multi-site collaboration that has recruited a 
diverse sample of 11,875 children between the ages of 9 and 10 from 21 
study sites across the United States. Details of the general study design, 
recruitment procedure, and fMRI protocol (including the stop-signal 
task design) are available elsewhere (Casey et al., 2018; Garavan 
et al., 2018). All child participants in ABCD provided verbal assent while 
parents provided written informed consent. The ABCD data repository, 
which is openly available via the National Institute of Mental Health 
Data Archive (NDA), grows and changes over time. As the combination 
of Bayesian estimation procedures with model comparison analyses is 
computationally intensive, fitting all models to the full sample during 
model development and testing would have been unnecessarily time 
intensive. Therefore, we randomly selected a subset of 900 individuals 
(300 for the derivation of informed priors and 600 for the primary an-
alyses) whose baseline session stop-signal data met our 
performance-based inclusion criteria. We selected this initial subset 
from the set of individuals whose baseline stop-signal data were 
included in the ABCD Annual Release 1.1 dataset (n = 4521, NDA Study 
576, DOI 10.15154/1412097, available at: https://ndar.nih.gov/study. 

html?id=576). 
Of the 4521 individuals in Release 1.1, we found that 3436 had 

complete behavioral data available from the stop-signal task that met 
basic validity checks (two imaging runs, 360 recorded trials, and 
participant responses detected for one or more go trials). Performance 
exclusion criteria applied to ensure adequate engagement with the task 
and consistency with race model assumptions (detailed in Supplemental 
materials) led to the exclusion of 16.8% of the initial sample of 3436, 
leaving 2859 participants available for modeling analyses. Out of this 
remaining sample, we sought to randomly select a subsample of non- 
sibling participants from across multiple data collection sites. We first 
determined, for each data collection site, how many individual family 
identification numbers (family IDs) had stop-signal data available for 
modeling from at least one child. We then selected the 6 data collection 
sites with the greatest number of available family IDs and randomly 
sampled (without replacement) 150 family IDs from each of these 6 
sites. We included single children from each family for which only one 
child was available and randomly sampled a sibling from each family for 
which multiple children’s data were available. This led to a subsample of 
900 participants from independent families (150 per site) that was 
further split into a 300 participant (50 per site) subsample included in 
hierarchical model fits to estimate parameter priors and a 600 partici-
pant (100 per site) subsample included in the main analyses. Supple-
mental Table 1 displays basic demographic characteristics of the 900 
participants selected for analysis. 

2.2. Models evaluated 

The parameterization of the “core” 11-parameter RDEX-ABCD model 
is described in the text above. We also estimated several comparison 
models to explore the model space for possible improvements on RDEX- 
ABCD and to contrast it with models of lesser complexity (those that do 
not attempt to account for context independence violations) and greater 
complexity (e.g., those positing non-linear effects of SSD on the go 
process). 

First, to gauge the importance of accounting for the ABCD task’s 
context independence violation in the model, we estimated a “go-inde-
pendence” comparison model that had an identical structure to RDEX- 
ABCD except for assuming that the go process across stop trials of all 
SSDs had accumulation rates identical to the accumulation rates on go 
trials (i.e., v0 and g were not estimated, leading to a simpler 9-parameter 
model). Second, we explored the possibility that a more flexible, non- 
linear growth function would be better than RDEX-ABCD’s simple 
linear growth model at describing the process by which drift rates grow 
from v0 at SSD= 0 to their asymptotic values at longer SSDs. Specifically, 

Table 1 
Prior probability distributions used for Bayesian estimation of the RDEX-ABCD model’s parameters. All priors were independent truncated normal distributions with 
the bounds, location parameters and scale parameters listed in the table. Location and scale parameters for the “broad” prior distributions were selected a priori. 
Location and scale parameters for the “informative” prior distributions were derived from a hierarchical Bayesian version of the model that was fit to a subset of 300 
ABCD participants using procedures described in the text. Note that priors for the pgf and ptf parameters are represented on the probit scale.   

Bounds Broad 
Prior Distribution 

Informative 
Prior Distribution 

Parameter lower upper location scale location scale 

t0 0.100 1.000  0.150  0.100  0.027  0.068 
B 0.000 ∞  1.000  1.000  1.444  0.308 
v+ 0.000 ∞  3.000  2.000  3.334  0.550 
v- 0.000 ∞  1.000  2.000  -0.045  0.525 
v0 0.000 ∞  2.000  2.000  2.732  0.634 
g -∞ ∞  3.000  2.000  2.958  0.862 
μ 0.000 2.000  0.500  0.300  0.226  0.036 
σ 0.000 0.500  0.050  0.100  0.012  0.095 
τ 0.000 0.500  0.100  0.100  0.014  0.032 
pgf -∞ ∞  0.000  1.000  -1.944  0.517 
ptf -∞ ∞  0.000  1.000  -1.892  0.764  
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we estimated a model in which growth was governed by a generalized 
power function, (x+k)a, with k and a being free parameters, leading to a 
12-parameter model overall (other models, including exponential forms, 
were explored but did not produce differing results). Finally, to gauge 
the importance of accounting for trigger failure in the ABCD data, we 
alternately estimated the RDEX-ABCD model, as well as the two com-
parison models detailed above, with and without the ptf parameter. 

2.3. Model estimation 

We implemented all models within Dynamic Models of Choice 

(DMC), a free set of R functions for Bayesian estimation and simulation 
of evidence accumulation and stop-signal task models (Heathcote et al., 
2019). Following previous work (Matzke et al., 2017; Weigard et al., 
2019), parameters for the probability of trigger failure (ptf) and “go” 
failure (pgf) were projected onto the real line during model estimation 
using a probit transformation and later transformed back to the natural 
scale for interpretability. Before all modeling analyses, trials with RTs 
< 0.15 s were excluded as fast guesses and trials with RTs > 1.5 s were 
excluded as abnormally slow responses (these exclusions removed <1% 
of trials). 

