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Abstract

The removal of non-brain signal from magnetic resonance imaging (MRI) data, known as 

skull-stripping, is an integral component of many neuroimage analysis streams. Despite their 

abundance, popular classical skull-stripping methods are usually tailored to images with specific 

acquisition properties, namely near-isotropic resolution and T1-weighted (T1w) MRI contrast, 

which are prevalent in research settings. As a result, existing tools tend to adapt poorly to 

other image types, such as stacks of thick slices acquired with fast spin-echo (FSE) MRI that 

are common in the clinic. While learning-based approaches for brain extraction have gained 

traction in recent years, these methods face a similar burden, as they are only effective for image 

types seen during the training procedure. To achieve robust skull-stripping across a landscape 

of imaging protocols, we introduce SynthStrip, a rapid, learning-based brain-extraction tool. 

By leveraging anatomical segmentations to generate an entirely synthetic training dataset with 

anatomies, intensity distributions, and artifacts that far exceed the realistic range of medical 

images, SynthStrip learns to successfully generalize to a variety of real acquired brain images, 
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removing the need for training data with target contrasts. We demonstrate the efficacy of 

SynthStrip for a diverse set of image acquisitions and resolutions across subject populations, 

ranging from newborn to adult. We show substantial improvements in accuracy over popular 

skull-stripping baselines – all with a single trained model. Our method and labeled evaluation data 

are available at https://w3id.org/synthstrip.
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1. Introduction

Skull-stripping, also known as brain extraction, involves the removal of non-brain tissue 

signal from magnetic resonance imaging (MRI) data. This process is useful for anonymizing 

brain scans and a fundamental component of many neuroimage analysis pipelines, such 

as FreeSurfer (Fischl, 2012), FSL (Jenkinson et al., 2012), AFNI (Cox, 1996), and ANTs 

(Avants et al., 2011). These packages include tools that typically require brain-extracted 

input images and might perform inaccurately, or even fail, without removal of irrelevant 

and distracting tissue. One such class of algorithms that benefits from this systematic 

tissue extraction is image registration, a core element of atlas-based segmentation and other 

analyses. Nonlinear registration (Ashburner, 2007; Avants et al., 2008; Rueckert et al., 1999; 

Vercauteren et al., 2009) estimates local deformations between pairs of images, and these 

algorithms tend to produce more accurate estimates when they can focus entirely on the 

anatomy of interest (Klein et al., 2009; Ou et al., 2014). Similarly, skull-stripping increases 

the reliability of linear registration (Cox and Jesmanowicz, 1999; Friston et al., 1995; 

Hoffmann et al., 2015; Jenkinson and Smith, 2001; Jiang et al., 1995; Modat et al., 2014; 

Reuter et al., 2010) by excluding anatomy that deforms non-rigidly, such as the eyes, jaw, 

and tongue (Andrade et al., 2018; Fein et al., 2006; Fischmeister et al., 2013; Hoffmann et 

al., 2020).

Classical skull-stripping techniques are well-explored and widespread, but popular methods 

are often tailored to images with specific modalities or acquisition properties. Most 

commonly, these methods focus on three-dimensional (3D) T1-weighted (T1w) MRI scans 

acquired with MPRAGE sequences (van der Kouwe et al., 2008; Marques et al., 2010; 

Mugler and Brookeman, 1990), which are ubiquitous in neuroimaging research. While some 

skull-stripping tools accommodate additional contrasts, these methods are ultimately limited 

to a predefined set of viable image types and do not properly adapt to inputs outside this 

set. For example, skull-stripping tools developed for near-isotropic, adult brain images may 

perform poorly when applied to infant subjects or clinical scans with thick slices, such as 

stacks of 2D fast spin-echo (FSE) acquisitions.

When a suitable brain extraction method is not available for a particular scan type, a 

common workaround involves skull-stripping a compatible image of the same subject and 

computing a co-registration to propagate the extracted brain mask to the target image of 

interest (Iglesias et al., 2011). Unfortunately, an accurate intra-subject alignment can require 
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significant manual tuning because the target image still includes extra-cerebral matter that 

may impede linear registration quality (Reuter et al., 2010). Crucially, this procedure also 

requires the existence of an additional, strip-able image, often a high-resolution isotropic 

T1w or T2-weighted (T2w) scan, which is rare, for example, in clinical screening protocols, 

introducing a barrier to the clinical adoption of analysis tools.

While classical algorithms for skull-stripping are limited by their assumptions about the 

spatial features and intensity distributions in the input images, supervised deep-learning 

approaches, which leverage convolutional neural networks (CNNs), can, in principle, learn 

to extract a region of interest from any image type given sufficient anatomical contrast 

and resolution. In practice, these networks achieve high accuracy for data types observed 

during training, but their performance often deteriorates on images with characteristics 

unseen during training (Hendrycks et al., 2021; Hoffmann et al., 2021b; Jog et al., 2019; 

Karani et al., 2018). In consequence, robust, supervised learning-based approaches depend 

on the availability of a representative training dataset that contains accurate ground-truth 

annotations and exposes the network to a landscape of image types. While numerous public 

datasets provide access to widely used MRI acquisitions for which target brain masks can 

be easily derived with classical methods, curating a diverse training dataset with uncommon 

sequences and sufficient anatomical variability is a challenging task that requires substantial 

human effort. As a result, current deep-learning skull-stripping methods are trained with few 

different data types and deliver state-of-the-art results only for particular subsets of image 

characteristics (Hwang et al., 2019; Kleesiek et al., 2016; Salehi et al., 2017).