Each model was fit twice, using individual-level Bayesian estimation, 

Fig. 2. Posterior predictive plots showing the RDEX-ABCD model and comparison models’ median predictions (red line) and 99% credible intervals (CIs) of pre-
dictions (red shading) for key trends in the ABCD stop-signal task data, overlayed with empirical values (dots). All models were fit with informative priors. Choice 
accuracy for signal-respond trials is binned by SSD, showing the hallmark effect of the ABCD task’s violation of context independence: the systematic increase in 
choice accuracy with go stimulus presentation times. For the “relative” inhibition functions, SSDs are binned at the individual level to account for individual dif-
ferences in performance. For the “absolute” inhibition functions and plots of median signal-respond response time (RT) by SSD, SSD bins are created by collapsing 
SSDs for observed trials across the whole group. 
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to individuals in the main 600-participant subsample: once with broad, 
relatively uninformative priors and a second time with informative 
priors derived from hierarchical model fits to the independent sub-
sample of 300 participants. The latter procedure was used to prevent 
over-fitting by providing additional constraints on individuals’ param-
eter estimates. Although the use of a single hierarchical model for the 
entire sample could accomplish the same goal of constraining 
individual-level parameter estimates, such a procedure has two down-
sides in the present context. First, implementation of fully hierarchical 
models within the full ABCD sample would be computationally inten-
sive, likely exceeding reasonable time and memory limits when con-
ducted on most research computing systems. Second, individual-level 
parameters from hierarchical models are inappropriate for inclusion in 
many follow-up statistical analyses (Boehm et al., 2018). Therefore, the 
two-stage procedure used here helps prevent over-fitting without these 
drawbacks. 

All priors were truncated normal distributions. Locations, scales, and 
bounds of the broad and informative priors for the RDEX-ABCD model 
are displayed below in Table 1; the corresponding values for all other 
models evaluated are reported in Supplemental Table 2-6. Hierarchical 
models fit to the 300-person independent subsample that was used to 
obtain informative priors treated individual-level parameters as random 
effects described by group-level truncated normal distributions that are 
defined by location and scale hyperparameters. Priors for the location 
hyperparameters were the same as the broad priors used for the initial 
individual-level fits (Table 1; Supplemental Table 2–6) while priors for 
all scale hyperparameters consisted of exponential distributions with a 
scale of 1. Following the estimation of posterior distributions from the 
hierarchical model for the 300-person subsample, we collapsed the 
individual-level posterior samples across all 300 individuals into a single 
vector for each model parameter. We then fit a truncated normal dis-
tribution to samples from each parameter vector using maximum like-
lihood estimation. The resulting location and scale parameters of the 
fitted truncated normal distributions were used to specify informative 
priors for the remaining 600 participants. 

All hierarchical and individual-level Bayesian parameter estimation 
procedures used the differential-evolution Markov chain Monte Carlo 
(DE-MCMC) algorithm to sample from the posterior, which is suitable 
for evidence-accumulation models and other models that tend to have 
correlated parameters (Turner et al., 2013). Sampling used a number of 
chains that, by DMC default, was three times the parameters in a given 
model (e.g., 33 chains for the 11-parameter RDEX-ABCD model). Each 
sampling run featured an initial burn-in period that included a migration 
(Turner et al., 2013) step (with 5 % probability in individual-level fits 
and 2.5 % probability in hierarchical fits) and lasted until no chains were 
repeatedly “stuck” in low likelihood locations, as determined by an 
automated function in DMC with default settings. Next, a second burn-in 
period was started with migration turned off, lasting until chains for all 
parameters had converged to the posterior mode. Final convergence was 

defined as values of < 1.10 for the Gelman-Rubin diagnostic statistic 
(Gelman et al., 1992), and was corroborated via visual inspection of the 
chains (Lee and Wagenmakers, 2014). Following initial sampling, pos-
terior samples for individuals’ mean SSRT were computed by simulating 
10,000 finishing times from ex-Gaussian distributions defined by all sets 
of μ, σ, and τ posterior samples and then, for each set of samples, taking 
the mean of the simulated finishing times greater than the .05 s lower 
bound. These SSRT samples were then aggregated to form SSRT poste-
rior distributions. 

2.4. Assessment of model fit and model comparisons 

Posterior predictions were generated by drawing 100 samples from 
the joint posterior for each model and simulating data predicted by the 
model for each participant and each of the 100 sets of parameter sam-
ples. The predicted data for each of the 100 sample sets were averaged 
across participants within each set to obtain summary values of interest 
(e.g., average accuracy rates and probability of inhibition at specific 
SSDs). The medians and 99 % credible intervals (CIs) of these group- 
average predictions were then estimated with 100 draws of posterior 
samples and compared to the empirical group-average values in poste-
rior predictive plots (Gelman et al., 1996). 

Table 2 
Model comparison metrics for all models evaluated under both broad and 
informative priors, alternately fit with and without the trigger failure probability 
(ptf) parameter. All model comparison metrics are zero-based, by subtracting the 
lowest value from all other values in each comparison, to improve clarity. np 
= number of parameters in each model; DIC = deviance information criterion; 
BPIC = Bayesian predictive information criterion.    

Broad 
Prior Fits 

Informative 
Prior fits 

Model np DIC BPIC DIC BPIC 

go-independence, no ptf  8  2667  2000  4291  4332 
go-independence with ptf  9  3094  2965  3200  3109 
linear RDEX-ABCD, no ptf  10  0  0  1016  1260 
linear RDEX-ABCD with ptf  11  312  797  315  603 
power function RDEX-ABCD, no ptf  11  185  128  1075  1216 
power function RDEX-ABCD with ptf  12  494  913  0  0  

Fig. 3. Empirical growth patterns of matching (blue lines increasing from SSD 
= 0) and mismatching (red lines decreasing from SSD = 0) “go” process 
accumulator rates by stop-signal delay (SSD) for the sample average parameter 
estimates (thick lines) and for parameter estimates from 20 randomly drawn 
participants (thin lines) to illustrate individual variability. 
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In addition to assessing models’ descriptive accuracy with posterior 
predictive plots, we applied two model comparison metrics that reward 
models for goodness-of-fit but also penalize models for greater 
complexity: the deviance information criterion (DIC) (Spiegelhalter 
et al., 2002) and Bayesian predictive information criterion (BPIC) 
(Ando, 2011). 