Recently, a novel learning strategy alleviates the requirement for representative acquired 

training data by optimizing networks with a wide array of synthetic images, each generated 

directly from a precomputed label map (Billot et al., 2020; Hoffmann et al., 2021b). This 

synthesis scheme enables networks to accurately carry out tasks on any image type at 

evaluation-time without ever sampling real target acquisitions during training, and it has 

been effectively employed for segmentation (Billot et al., 2020) and deformable image 

registration (Hoffmann et al., 2021b). To build on deep-learning methods for brain extraction 

while addressing their shortcomings, we adapt the synthesis technique and introduce 

SynthStrip, a flexible brain-extraction tool that can be deployed universally on a variety 

of brain images. By exposing a CNN to an arbitrary and deliberately unrealistic range 

of anatomies, contrasts, and artifacts, we obtain a model that is agnostic to acquisition 

specifics, as it never samples any real data during training. Consequently, this scheme 

enables SynthStrip to extract the brain from a wide array of neuroimaging data types, 

and we demonstrate its viability and improvement over popular baselines using a varied 

test set that spans both research scans and clinical exams (Fig. 1). The test set includes 

T1w, T2w, T2w fluid attenuated inversion recovery (T2-FLAIR), and proton-density (PDw) 

contrasts as well as clinical FSE scans with slices and high in-plane resolution, and low-

resolution EPI, ranging across age and pathology. We demonstrate the ability of SynthStrip 

to generalize beyond structural MRI, to MR angiography (MRA), diffusion-weighted 

imaging (DWI), fluorodeoxyglucose positron emission tomography (FDG-PET), and even 

computed tomography (CT). We make our validation set publicly available to promote 

further development and evaluation of brain-extraction tools.
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2. Related work

In this section, we briefly review the automated brain-extraction techniques that we use as 

baseline methods. We include both classical and deep-learning baselines introduced over the 

last two decades, focusing in particular on those with high efficacy and popularity in the 

research domain. For an exhaustive overview of skull-stripping methods, see Fatima et al., 

2020.

2.1. Classical skull-stripping

Classical, or traditional, algorithms that remove non-brain image signal vary substantially 

in their implementation (Cox, 1996; Eskildsen et al., 2012; Iglesias et al., 2011; Roy et 

al., 2017; Ségonne et al., 2004; Shattuck et al., 2001; Smith, 2002). One common class of 

approaches leverages a deformable mesh model to reconstruct a smooth boundary of the 

brain matter surface. The widely-used Brain Extraction Tool (BET; Smith, 2002), distributed 

as part of the FSL package (Jenkinson et al., 2012), utilizes this technique by initializing a 

spherical mesh at the barycenter of the brain and projecting mesh vertices outwards to model 

the brain border. Since BET uses locally adaptive intensity thresholds to distinguish brain 

and non-brain voxels, it generalizes to a variety of contrasts, such as T1w, T2w, and PDw. 

To prevent surface leaks beyond the brain boundary, 3dSkullStrip, a component of AFNI 

(Cox, 1996), extends the BET strategy by considering information on the surface exterior, 

accounting for eyes, ventricles, and skull.

The popular hybrid approach (Ségonne et al., 2004) available in FreeSurfer also leverages 

a deformable surface paradigm, combing it with a watershed algorithm and statistical atlas 

to improve robustness. First, the watershed establishes an estimate of the white-matter 

mask, which is then refined to the brain boundary using a surface mesh expansion. A 

probabilistic atlas of intensity distributions helps prevent outliers during mesh fitting, and 

erroneous brain mask voxels are removed during post-processing via a graph cuts algorithm 

(Greig et al., 1989; Sadananthan et al., 2010) that thresholds the cerebrospinal fluid (CSF). 

While effective, this technique is optimized only for images with T1w contrast, since 

it relies on the underlying assumption that white matter is surrounded by darker gray 

matter and CSF. Another hybrid approach, ROBEX (Iglesias et al., 2011), exploits a joint 

generative-discriminative model. A Random Forest classification (Breiman, 2001) detects 

the brain contour, which is used to fit a point-distribution model to the brain target. 

The skull-stripping tool BEaST (Eskildsen et al., 2012) builds on patch-based, non-local 

segmentation techniques (Coupé et al., 2010; 2011; Roy et al., 2017) and assigns a label 

to each voxel by comparing its local neighborhood to patches in a reference set with prior 

labels. With the exception of BET and 3dSkullStrip, all of these tools were specifically 

developed for T1w images.

2.2. Deep-learning approaches

Innovations in deep-learning have gained popularity as methodological building blocks 

for an array of tasks in medical image analysis, including skull-stripping. Various learning-

based extraction methods have been proposed, demonstrating accuracy and speed that 

often out-perform their classical counterparts. These models are optimized in a supervised 
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fashion, using a set of acquired training images with corresponding ground-truth brain 

masks, derived through classical methods or manual segmentation. An early, cross-contrast 

approach, Deep MRI Brain Extraction (DMBE) (Kleesiek et al., 2016), trains a 3D CNN 

on combinations of T1w, T2w, and FLAIR contrasts and matches the accuracy of classical 

baselines for several datasets, including clinical scans with brain tumors. Conversely, Auto-

Net (Salehi et al., 2017) introduces two separate 2.5D architectures that skull-strip volumes 

by individually segmenting sagittal, coronal, and transverse views of same image and fusing 

the predictions with an auto-context algorithm (Tu and Bai, 2009). The first architecture 

leverages convolutions on single-resolution voxel-wise patches, while the second utilizes 

a scale-space U-Net architecture (Ronneberger et al., 2015) to predict the brain mask. 