3. Results 

In this section, we: (1) assess the ability of RDEX-ABCD and a set of 
comparison models to describe empirical stop-signal task data from 
ABCD; (2) outline RDEX-ABCD’s account of the context independence 
violation and substantive interpretations of its parameters; (3) provide 
examples illustrating how variation related to the violation can 
confound inferences about inhibitory ability if unaccounted for; and (4) 
demonstrate that RDEX-ABCD can be effectively used to measure SSRT 
and other parameters of interest from ABCD data. 

3.1. Model fit to ABCD data 

Posterior predictive plots in Fig. 2 detail models’ ability to account 
for the increase in empirical choice accuracy with SSD, the hallmark of 
the context independence violation on the ABCD task, as well as two 
other empirical trends that are conventionally used as benchmarks of 
goodness-of-fit in the stop-signal modeling literature (Matzke et al., 
2018). 

The first trend relates to the probability of responding as a function 
of SSD, the “inhibition function”, which the race model predicts to be 
increasing. Following prior work (Heathcote et al., 2019; Weigard et al., 
2019), we plotted the average inhibition function using relative SSD bins 
based on quintiles (i.e., five equal-probability groups of ordered SSDs) 
for each individual participant in order to account for individual vari-
ation in inhibitory performance. Forming SSD bins based on absolute 
times confounds within- and between-participant performance (as 
different individuals have different ranges of SSDs due to the adaptive 
tracking algorithm), flattening the average inhibition function, although 
we also display plots that use this absolute binning procedure for 
comparison. 

The second trend is that “signal-respond” RTs (RTs for responses on 
stop trials) increase with SSD because the go RT distribution is censored 
by successful stopping to a lesser degree at longer SSDs (Colonius et al., 
2001; Matzke et al., 2018). In contrast to the inhibition function, this 
trend is best represented by binning RTs according to their absolute 

values rather than by individualized/relative bins. Because the task’s 
staircase algorithm leads individuals of different ability levels to be 
presented with very different sets of SSDs, individualizing the bins 
causes within-bin variability in SSD to be large compared to between-bin 
variability in SSD. The resulting increase in within-bin variability in 
SSD, which in turn increases variance in the censoring of RT within the 
bins, leads plots of signal-respond RT by relative SSD bins to be mostly 
flat and uninformative. Therefore, following prior work (Heathcote 
et al., 2019; Weigard et al., 2019), we plotted the average trend using 
absolute quintile bins calculated from SSDs collapsed across 
signal-respond trials of all individuals. 

All models that attempted to account for the impact of context in-
dependence violations on the go process provided excellent descriptions 
of the pattern in which choice accuracy rates increase with SSD. Dif-
ferences between predictions of the model that assumed growth was 
described by a two-parameter power function and models assuming a 
simpler linear function were relatively subtle. In contrast, the go- 
independence model displayed increasingly gross misfits to empirical 
accuracy rates as SSD decreased from .35 s. Therefore, RDEX-ABCD’s 
assumption of growth in go process perceptual evidence quality appears 
sufficient to provide a compelling account of the behavioral hallmark of 
context independence violations in ABCD. 

Posterior predictive plots of the inhibition function indicated that all 
models also provided a good account of response probabilities and their 
pattern of increasing as SSDs grow longer.2 All models similarly dis-
played generally good fit to SSD-related increases in median signal- 
respond RT, although they slightly underpredicted the slope of the in-
crease and the absolute value of the highest SSD quintile. These misfits 
may indicate unexplained or contaminant processes at very long SSDs. 
However, as the absolute level of misfit is relatively small (about .025 s 

Table 3 
Average RDEX-ABCD model parameter estimates and model-based mean stop 
signal reaction time (SSRT) estimates for the 600-participant group and the 99% 
posterior credible intervals for these group averages. The tight credible intervals 
for all parameters reflect the large (600 person) sample size on which the group 
average is based.  

Parameter 
name 

Parameter 
definition 

Group 
average 

Credible interval 

0.50 
% 

99.50 
% 

t0 Go non-decision time  0.137 0.134  0.138 
B Go evidence threshold  1.417 1.407  1.427 
v+ Go match rate  3.285 3.270  3.308 
v- Go mismatch rate  0.401 0.383  0.441 
v0 Go processing speed  2.713 2.662  2.767 
g Perceptual growth rate  2.953 2.883  3.060 
μ Stop ex- Gaussian normal mean  0.229 0.225  0.232 
σ Stop ex-Gaussian normal SD  0.076 0.071  0.090 
τ Stop ex-Gaussian exponential 

mean  
0.030 0.028  0.034 

pgf Probability of go failure  0.027 0.026  0.028 
ptf Probability of trigger failure  0.037 0.031  0.041 
SSRT Mean stop signal reaction time 

(computed by simulation)  
0.268 0.265  0.276  

Fig. 4. Histogram of individual-level estimates (posterior medians) for the 
probability of trigger failure in the 600-person ABCD subsample. Red triangles 
denote the 75th and 90th percentiles. 

2 We note that when Bissett et al. (2021) plotted inhibition functions while 
using each specific SSD to form “absolute” bins they found an apparent increase 
in responding on 0 s SSD trials relative to other short SSD trials, which is un-
expected given race model assumptions. However, we show in Supplemental 
materials that this uptick in responding is likely an artifact of averaging across 
individuals who have different levels of inhibitory performance and that the 
RDEX-ABCD model can account for this artifactual uptick when it is uncon-
strained by priors. 
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at most), and as the general increasing trend is well-described, all 
models appear to provide an adequate account of signal-respond RTs. 

Despite the go-independence model clearly providing an inadequate 
account of go choice accuracy on stop trials with short SSDs, its 
description of the inhibition function and signal-respond RT is notably 
similar to those of the alternate models that explicitly accounted for 
context independence violations. This suggests that, although changes in 
evidence quality at shorter SSDs caused by the violation have a sub-
stantial impact on choice accuracy, their impact on the average latency 
of go process RTs is less pronounced. As go-process RTs would be ex-
pected to impact individuals’ probability of responding and signal- 
respond RTs on stop trials regardless of the accuracy of the go re-
sponses, this explanation could account for the apparently subtle impact 
of the context independence violation on these group-level trends. 