Auto-Net is effective for both adult and neonatal brain scans but only trained with T1w 

images. CONSNet (Lucena et al., 2019) similarly leverages a 2D U-Net, applied across 

image slices in each plane, to strip 3D T1w images. More recently, implementations using 

full 3D U-Nets (Hsu et al., 2020; Hwang et al., 2019) have robustly matched or exceeded 

start-of-the-art brain-extraction performance.

2.3. Contribution

SynthStrip builds on a solid foundation laid by prior studies of deep-learning algorithms 

for brain extraction, enabling us to choose among network architectures well suited for 

this particular task. We emphasize that our goal is not to compare or make claims on the 

optimality of specific architectures – the discussed algorithms may perform equally well. 

Instead, our focus is on exploiting a novel training strategy using synthetic data only, to 

build an easy-to-use skull-stripping tool that alleviates the requirement of expanding the 

training set and re-optimizing network weights every time a new image type is to be 

supported.

3. Method

To predict robust brain masks for an array of real image types, we train a deep convolutional 

neural network on a vast landscape of images synthesized with a deliberately unrealistic 

range of anatomies, acquisition parameters, and artifacts. From a dataset D of precomputed, 

whole-head segmentations with brain and non-brain tissue labels, we sample a segmentation 

s ∈ Ds ∈ D at each optimization step and use it to generate a gray-scale head scan x 
with randomized acquisition characteristics. In effect, this paradigm synthesizes a stream of 

training images used to optimize a SynthStrip network gθ, with trainable parameters θ, in a 

supervised fashion:

θ = argminθ ED[ℒ(y, y)] , (1)

where y is the predicted brain mask, y is the target brain mask derived by merging the brain 

labels of s, and ℒ is the loss function that measures similarity between y and y.
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3.1. Synthesis

Building from previous work (Billot et al., 2020; Hoffmann et al., 2021b), we use a 

generative model to synthesize a stream of random images with substantial anatomical 

and intensity variation, as exhibited in Fig. 2. At each training step, parameters that dictate 

synthesis components are randomly sampled from predetermined ranges and probability 

distributions explicitly defined in Table 1. We emphasize that while the generated scans 

can appear implausible, these training images do not need to be realistic in order for the 

SynthStrip model to accurately generalize to real images at test-time.

To generate a gray-scale image x from a whole-head anatomical segmentation s, we first 

create spatial variability to subject the network to a landscape of possible head positions 

and anatomical irregularities. This is accomplished by manipulating s with a spatial 

transformation t, composed of an affine transform (with random translation, scaling, and 

rotation) and a nonlinear deformation. The deformation is generated by sampling random 

3D displacement vectors from a normal distribution, with random scale, at an arbitrarily 

low image resolution. This random displacement field is vector-integrated, using five scaling 
and squaring steps to encourage a diffeomorphic warp (Arsigny et al., 2006; Dalca et al., 

2019), and tri-linearly resampled to match the resolution of s. After applying the randomized 

transform, the resulting segmentation st serves as the basis for deriving the image x and 

target brain mask y, which is obtained by merging the labels of st into brain and non-brain 

classes.

To compute x, we consider a Bayesian model of MR contrast, which assumes that the 

voxel intensity of each tissue type in the image can be represented by a single Gaussian 

distribution. Reversing this generalization, we assign a random distribution of tissue 

intensity to every anatomical label in st and use this artificial mixture model to attain 

an image with arbitrary contrast by replacing each label voxel in st with a random value 

drawn from its corresponding intensity distribution. Following the synthesis, we aim to 

simulate various artifacts and geometric properties that might exist across modality and 

acquisition type. First, we corrupt the image with a spatially varying intensity bias field, 

generated by resizing a low-resolution image sampled from a normal distribution with 

zero mean. The corrupted image is computed by an element-wise multiplication with the 

voxel-wise exponential of the bias field. Second, we perform gamma augmentation by 

globally exponentiating all voxels with a single value exp(γ), where γ is a normally sampled 

parameter. Lastly, to account for scans with a partial field of view (FOV) and varied 

resolution, we randomly crop the image content and down-sample along an indiscriminate 

set of axes. Before down-sampling by an arbitrary factor r, we simulate partial-volume 

effects by blurring the image using a Gaussian kernel with standard deviation σ = r/4. The 

image cropping and down-sampling components are applied with a 50% probability rate 

during synthesis.