Quantitative model comparison metrics (DIC and BPIC), summed 
across participants and zero-based for clarity (by subtracting the lowest 
DIC/BPIC value from all other values in each comparison), are reported 
in Table 2 for all models fit to the ABCD data with both broad and un-
informative priors. Unsurprisingly, these metrics indicate that the go- 
independence model displays unambiguously poorer fit than all other 
models, consistent with its clear difficulty accounting for choice accu-
racy at short SSDs (Fig. 2). These metrics’ support for the inclusion of 
trigger failure and nonlinear patterns of perceptual growth across SSDs 

was more ambiguous. Inclusion of the ptf parameter led to better DIC/ 
BPIC values when models were fit with informative priors but poorer 
DIC/BPIC values when models were fit with broad priors. Similarly, the 
RDEX-ABCD model with a simple linear growth function displayed 
better DIC/BPIC values than the power function model when broad 
priors were used, but the power function model was more frequently 
supported when informative priors were used (except in considering DIC 
when ptf is absent from both models). In both cases, this ambiguity is 
consistent with the posterior predictive plots in Fig. 2, which indicate 
that inclusion of ptf and nonlinear growth parameters in the RDEX-ABCD 
framework does not lead to visibly unambiguous improvements in 
model fit. 

In sum, evaluations of model fit suggest that the RDEX-ABCD 
framework’s assumption of perceptual growth in go process evidence 
quality provides an excellent account of the pattern of increasing choice 
accuracy rates by SSD, the hallmark of context independence violations 
in the ABCD data. Therefore, in the section below, we go on to interpret 
parameters of the RDEX-ABCD model. As evidence for the inclusion of 
nonlinear perceptual growth patterns and trigger failures was more 
ambiguous, we also consider the practical consequences of including 
and interpreting these mechanisms in the model. 

Fig. 5. Comparison of non-parametric SSRT 
estimates with parametric estimates obtained 
from RDEX-ABCD, both when the model is 
estimated with broad, uninformative priors (A) 
and when it is estimated with narrower priors 
informed by a hierarchical model fit (B). The 
black line represents where dots would fall 
along if the relation between the two sets of 
estimates was perfect. Correlation coefficients 
for each relation, including both Pearson’s r 
and Spearman’s ρ, are displayed in the bottom 
right corner of each plot.   

Fig. 6. A demonstration of the influence of 
processing speed and perceptual growth rate on 
the non-parametric SSRT of two individuals 
based on 15,000 simulated “go” and 5000 
simulated “stop” trials each. Persons A and B 
(left) have a similar level of speed as indicated 
by the crosses, but a differing SSRT. When 
speed is varied, the estimated non-parametric 
SSRT is affected even though this change 
should not lead to a different SSRT. Similarly, 
persons A and C (right) have a similar level of 
perceptual growth rate, and varying this rate 
also affects the estimated non-parametric SSRT. 
Both cases result in two regions leading to 
qualitatively different conclusions. In reality, 
person A has a higher SSRT than persons B and 
C, and this true parametric SSRT (horizontal 
lines) is independent of both speed and 
perceptual growth rate. Note that with the large 
number of trials in these simulations RDEX- 
ABCD parametric SSRTs are essentially per-
fect, and so the horizontal lines correspond to 

the true data generating values.   
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3.2. Practical interpretation of the RDEX-ABCD model 

Fig. 3 shows how SSD in the ABCD stop trial design affects choice 
processing rates on average, and for 20 randomly selected individuals, 
under the alternate assumptions of growth governed by linear versus 
generalized power functions. In the linear model, matching (v+) and 
mismatching (v-) accumulator rates grow from being (necessarily) 
identical at 0 s SSDs to being equivalent to their go trial levels at SSDs 
between 0.3 s and 0.4 s for most participants, consistent with the SSD 
region where accuracy becomes asymptotic (Bissett et al., 2021). The 
generalized power function, although agreeing with the linear model’s 
description of 0 s SSD and asymptotic drift rates, posits that change in 
drift rate is most rapid at the shortest SSDs and gradually decelerates as 
SSDs grow longer. 

When combined with the indications, detailed in the section above, 
that the generalized power function does not clearly improve model fit 
relative to the simpler linear function, there are two reasons why esti-
mation of the more complex model may not be warranted in most ap-
plications to ABCD data. First, the generalized power function 
parameters are not as readily interpretable as the linear slope parameter 
g, which provides straightforward estimates of individuals’ rate of 
change in go process evidence quality across SSD durations. Second, we 
found that estimates of the other model parameters were nearly 
perfectly correlated between the generalized power and linear growth 
model versions (Supplemental materials), indicating that the specific 
growth function assumed has only a trivial impact on substantive in-
ferences about the go and stop processes. Therefore, unless the precise 
shape of perceptual growth is of interest for a given research question, 
the core RDEX-ABCD model assuming linear growth appears best suited 
for applications in ABCD. 

Table 3 displays group average parameter estimates for this model. 
The 6 go parameters indicate that go failures are rare (2.7%), and that 

the mean times for matching and mismatching go accumulators to finish 
(t0 + B/v+ and t0 + B/v-, respectively) are 0.57 s and 3.67 s, which 
would cause observed correct RTs to have a mean of 0.55 s and observed 
error RTs to have a mean of 0.58 s. In comparison, when there is no 
discriminative information (v0 only), the mean finishing time for the go 
race is slightly faster, leading observed RTs (which would be split evenly 
between correct and error responses) to have a mean of 0.52 s. The 
average SSRT estimated by the model is 0.268 s, considerably slower 
than most previous BEESTS estimates foradult participants (Matzke 
et al., 2017; Skippen et al., 2019), but comparable to estimates from 
children of similar age (0.243 s for healthy 8–12 year-olds) (Weigard 
et al., 2019). 

The 3.7 % trigger failure rate is on the low end of previous findings 
with non-clinical groups (Matzke et al., 2017; Weigard et al., 2019), 
suggesting participants were generally attentive to the task. This rela-
tively low rate, on average, is consistent with the ambiguous evidence 
from group-level model comparisons for the inclusion of the ptf param-
eter in the model. However, inspection of individual-level parameter 
estimates suggests that trigger failures play a substantial role in the 
performance of a subset of participants (Fig. 4), with the top quartile of 
individuals displaying rates higher than 7.3% and the top decile dis-
playing rates higher than 16.1 %. Coupled with prior evidence that 
trigger failures are important for explaining individual differences in 
clinical phenotypes (Matzke et al., 2017; Weigard et al., 2019) and can 
bias SSRT estimates if unaccounted for (Matzke et al., 2017), the pres-
ence of individuals with non-trivial trigger failure rates indicates that 
estimation of ptf in the ABCD data set is warranted. Indeed, linking these 
salient individual differences to neural and clinical covariates would 
likely be a productive area of future work that could shed light on the 
contributions of attentional processes to inhibitory performance. 

In sum, RDEX-ABCD not only describes ABCD data well by adding a 
parsimonious explanation for the impact of context independence 

Fig. 7. Demonstrations of covariate confounds influencing non-parametric SSRT estimates in a simulated correlational analysis. A covariate was created that has a 
relation with both processing speed (v0) and SSRT (through the μ parameter) for 900 simulated participants. The scatterplots display the observed relations between 
SSRT and the covariate when non-parametric methods (blue) versus the parametric RDEX-ABCD model (orange) are alternately used to estimate SSRT. 
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violations to the existing RDEX model framework (Tanis et al., 2022), 
but also yields interpretable parameters that represent components of 
the stop process (including effects of trigger failure), the go process, and 
the impact of independence violations on the latter. We next use the 
model to quantify the degree of bias that could occur in non-parametric 
SSRT estimates that are based on the original race model, which does not 
account for as many features of the stop process or for context inde-
pendence violations. 

3.3. Quantifying biases in non-parametric SSRT 

We first assessed the relationship between the parametric SSRT es-
timates from RDEX-ABCD and those from the “best practice” non- 
parametric integration method (Verbruggen et al., 2013) that also ac-
counts for go trial omissions (Verbruggen et al., 2019). As shown in  
Fig. 5, the two measures shared around 60% of their variance (as 
determined by squaring Pearson’s r) and had a close to one-to-one 
relationship when the ABCD model was estimated with broad priors. 
This shared variance was reduced, and the one-to-one relationship dis-
appeared, when priors informed by the hierarchical model fit were used. 
The latter result reflects hierarchical “shrinkage” (Efron and Morris, 

1977; Gelman et al., 2013), which produces better estimates on average 
by pulling poorly constrained outlying estimates closer to the group 
mean, as is evident in the right panel of Fig. 5. Regardless, the rank 
ordering of participants’ parametric SSRTs is relatively well-preserved 
in the non-parametric estimates. In fact, the rank correlation (Spear-
man’s ρ) between non-parametric and parametric estimates was nearly 
identical when broad and informative priors were alternately used to fit 
the model. 

Although the ordinal correspondence between RDEX-ABCD and non- 
parametric SSRT estimates suggests that the latter can be used to study 
individual differences in inhibition, confounding factors that are not 
accounted for in non-parametric methods may nonetheless lead to 
misleading inferences. Indeed, we found in simulation studies (methods 
described in Supplemental) that biases in non-parametric estimates can 
be consequential for inferences at both the individual and group levels. 
We present an example at each level to demonstrate that differences in 
processing speed (v0) and perceptual growth rate (g) can be mistaken for 
differences in SSRT, as estimated by the non-parametric method. Note 
that the parameter values used in these simulations, and ranges over 
which we vary parameters, are representative of those found in the 
ABCD data. We also point out that trigger failures are already known to 

Fig. 8. Results from the parameter recovery study in which informed priors were used to estimate parameters (both the initial parameter values estimated from 
empirical data and the parameter values recovered from simulated data). Scatterplots illustrate the relations between the simulated (“sim.”) and recovered (“rec.”) 
parameter values as compared to the diagonal solid line indicating perfect recovery. Numbers above each plot report the correlation coefficient (r) for each relation 
and the posterior coverage proportions (c) for each parameter, which indicate the proportion of data-generating parameter values that fall within the 95 % posterior 
credible interval for the parameters recovered from the generated data. 
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bias non-parametric SSRT (Matzke et al., 2017), and so the trigger 
failure parameter can partially account for differences between para-
metric RDEX-ABCD and non-parametric SSRT estimates. However, 
simulation studies reported in this section hold this parameter constant. 

The first example shows that ignoring either speed or growth-rate 
differences can lead to reversed SSRT effects when making pairwise 
comparisons among three individuals. Person A has a higher true 
parametric SSRT than the others, but roughly the same speed as B and a 
similar perceptual growth rate to C. Fig. 6 shows the results, where 
horizontal lines indicate the true parametric SSRT for each person, 
crosses correspond to the true speed (left panel) and perceptual growth 
rate (right), and dots show non-parametric SSRT estimates for each 
simulated dataset. Varying speed had hardly any effect on the non- 
parametric SSRT estimates of A, whereas a positive linear relation was 
found for B, creating two qualitatively different regions. When speed 
was below approximately 4, A had a higher non-parametric SSRT than B, 
whereas this order was reversed when speed exceeded four. By not 
taking processing speed into account, the non-parametric SSRTs would 
result in incorrect conclusions in the latter region. Similarly, varying 
perceptual growth rate had different effects on A and C, and again 
created two qualitatively different regions below and above around 2.5. 

Non-parametric SSRT would lead to incorrect conclusions in the lower 
region. 

Both cases demonstrate that overlooking individual differences in 
processing speed and perceptual growth rate can lead to incorrect in-
ferences about the relative inhibitory abilities of two individuals. Unless 
individual differences in these factors are considered by using the RDEX- 
ABCD model, there is potential for the non-parametric method to 
identify putative differences in inhibitory ability where none exist, and 
even for one individual to be identified as better at inhibition than 
another when in fact the opposite is true. 