3.2. Loss

We optimize gθ using a loss function ℒ that measures the similarity between predicted and 

target brain masks. Unless otherwise stated, we employ a loss ℒ = ℒsdt that encourages the 

network to predict a signed distance transform (SDT) d representing the minimum distance 
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(in mm) to the skull boundary at each voxel. Distances are positive within the brain and 

negative outside, facilitating the extraction of a binary brain mask y from d at test-time 

by simple thresholding. The training paradigm is outlined in Fig. 3. During training, an 

exact target Euclidean SDT d is computed from the target brain mask y, and the similarity 

between d and d is measured by their mean squared difference (MSE). To concentrate 

optimization gradients to pertinent regions of the image during training, d is banded such 

that voxel distances di do not surpass a discrete threshold t, and all voxels that exceed the 

distance t are down-weighted in the MSE computation by a factor b. Therefore,

ℒsdt =
∑i ∈ Pwi di − d i

2

∑i ∈ Pwi
, wi = b if |d i| > t,

1 otherwise
, (2)

where i represents a voxel in the spatial image domain P, t = 5 mm and b = 0.1 in our 

experiments, optimally determined via a grid search.

As a complimentary analysis, we compare the distance-based loss ℒsdt against a soft 

Dice loss (Dice, 1945; Milletari et al., 2016), which is commonly used to optimize image 

segmentation models and quantifies volume overlap for pairs of labels. We define the loss 

ℒdice as

ℒdice = |yj ⊙ yj|
|yj ⊕ yj|

+ |yk ⊙ yk|
|yk ⊕ yk|

, (3)

where yj and yj represent brain label maps, yk and yk represent non-brain label maps, and ⊙ 
and ⊕ represent voxel-wise multiplication and addition, respectively. While ℒsdt and ℒdice
both result in effective skull-stripping networks, we favor the distance loss ℒsdt due to its 

smoothing effect on the outline of the predicted brain mask, as demonstrated in Experiment 

4.4.

3.3. Implementation

We implement gθ using a 3D U-Net convolutional architecture, with down-sampling 

(encoder) and up-sampling (decoder) components that facilitate the integration of features 

across large spatial regions. The U-Net comprises seven resolution levels, which each 

include two convolutional operations with leaky ReLU activations (parameter α = 0.2) 

and filter numbers defined in Fig. 3. Down-sampling is achieved through max-pooling, and 

skip-connections are formed by concatenating the outputs of each encoder level with the 

inputs of the decoder level with corresponding resolution. In models using ℒ = ℒsdt, one 

final, single-feature convolutional layer with linear activation outputs the predicted SDT 

d. In models optimized with ℒ = ℒdice, the final layer is a two-feature convolution, with 

softmax activation, that outputs a probabilistic segmentation representing non-brain and 

brain regions.
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We train SynthStrip using the Adam optimizer (Kingma and Ba, 2014) with a batch size of 

one and an initial learning rate of 10−4 . This rate is reduced by a factor of two after every 

20,000 optimization steps without a decrease in validation loss. At test-time, all inputs to the 

model are internally conformed to 1-mm isotropic voxel size using trilinear interpolation, 

and intensities are scaled between 0 and 1. The U-Net outputs are resampled such that 

the final brain mask is computed in the original input space. We implement SynthStrip in 

Python, using the open-source PyTorch (Paszke et al., 2019) and Neurite (Dalca et al., 2018) 

libraries, and make our tool and associated code available in the open-source FreeSurfer 

package (https://w3id.org/synthstrip). All experiments are conducted using Intel Xeon Silver 

4214R CPUs and Nvidia RTX 8000 GPUs.

3.4. Data

In our experiments, we employ a small training dataset of adult and infant brain 

segmentations and a separate, larger dataset of acquired images for validation and testing 

that spans across age, health, resolution, and imaging modality. All data are 3D images, 

acquired either directly or as stacks of 2D MRI slices.

3.4.1. Training data

Datasets:  We compose a set of 80 training subjects, each with whole-head tissue 

segmentations, from the following three cohorts: 40 adult subjects from the Buckner40 

dataset (Fischl et al., 2002), 30 locally scanned adult subjects from the Human Connectome 

Aging Project (HCP-A) (Bookheimer et al., 2019; Harms et al., 2018), and 10 infant subjects 

born full-term, scanned at Boston Children’s Hospital at ages between 0 and 18 months (de 

Macedo Rodrigues et al., 2015).

Processing:  To compute anatomical segmentations of individual cerebral regions, adult 

and infant T1w scans are processed with SAM-SEG (Puonti et al., 2016) and the Infant 

FreeSurfer reconstruction pipeline (Zöllei et al., 2020), respectively. In order to build 

complete segmentation maps for robust whole-head image synthesis, we also generate 

six coarse labels of extra-cerebral tissue using a simple intensity-based labeling strategy 

with thresholds that mark label intensity boundaries. Considering only non-zero voxels 

without brain labels, we fit threshold values to each image by maximizing the similarity in 

number of voxels for each extra-cerebral label. These extra-cerebral labels do not necessarily 

represent or differentiate meaningful anatomical structures – their purpose is to provide 

intensity and spatial variability to synthesized regions outside the brain.

In total, the training segmentations contain 46 individual anatomical labels, with 40 brain-

specific labels (including CSF), that we merge into the target brain mask y. All training 

segmentations are fit to a 2563 image shape with 1-mm isotropic resolution. We emphasize 

that this geometric preprocessing is not required at test-time.

3.4.2. Evaluation data

Datasets:  Our evaluation data comprise 620 images, split into validation and test subsets 

of sizes 22 and 598, respectively. We gather these images across seven public datasets, with 

makeup, resolution, and validation splits outlined in Table 2. The IXI1 dataset features 
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a range of MRI contrasts and modalities, including T1w and T2w as well as PDw, 

MRA, and DWI. To simplify the DWI evaluation, a single diffusion direction is randomly 

extracted from each acquisition. The FSM subset (Greve et al., 2021) is derived from 

in-house data using standard acquisitions as well as quantitative T1 maps (qT1). In-house, 

pseudo-continuous ASL (PCASL) scans are acquired as stacks of 2D-EPI slices with low 

resolution and a small FOV that often crops the ventral brain region (Dai et al., 2008). 

The QIN (Clark et al., 2013; Mamonov and Kalpathy-Cramer, 2016; Prah et al., 2015) 

dataset comprises precontrast, clinical stacks of thick image slices from patients with newly 

diagnosed glioblastoma. We also include a subset of the infant T1w image dataset, using 

subjects held-out from training. Lastly, to evaluate the ability of SynthStrip to adapt to 

imaging modalities beyond MR, we gather a test cohort of brain CT and FDG-PET scans 

from the CERMEP-IDB-MRXFDG (CIM) database (Mérida et al., 2021).

Ground-truth masks:  For each image in the evaluation dataset, we derive a reference 

brain mask using the following labelling strategy. Since every evaluation subject includes 

a corresponding T1w image, we generate brain masks for these scans using each classical 
baseline method evaluated in our analysis. Then, an “average” brain mask is computed for 

each subject by extracting the majority label value at every voxel. We refine the average 

masks manually before propagating the masks by rigidly aligning each subject’s T1w scan 

to the remaining image types with a robust registration approach (Reuter et al., 2010). Poor 

alignments are further refined by hand. We make the reference dataset available online to 

facilitate future development of skull-stripping techniques, including the original images if 

permitted by their respective licenses.

3.4.3. Ethics—This retrospective study re-analyzes previously published or shared 

datasets. The FSM and ASL studies were approved by the Mass General Brigham Internal 

Review Board (IRB). The HCP-A study was approved by IRBs at Washington University in 

St. Louis and Mass General Brigham. The infant study was approved by the Committee on 

Clinical Investigation at Boston Children’s Hospital and the Mass General Brigham IRB. All 

subjects gave written informed consent. No ethical approval was required for retrospective 

analysis of de-identified open-access data.

4. Experiments

We analyze the performance of SynthStrip on diverse whole-head images and compare its 

3D skull-stripping accuracy to classical and deep-learning baseline tools.

Baselines:

We select a group of skull-stripping baselines based on their popularity, determined by 

citation count, and effectiveness, as shown in prior work (Fatima et al., 2020; Iglesias et al., 

2011). As classical baselines, we choose ROBEX 1.1, BET from FSL 6.0.4, 3dSkull-Strip 

(3DSS) from AFNI 21.0.21, BEaST 1.15, and the FreeSurfer 7.2 watershed algorithm 

(FSW). Unfortunately, many top-cited, learning based approaches do not make their models 

1.Acquired from http://brain-development.org/ixi-dataset.
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available, even upon request to the authors. A notable exception is Deep MRI Brain 

Extraction (DMBE), which we therefore include. Default parameters are used for each 

method except BET, for which the –R option is provided for more accurate brain center 

estimation. All inputs to FSW and DMBE are re-sampled to 1-mm isotropic voxel sizes to 

accommodate the expected input resolution for these methods.

Metrics:

We evaluate the similarity between computed and ground-truth brain masks by measuring 

their Dice overlap, mean and maximum (Hausdorff) surface distances, and percent 

difference in total volume. Baseline scores are compared to SynthStrip with a paired 

sample t-test. Sensitivity and specificity, which measure the percent of true positive and 

true negative brain labels, respectively, provide further insight into the properties of the 

computed brain masks.

4.1. Skull-stripping accuracy—We assess the broad skull-stripping capability of a 

SynthStrip model trained using images synthesized from the label maps outlined in Section 

3.4.1. We compare the accuracy of our method to each of the baselines across the test set of 

real brain images defined in Section 3.4.2. Method runtime is compared for the FSM dataset.

The comparison demonstrates SynthStrip’s accurate and robust brain extraction, which 

substantially outperforms baseline methods (Tables 3, 4 and Supplementary Tables S1, S2). 

For every evaluation metric, brain masks predicted by SynthStrip yield significantly better 

scores than baseline masks (p < 0.05) for the vast majority of datasets. Importantly, no 

baseline method significantly outperforms SynthStrip on any dataset. As shown in Fig. 4, 

SynthStrip achieves the highest Dice score and lowest mean surface distance for more than 

80% of all test images, in stark contrast to the next best performing method, BET, which 

yields the top result for less than 10% of images. The superior performance of SynthStrip 

persists even when considering only T1w, near-isotropic, adult-brain images, which all of 

the baselines are tuned for. Across this particular subset of 127 T1w images from the 

IXI, FSM, and ASL datasets, SynthStrip achieves the best mean Dice, surface distance, 

Hausdorff distance, and volume difference (Fig. 5), and it consistently extracts the brain with 

high specificity and sensitivity, while other methods tend to under-perform in either of those 

metrics due to tendencies to substantially over- or under-label the brain. When considering 

the remaining non-T1w, thick-slice, and infant image types, SynthStrip’s predominance is 

similarly substantial (Fig. 6). For FSM T1w data, our method runs on the CPU in less than 

one minute (Table 5), trailing the fastest two baselines, BET and FSW, by approximately 17 

seconds on average. On the GPU, SynthStrip runs substantially faster, requiring only 1.8 ± 0. 