The stop-signal task is often used to identify differences in SSRT 
between groups or experimental conditions, or to investigate whether a 
covariate (e.g., ADHD symptoms or activity in a particular brain region) 
is related to inhibitory ability. Our second simulation shows that a co-
variate related to both speed (v0) and SSRT (through the μ parameter) 
may cause non-parametric SSRT to provide reversed conclusions in a 
realistic analysis. Fig. 7 shows an illustrative selection of results for 900 
simulated participants. The top row shows two extreme situations in 
which SSRT was perfectly negatively correlated with the covariate, but 
there was alternately no (left plot) or a perfect positive (right plot) 
correlation between the covariate and processing speed. Two situations 

Fig. 9. Results from the parameter recovery study in which broad priors were used to estimate parameters (both the initial parameter values estimated from 
empirical data and the parameter values recovered from simulated data). Scatterplots illustrate the relations between the simulated (“sim.”) and recovered (“rec.”) 
parameter values as compared to the solid diagonal line indicating perfect recovery. Numbers above each plot report the correlation coefficient (r) for each relation 
and the posterior coverage proportions (c) for each parameter, which indicate the proportion of data-generating parameter values that fall within the 95 % posterior 
credible interval for the parameters recovered from the generated data. 
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with realistic intermediate covariate correlations are presented in the 
bottom row. 

Both non-parametric and parametric SSRT correctly showed strong 
negative correlations with the covariate when only SSRT was perfectly 
related to the covariate (top-left). However, their results clearly 
diverged when speed also had a perfect positive correlation with the 
covariate (top-right). In this case, parametric SSRT had the expected 
strong negative relation with the covariate, while non-parametric SSRT 
estimates hardly varied over different levels of the covariate. Non- 
parametric SSRT estimates failed to pick up the negative relation be-
tween the covariate and true SSRT because of the counter-balancing 
effect of the positive speed correlation on non-parametric SSRT. 

The bottom row of Fig. 5 demonstrates that intermediate covariate 
correlations, closer to those expected in empirical data, can also result in 
reversed effects. In both scenarios, RDEX-ABCD accurately detected a 
small negative relation between the covariate and SSRT. From the non- 
parametric estimates, however, we would conclude that there is a posi-
tive relation between the covariate and SSRT because the positive cor-
relation with processing speed reverses this trend. 

These results provide a few examples of ways inhibition-related co-
variate effects (or the absence of such effects) can be confounded by 
processing speed effects. Growth rate effects can produce similar con-
founding. Therefore, failing to take different levels of context- 
independence violation into account can, in realistic scenarios, lead to 
qualitatively wrong conclusions despite the ordinal correspondence 
between true and non-parametric SSRT. 

3.4. RDEX-ABCD as a measurement model 

Given that non-parametric estimates of SSRT may cause misleading 
inferences, it is natural to ask whether the RDEX-ABCD model can be 
used as a measurement model to avoid such problems when analyzing 
ABCD data. To test whether RDEX-ABCD qualifies as a measurement 
model, we conducted parameter-recovery studies (methods described in 
Supplemental) using parameter estimates from our subsample to 
generate simulated individual data sets with same trial numbers and 
staircase algorithm as the empirical ABCD stop-signal data. We then 
used the same procedures as applied to the empirical data to estimate 
RDEX-ABCD parameters from the simulated data. As priors can impact 
parameter recovery, we repeated this procedure with both the informed 
and broad priors used with the empirical data. Figs. 8 and 9 display 
scatterplots of the relations between the data-generating and estimated 
parameters, associated correlation coefficients (r), and posterior 
“coverage” (c), the proportion of data-generating parameter values that 
fall within the 95 % posterior credible intervals provided by the 
Bayesian estimation procedure. If the coverage proportions are close to 
the nominal 95% value, this indicates that estimation is calibrated in 
terms of uncertainty. 

As the points in Figs. 8 and 9 do not fall consistently higher or lower 
than the line indicating perfect recovery for any parameter, there is little 
evidence that parameters are systematically biased toward higher or 
lower values upon recovery. We also conducted more intensive 
parameter-recovery studies with a subset of individuals’ parameter 
values that were intended to identify possible biases or second modes in 
parameter ranges (see Materials and Methods; results available at osf.io/ 
2h8a7/), and again found little evidence for systematic bias. Coverage 
was nominal, or very close to nominal, in all cases, suggesting that 
inference based on Bayesian credible intervals will be well calibrated. 

The parameters that characterize the go process and its probability of 
being triggered (v+, v-, B, t0, and pgf) are all recovered quite accurately 
(r = 0.80–0.97). Parameter estimates that characterize the stop process 
and its probability of being triggered (μ, σ, τ, ptf) appear to be less precise 
or accurate, but generally show acceptable recovery, except for σ in the 
broad prior estimates, which is notably poor. Less accuracy and preci-
sion for the recovery of stop, relative to go, parameters is expected 
because stop trials are less frequent, and poorer recovery of these 

parameters occurs in standard paradigms for the BEESTS and RDEX 
models. Crucially, RDEX-ABCD recovers mean SSRT and trigger failure 
values well (r = 0.75–0.81). Given that 60 stop trials is barely above the 
minimal guideline for using non-parametric estimates in the standard 
stop-signal paradigm (Verbruggen et al., 2019) this represents excellent 
performance and suggests that the two key stop-related parameters 
estimated from RDEX-ABCD (SSRT, ptf) can be used effectively in 
applied research. 

Parameters for processing speed (v0) and perceptual growth (g), 
which similarly depend on the sparse stop trial data, displayed poorer 
recovery. Therefore, if their values were of interest, a design in which 
participants performed many more trials would be required. However, 
as they are more likely to be considered nuisance parameters than of 
substantive interest in the ABCD data, and as there were no apparent 
biases in estimates of these parameters, this is unlikely to limit appli-
cations of the model. Furthermore, the coverage values indicate that, 
even if a subset of parameters’ point estimates are not accurately 
recovered, the posterior distributions accurately reflect the uncertainty 
in these estimates and can therefore inform appropriately tentative 
inferences. 