2 seconds.

4.2. Qualitative brain-mask analysis—Across the evaluation set, skull-stripping 

errors in SynthStrip predictions are uncommon and typically involve minimally over-

segmenting the brain mask by including thin regions of extra-cerebral matter near the dorsal 

cortex or pockets of tissue around the eye sockets, as shown in Fig. 8. Considering only 

the N images for which SynthStrip does not achieve the best score in Fig. 4, on average, 
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SynthStrip lags behind the best-performing baseline by only −0.53 ± 0.54 Dice percentage 

points (N = 111) and (0. 20 ± 0.18) mm mean surface distance (N = 94).

The top performing baseline method is ROBEX, which yields high-quality brain extraction 

across many of the test datasets, with the notable exception of the qT1 cohort. ROBEX 

produces spatially plausible brain masks and evades drastic failure modes that exist in 

other base-lines, similarly to SynthStrip. However, despite its generally good performance, 

ROBEX has a tendency to include pockets of tissue surrounding the eyes and remove 

regions of cortical gray matter near the superior surface (Figs. 8 and S1).

BET and 3DSS also perform effective brain extraction across image types, but tend to 

fail dramatically for outlier cases. For example, BET locates the brain boundary with 

considerable precision when successful. However, for some image subsets, especially those 

with abundant non-brain matter, such as FSM, BET often includes large regions of inferior 

skull as well as facial and neck tissue in the brain mask. While 3DSS largely avoids such 

gross mislabeling, it tends to produce skull-strips that leak into neck tissue or, conversely, 

remove small regions of the cortical surface.

BEaST and FSW perform well for near-isotropic T1w images, such as those in the IXI, 

FSM, and ASL datasets. But since they are heavily optimized for the assumed spatial 

and intensity features of this acquisition type, they generally perform poorly or even fail 

completely for other contrasts. Common error modes of FSW involve the failure to remove 

bits of skull or inferior non-brain matter, in contrast to BEaST, which is susceptible to 

removing critical regions of the cortex.

The learning-based method DMBE yields suitable brain masks for near-isotropic image 

types with T1w contrast but frequently leaves substantial, unconnected components of 

non-brain matter. While DMBE extracts the brain tissue border as opposed to CSF, our 

analysis shows that the predominant contributor to the discrepancy between DMBE and 

ground-truth brain masks is the inclusion of neck and facial tissue (Figs. 8 and S1). DMBE 

model inference is slow, consuming more than a half hour to skull-strip a standard image.

4.3. Variability across time-series data—We analyze the consistency of SynthStrip 

brain masks across time-domain data by assessing the differences between diffusion-

encoded directions acquired in the same session. For each subject in the DWI dataset, we 

affinely align and skull-strip all of the 16 diffusion-encoded frames in a common, average 

space (Reuter et al., 2010). We compute the number of discordant voxels across brain 

masks for a given method, defining discordant voxels (DV) as voxel locations with labels 

that differ in the time domain. We report the percent of DV relative to the brain mask 

volume, determined by the number of voxels labeled as brain in any frame. In this particular 

analysis, we only consider ROBEX, BET, and 3DSS as baselines since they generalize to 

DWI acquisitions. As shown in Fig. 7, SynthStrip demonstrates a high level of intra-subject 

consistency, as it predicts brain masks with substantially lower % DV across DWI directions 

than the baselines (p < 10−12). Since the % DV metric considers voxels labeled as brain for 

any direction, a single mask with gross mislabeling will substantially increase the metric 
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value, as is the case with ROBEX, which over-segments the brain for only a few directions 

per subject.

4.4. Loss comparison—During our experimentation, we find that training SynthStrip 

models using a traditional soft Dice loss yields comparable results to those trained with 

an SDT-based loss for nearly every metric. However, despite similar global accuracy, we 

observe that models trained with ℒdice predict brain masks characterized by relatively noisy 

and rough boundaries, as illustrated in Fig. 7. The high variability at the edge of the brain 

mask is emphasized by a 6.4 ± 3.2 mm increase in maximum surface distance when using 

ℒdice compared to ℒsdt. We further quantify this discrepancy in brain-mask smoothness 

by computing the percent of exposed boundary voxels (EBV) that neighbor more non-brain 

labels than brain labels. Brain masks with noisier boundaries will exhibit larger EBV due 

to an increased mask surface area and number of sporadic border voxels. We perform this 

evaluation using the FSM data subset of 132 images with isotropic voxel size. Models 

trained with ℒdice predict masks with 4.5× higher EBV than models trained with ℒsdt. We 

hypothesize that as the network learns to estimate an SDT, it is encouraged to focus more on 

the boundary of mask, rather than the label as a whole, resulting in a smoother prediction of 

the brain border.

5. Discussion

We present SynthStrip, a learning-based, universal brain-extraction tool trained on diverse 

synthetic images. Subjected to training data that far exceeds the realistic range of medical 

images, the model learns to generalize across imaging modalities, anatomical variability, and 

acquisition schemes.