4. Discussion 

We described a novel cognitive process modeling framework, RDEX- 
ABCD, that is aimed at illuminating the mechanistic processes that un-
derlie performance on the ABCD stop-signal task. Critically, this 
framework accounts for unique context independence violations on the 
ABCD task due to a design feature in which the visual stop signal re-
places the go choice stimulus, limiting the information participants need 
to make a choice. RDEX-ABCD integrates elements of prior parametric 
models of the stop-signal task (Logan et al., 2014; Matzke et al., 2013; 
Matzke et al., 2017; Tanis et al., 2022) with well-established accounts of 
masking effects on the processing of brief visual stimuli (Ratcliff and 
Rouder, 2000; Smith and Ratcliff, 2009; Smith and Sewell, 2013) by 
assuming that the ABCD design feature impacts the quality of evidence 
used for discrimination of go choice options. This account is sufficient to 
provide an excellent description of the pattern of increasing choice ac-
curacy with greater SSD duration, which is the “smoking gun” that the 
task violates context independence (Bissett et al., 2021). Simulation 
studies that use RDEX-ABCD as the data generating model demonstrate 
that this violation can lead non-parametric SSRT estimates to reverse the 
ordering of inhibitory differences at both the individual and group 
levels. Fortunately, parameter-recovery studies indicate that 
RDEX-ABCD can be leveraged as a measurement model to avoid these 
problems and to reliably index SSRT, trigger failures, and other mech-
anistic processes of interest on the ABCD task. 

Our exploration of comparison models within the RDEX-ABCD 
framework found that a simpler comparison model that assumed 
context independence could not account for lower choice accuracy at 
short SSDs, underscoring the need to address independence violations 
when modeling the ABCD task. However, we found that the simpler 
comparison model had little difficulty explaining other trends in ABCD 
stop trial data, including the inhibition function and increases in signal- 
respond RTs. This pattern of findings indicates that, although the 
context independence violation clearly affects the accuracy of go 
choices, its impact on the average latency of go choices at short SSDs 
may be relatively subtle. Such a dissociation may explain why RDEX- 
ABCD’s SSRT estimates display a relatively strong ordinal correspon-
dence with non-parametric SSRT. It also suggests that the independence 
violation has a more limited impact on non-parametric SSRT estimates 
than was originally feared (Bissett et al., 2021). Nonetheless, the 
simulation studies on SSRT biases show clear practical advantages to 
using parametric estimates from RDEX-ABCD relative to non-parametric 
methods, a point we return to below. 

Although our model assumes that the ABCD task’s context inde-
pendence violation exclusively impacts the go choice process, Bissett 
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et al. (2021) speculated that the violation may also cause slowing in the 
stop process by “confusing” participants at short SSDs. We initially 
considered extensions to RDEX-ABCD that allow for impacts of the 
violation on the stop process but abandoned them due to difficulties 
with defining and estimating these impacts in ABCD data. Nonetheless, 
we think there are several reasons to believe that RDEX-ABCD’s 
assumption that independence violations exclusively affect the go pro-
cess provides a strong basis for ABCD applications. First, although the 
hypothesis that visual masking of the go choice stimulus degrades evi-
dence quality is strongly indicated by a wealth of prior research (Kah-
neman, 1968; Ratcliff and Rouder, 2000; Smith and Ratcliff, 2009; 
Smith and Sewell, 2013), there is no such justification in prior research 
for a “confusion” account, making the possibility of impacts to the stop 
process speculative, and therefore a questionable assumption to include 
in a model. Second, the impact on go choice evidence quality assumed 
by RDEX-ABCD was sufficient to describe the pattern of choice accuracy 
across SSDs that is the context independence violation’s key signature. 
Relevant to the principle of parsimony in modeling (Vandekerckhove 
et al., 2015), the absence of glaring misfits to this or other trends in stop 
trial data suggests that RDEX-ABCD provides an adequate account of the 
data generating process, and it is therefore unclear why additional pa-
rameters to account for impacts on the stop process would be needed. 
Finally, following the aphorism summarizing the message of Box (Box, 
1976) that “all models are wrong, but some are useful”, the RDEX-ABCD 
model displays clear practical utility by being both comprehensive 
enough to describe key trends in the data and parsimonious enough to 
allow for reliable measurement in the ABCD study. Future work, likely 
involving the collection of new data with greater numbers of stop trials, 
may be able to determine whether more complex models that allow for 
impacts of the violation on the stop process are better-supported than 
RDEX-ABCD. However, as models of greater complexity would likely be 
difficult to estimate in existing ABCD data, their practical utility would 
be questionable. 

Given the unprecedented scientific opportunity afforded by the 
ABCD study and the importance of unbiased SSRT estimates for 
researching inhibitory ability, our findings have several key implica-
tions. First, they suggest that major changes to the ABCD task design are 
not warranted, ensuring longitudinal comparability of the behavioral 
and fMRI data between waves. SSRT measurement issues related to the 
violation appear to be manageable using RDEX-ABCD, and the practical 
difficulties of using the model are relatively minor compared to the 
problems introduced by breaking longitudinal comparability. Further-
more, even if alternate models that explain the context-independence 
violation with different processes are proposed and supported, our re-
sults provide a general demonstration that cognitive modeling can 
effectively overcome limitations related to the ABCD design. 

The implications of our work for analyses of already-collected ABCD 
data are nuanced. As we found that non-parametric SSRT estimates 
calculated using recommended best practices (Verbruggen et al., 2019) 
generally preserved the rank ordering, if not the absolute values, of 
participants’ SSRT, it is possible that inferences based on the 
non-parametric estimates may not be misleading in many situations. 
However, we also showed that non-parametric estimates can lead to 
incorrect (including reversed) inferences when a parameter that ex-
plains the context independence violations is confounded with a co-
variate of interest. It seems plausible that such confounding might occur 
in practice. Rather than taking the chance of assuming that such con-
founding is not present, we recommend that researchers use parametric 
measurement models, such as the one we propose, that account for the 
context-independence violations evident in the ABCD data. 