5.1. Baseline comparison

SynthStrip significantly improves upon baseline skull-stripping accuracy for nearly every 

image cohort tested, and the few exceptions to this improvement involve data subsets 

for which SynthStrip matches baseline performance. This predominance is in part due to 

the ability of SynthStrip to generalize across a wide variety of image types as well as 

its proclivity to avoid substantial mislabeling. In particular, varying specific acquisition 

characteristics during synthesis promotes network robustness to such characteristics across 

a range of protocols. For example, simulating partial-volume effects with blurring and 

randomizing the resolution enable SynthStrip to accurately generalize to clinical thick 

slice acquisitions and those with large voxel sizes. By learning robust, large-scale spatial 

features of representative brain masks, the model consistently predicts masks of realistic and 

expected shape. Baseline techniques, on the other hand, often rely on weak spatial priors 

and are therefore prone to over- or under-segment brain tissue when confronted with image 

features that are unexpected or unaccounted for (Figs. 8 and S1).

ROBEX’s consistent performance across contrasts and modality is somewhat unexpected 

since the discriminative edge detector is trained only for T1w scans. We hypothesize that 

the coupled shape model is able to compensate for any intensity bias encoded in the 

discriminative detector. The T1w-specific approaches BEAST and FSW could be effective 
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for other MRI contrasts if provided known intensity priors of the brain matter. However, 

this work would require substantial human effort as it needs to be repeated for every new 

image type. The substantial, unconnected components of non-brain matter frequently left 

by DMBE are likely a byproduct of its convolutional architecture, which does not leverage 

multiple resolution levels to gather spatial features across large distances.

5.2. Use for brain-specific registration

Consistent brain extraction across different images from the same subject is critical for 

accurate analysis of time-series acquisitions. For example, diffusion (Holdsworth et al., 

2012; Jones and Leemans, 2011) and functional MRI analyses (Ashburner, 2009; Jenkinson 

et al., 2002) depend on within-subject registration of individual frames acquired across 

time to undo the effect of any head motion during the scan. Unfortunately, anatomical 

structures that deform non-rigidly between frames, such as the neck or tongue, can hamper 

brain-registration accuracy and thus impinge on downstream results. While this effect can be 

accounted for by first removing non-brain tissue from each frame to achieve brain-specific 

registration (Andrade et al., 2018; Fischmeister et al., 2013), it requires consistent brain 

extraction across frames (Andrade et al., 2018; Fein et al., 2006; Fischmeister et al., 2013; 

Hoffmann et al., 2020). SynthStrip’s high within-subject consistency despite substantial 

contrast differences across the diffusion encoding demonstrates its potential for regularizing 

retrospective motion correction of time-series data.

5.3. Model and data availability

Even as learning-based methods in neuroimaging analysis continue to grow in popularity, 

developers of deep-learning skull-stripping tools are sometimes disinclined to provide easy-

to-use distributions of their work. Out of the three promising methods discussed in this 

work, only DMBE makes its models and code publicly available for use. In contrast, we 

make SynthStrip available as a universal, cross-platform command-line utility, distributed 

both as a standalone and as a built-in FreeSurfer tool. To facilitate further development and 

testing of robust skull-stripping tools, we also make our evaluation data and ground-truth 

labels available at https://w3id.org/synthstrip.

5.4. Future work

While SynthStrip facilitates state-of-the-art brain extraction, we aim to extend the tissue-

extraction strategy to other applications both within and beyond neuroimaging. One such 

application is fetal head extraction from in-utero fetal MRI scans. Due to excessive motion, 

fetal MRI is limited to the acquisition of sub-second 2D slices. However, stacks of several 

slices are needed to cover the anatomy of interest, and while their inplane resolution 

is typically of the order of 1 mm × 1 mm, views across slices are hampered by slice 

thicknesses of 4–6 mm and between-slice motion (Hoffmann et al., 2021a). To enable 

full 3D views of the fetal brain, post-processing tools for super-resolution reconstruction 

have emerged, that aim to reconstruct a high-quality volume of isotropic resolution from a 

number of slice stacks acquired at different angles (Ebner et al., 2020; Iglesias et al., 2021; 

Kainz et al., 2015; Rousseau et al., 2006). Yet, these methods hinge on successful brain 

extraction which is challenging due to frequent artifacts and because the relatively small 

brain first needs to be localized within a wide FOV encompassing the maternal anatomy 
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(Gaudfernau et al., 2021). In addition, substantially fewer public fetal datasets are available 

for training in comparison to vast public adult brain datasets. This presents an ideal problem 

to be addressed with SynthStrip, as our approach synthesizes an endless stream of training 

data from only a handful of label maps.

6. Conclusion

The removal of non-brain signal from neuroimaging data is a fundamental first step for 

many quantitative analyses and its accuracy has a direct impact on downstream results. 

However, popular skull-stripping utilities are typically tailored to isotropic T1w scans and 

tend to fail, sometimes catastrophically, on images with other MRI contrasts or stack-of-

slices acquisitions that are common in the clinic. We propose SynthStrip, a flexible tool that 

produces highly accurate brain masks across a landscape of imaging paradigms with widely 

varying contrast and resolution. We implement our method by leveraging anatomical label 

maps to synthesize a broad set of training images, optimizing a robust convolutional neural 

network that is agnostic to MRI contrasts and acquisition schemes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Examples of SynthStrip brain extractions (bottom) for a wide range of image acquisitions 

and modalities (top). Powered by a strategy for synthesizing diverse training data, SynthStrip 

learns to skull-strip brain images of any type.
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Fig. 2. 
Samples of synthetic images used for SynthStrip training. To encourage the network 

to generalize, we synthesize images that far exceed the realistic range of whole-brain 

acquisitions. In this figure, each brain image is generated from the same label map. In 

practice, we use label maps from several different subjects.
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Fig. 3. 
SynthStrip training framework. At every optimization step, we sample a randomly 

transformed brain segmentation st, from which we synthesize a gray-scale image x 
with arbitrary contrast. The skull-stripping 3D U-Net receives x as input and predicts a 

thresholded signed distance transform (SDT) d representing the distance of each voxel to 

the skull boundary. The U-Net consists of skip-connected, multi-resolution convolutional 

layers illustrated by gray bars, with their number of output filters indicated below. We 

train SynthStrip in a supervised fashion, maximizing the similarity between d and the 

ground-truth SDT d within a ribbon of set distance around the brain and derived directly 

from the segmentation labels of st.
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Fig. 4. 
SynthStrip accuracy compared to baseline methods, across all images in the test set. Images 

are sorted by the score of the top performing skull-stripping method. Each dot represents 

a single brain mask derived with a particular tool, and each column of dots represents the 

scores obtained for a single image across tools. See Supplementary Fig. S2 for a version 

showing each baseline in a different color.
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Fig. 5. 
SynthStrip and baseline skull-stripping performance for near-isotropic, T1w adult MR brain 

images. Median scores are represented by black dots. For all metrics except sensitivity 

and specificity, SynthStrip yields optimal brain masks. The high specificity achieved by 

ROBEX and BEaST comes at the cost of substantial under-segmentation of the brain mask, 

as indicated by their low sensitivity scores. The inverse is true for FSW, which tends to 

substantially over-segment the brain. Black dots indicate median scores.
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Fig. 6. 
Considering all non-T1w, thick-slice, and infant images in the evaluation set, SynthStrip 

surpasses baseline accuracy by a wide margin. In this figure, we include only baselines that 

generalize to acquisition protocols and modalities beyond the common structural T1w MRI 

scans. Black dots indicate median scores.
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Fig. 7. 
A: SynthStrip variability across time-series data, measured by percent of discordant voxel 

locations (DV) across diffusion-encoded directions, relative to the brain mask volume. The 

ROBEX median % DV extends beyond the chart axis, as indicated by the black arrow. B: 
Effect of SDT- and Dice-based loss functions during training. A SynthStrip model trained 

using ℒsdt predicts substantially smoother brain masks (boundaries indicated in orange) 

than a model trained with ℒdice, resulting in considerably lower maximum surface distance 

(MD) to ground truth masks and percent of exposed boundary voxels (EBV).
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Fig. 8. 
Representative skull-stripping errors for SynthStrip and baseline methods. White arrows 

indicate over-labeling of the brain mask, while orange arrows indicate removal of brain 

matter. SynthStrip errors are uncommon and typically involve including small regions of 

dura or other extracerebral tissue in the brain mask, if they occur..
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Table 1

Uniform hyperparameter sampling ranges used for synthesizing a training image from a source segmentation 

map. The specific values were chosen by visual inspection of the generated images to produce a landscape 

of image contrasts, anatomies, and acquisition characteristics that far exceed the realistic range of medical 

images. We sample fields with isotropic voxels of the indicated side length, where SD abbreviates standard 

deviation.

Synthesis hyperparameter Uniform sampling range

Affine translation 0–50 mm

Affine rotation 0–45°

Affine scaling 80–120%

Deformation voxel length 8–16 mm

Deformation SD 0–3 mm

Label intensity mean 0–1

Label intensity SD 0–0.1

Bias field voxel length 4–64 mm

Bias field SD 0–0.5

Exponentiation parameter γ −0.25–0.25

FOV cropping (any axis) 0–50 mm

Down-sample factor r (any axis) 1–5
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Table 2

We employ a diverse set of acquired evaluation data, spanning across imaging modalities, MRI contrasts, and 

resolution (res.), where 2D indicates stacks of slice-wise acquisitions. Each individual dataset is divided into a 

small validation (val.) and a larger test set. For further details see Section 3.4.2.

Dataset Modality Res. (mm3) Val. Test

IXI T1w MRI 0.9×0.9×1.2 0 48

T2w MRI 0.9×0.9×1.2 2 48

PDw MRI 0.9×0.9×1.2 2 48

MRA 0.5×0.5×0.8 2 48

DWI 1.8×1.8×2.0 0 32

FSM T1w MPRAGE 1.0×1.0×1.0 0 38

T2w 3D-SPACE 1.0×1.0×1.0 2 34

PDw 3D-FLASH 1.0×1.0×1.0 2 30

qT1 MP2RAGE 1.0×1.0×1.0 2 30

ASL T1w MPRAGE 1.0×1.0×1.0 2 41

PCASL 2D-EPI 3.4×3.4×5.0 2 41

QIN T1w 2D-FLASH 0.4×0.4×6.0 2 52

T2-FLAIR 2D-FSE 0.4×0.4×6.0 2 15

T2w 2D-FSE 1.0×1.0×5.0 2 37

Infant T1w MPRAGE 1.0×1.0×1.0 0 16

CIM FDG PET 2.0×2.0×2.0 0 20

CT 0.6×0.6×1.5 0 20
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