We note that this trade-off between the precision of cognitive process 
modeling and the ease of using non-parametric SSRT estimates is not 
unique to ABCD. As outlined in the introduction, trigger failures in 
standard designs cannot be easily accommodated using non-parametric 
methods and have already been shown to bias SSRT estimates (Matzke 
et al., 2017) and distort substantive conclusions (Matzke et al., 2017; 

Weigard et al., 2019) if ignored. Indeed, current consensus recommen-
dations for estimating SSRT from the stop-signal task (Verbruggen et al., 
2019) acknowledge that cognitive process models, despite being diffi-
cult for researchers with less technical expertise to implement, provide 
less biased estimates of SSRT relative to even the best non-parametric 
methods. Our findings suggest parallel recommendations for analysis 
of the ABCD task; whenever it is feasible to do so, validated cognitive 
process models such as RDEX-ABCD should be used to estimate SSRT, 
trigger failure, and other mechanistic processes while accounting for 
ABCD-specific context-independence violations. 

We are taking two steps to facilitate the wider adoption of RDEX- 
ABCD. First, we have shared, on the Open Science Framework (osf.io/ 
2h8a7), the code we used to specify and fit the model within Dynamic 
Models of Choice (DMC), a free set of R functions for Bayesian estima-
tion of evidence accumulation models that comes equipped with 
comprehensive, hands-on tutorials for first-time users (Heathcote et al., 
2019). Researchers can now freely use our code to estimate parameters 
of the RDEX-ABCD model using identical procedures to those imple-
mented in the current study or flexibly alter the model and fitting pro-
cedures to suit their specific research aims. Second, we are now working 
towards the goal of sharing RDEX-ABCD model parameter estimates for 
the entire ABCD sample, either as a new NDA collection or in future 
ABCD Study data releases, as soon as possible. 

One notable feature of our analysis strategy is that we used priors 
generated from a hierarchical model fit to an independent subsample of 
ABCD participants to inform individual-level estimation. This method 
provides the key benefit of a fully hierarchical approach (prevention of 
over-fitting to individual-level data by using information about group 
distributions) without two of this approach’s drawbacks. The first 
drawback is that fitting hierarchical models to very large data sets is 
demanding in terms of computational resources and technical expertise, 
although it has been done for other large-scale projects using simpler 
models (PISA, 2018). Therefore, to simplify the computational demands 
needed to fit the model, we focused on individual-analysis methods that 
require only a modern multi-core PC, so that the benefits of RDEX-ABCD 
are more immediately available. That said, we believe that developing 
methods for fitting large-scale hierarchical cognitive process models is a 
worthwhile aim for not only the stop-signal task, but also the other tasks 
used in the ABCD project. Given the large number of sampling chains 
required by the DE-MCMC method (Turner et al., 2013), a promising 
strategy for reducing the computational demands of such models is to 
use recently developed samplers that are more efficient, such as particle 
Metropolis within Gibbs sampling (Gunawan et al., 2020). 

Even if these computational limitations are addressed, however, a 
second drawback of fully hierarchical models is that individual-level 
estimates drawn from them are unsuitable for follow-up frequentist or 
Bayesian inferential methods because they may reduce between-subjects 
variability in parameter estimates in a way that violates the indepen-
dence assumptions of the inferential tests, biasing them toward finding 
effects (Boehm et al., 2018; Evans and Wagenmakers, 2019). Informed 
priors also constrain variability in parameter estimates but, as estima-
tion is carried out independently for each participant, this approach is 
better aligned with the assumptions of follow-up frequentist tests. 
“Plausible values” analyses have been proposed as a solution for bivar-
iate correlations with hierarchical cognitive model parameters (Ly et al., 
2017), but until this approach is extended to the multi-level modeling, 
structural equation modeling, and multivariate prediction methods 
commonly used with ABCD data (which is another critical area for 
future work), individual-level estimation with informed priors provides 
a good alternative solution. That said, simulation studies to assess Type 
1 error rates in each application or sensitivity analyses involving 
parameter estimates from both broad and informative priors can be used 
to rule out the possibility the priors bias inferences. 

A key limitation RDEX-ABCD shares with the original RDEX model is 
the fact that, although it allows specific mechanisms that impact the go 
process to be measured (evidence accumulation rates, thresholds), the 

A. Weigard et al.                                                                                                                                                                                                                                



Developmental Cognitive Neuroscience 59 (2023) 101191

16

outcome of the stop process is modeled with ex-Gaussian distributional 
parameters, which cannot be used to measure such specific mechanisms 
(Matzke and Wagenmakers, 2009). As is demonstrated by the array of 
stop-signal task models outlined in the introduction, cognitive process 
models exist on a continuum that ranges from simpler “descriptive” 
models that posit coarse, summary-level descriptions of the processes 
involved (e.g., the non-parametric race model) to those that posit spe-
cific parameters that provide a more complete explanation of how these 
processes operate (e.g., the racing-diffusion model). Although the 
racing-diffusion model (Logan et al., 2014) dissociates mechanistic pa-
rameters for both the go and stop processes, the parameter recovery 
problems this model exhibits prevents it from being used to measure 
these mechanisms. Therefore, we argue that the RDEX framework 
currently provides a valuable “middle ground” along this continuum by 
allowing for more specific features of the stop process to be dissociated 
than are indexed by the original race model (latency, variability, and 
trigger failure) while simultaneously offering excellent measurement 
properties. 

In summary, we introduce a cognitive process modeling framework 
that explains the impact of context-independence violations on the 
ABCD Study’s stop-signal task and, in doing so, accounts for key trends 
in the ABCD data. We show that failing to account for context- 
independence violations could produce misleading inferences, and 
that the proposed model provides a practical remedy, enabling unbiased 
and reliable estimation of SSRT and other key process parameters that 
contribute to task performance. We argue that the model can advance 
ABCD Study research efforts by improving the measurement of inhibi-
tion and other cognitive processes (e.g., trigger failure and choice evi-
dence accumulation) with existing ABCD stop-signal task data. More 
broadly, this work highlights the critical strengths of a cognitive process 
modeling approach for increasing the precision of both theories and 
measures of neurocognitive phenomena. 
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