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A fusion approach to improve 
accuracy and estimate uncertainty 
in cuffless blood pressure 
monitoring
Cederick Landry1, Sean D. Peterson1 & Arash Arami1,2*

A substantial barrier to the clinical adoption of cuffless blood pressure (BP) monitoring techniques is 
the lack of unified error standards and methods of estimating measurement uncertainty. This study 
proposes a fusion approach to improve accuracy and estimate prediction interval (PI) as a proxy for 
uncertainty for cuffless blood BP monitoring. BP was estimated during activities of daily living using 
three model architectures: nonlinear autoregressive models with exogenous inputs, feedforward 
neural network models, and pulse arrival time models. Multiple one-class support vector machine 
(OCSVM) models were trained to cluster data in terms of the percentage of outliers. New BP estimates 
were then assigned to a cluster using the OCSVMs hyperplanes, and the PIs were estimated using the 
BP error standard deviation associated with different clusters. The OCSVM was used to estimate the 
PI for the three BP models. The three BP estimations from the models were fused using the covariance 
intersection fusion algorithm, which improved BP and PI estimates in comparison with individual 
model precision by up to 24%. The employed model fusion shows promise in estimating BP and PI 
for potential clinical uses. The PI indicates that about 71%, 64%, and 29% of the data collected from 
sitting, standing, and walking can result in high-quality BP estimates. Our PI estimator offers an 
effective uncertainty metric to quantify the quality of BP estimates and can minimize the risk of false 
diagnosis.

Non-invasive, cuff-based, 24-h ambulatory blood pressure (BP) monitoring is recommended for accurate diag-
nosis of hypertension1, a condition that affects 1.13 billion people worldwide2. Though cuff-based ambulatory BP 
measurement has been shown to result in better treatment management3, patient compliance is relatively low due 
to the discomfort and disruption of sleep and activities of daily living caused by the intermittently inflating cuffs4.

Cuffless BP estimation, a method that relies on the information encoded in proxy physiological signals, 
generally electrocardiography (ECG) and/or photoplethysmography (PPG), coupled with a surrogate model, 
has the potential to continuously monitor BP less invasively than traditional cuff-based systems. There are two 
main cuffless BP estimation methods to estimate systolic BP (SBP) and diastolic BP (DBP)5: the methods based 
on (i) pulse transit time (PTT) or pulse arrival time (PAT), and (ii) feature extraction from the PPG and/or ECG 
waveforms. Recently, an alternative method has been developed that uses a nonlinear autoregressive model with 
exogenous inputs (NARX) to estimate the complete BP waveform that has, to date, been demonstrated on bedrid-
den patients6, and during activities of daily living7. Despite the advantages of cuffless BP monitoring, it has yet to 
be adopted clinically because of concerns over accuracy of the methods, minimal validation on clinically-relevant 
data sets, and the lack of a quantifiable uncertainty metric.

In an effort to overcome the first barrier, BP interventions have been implemented to increase the range of 
BPs upon which estimation models are trained. Many different interventions have been used, such as mental 
arithmetic8–10, cold pressor test9–11, nitroglycerin9, low-intensity exercise12,13, static handgrip exercise7,14,15, Val-
salva maneuver7,14,15 and slow breathing9,10. However, it is difficult to know how the BP changes imposed by the 
interventions reflect natural changes in BP during daily life.

In another effort to overcome the accuracy barrier, sensor fusion has been employed to improve BP esti-
mates. For example, using multiple bioimpedance sensors, Heydari et al. were able to improve PAT-based BP 
estimates by 3% over PPG-based PAT16. Miao et al. demonstrated that the extracted features from ECG and two 
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pulse pressure waveform (or two PPG) signals using their algorithm for BP estimation lead to 1.5% improve-
ment in accuracy when compared with other state of the art algorithms17,18. Other fusion approaches have been 
introduced, such as using a gyroscope or machine learning approaches to assess signal quality to assess signal 
quality during at-home monitoring19, but those have yet to be validated. Track fusion, which combines multiple 
BP estimates to improve accuracy was shown by Liu et al. to improve model precision by at least 2.5% when 
fusing 21 models20.

While sensor and track fusion have been employed to improve estimate accuracy in cuffless BP monitoring, 
to date there has been no consideration of the third barrier to clinical adoption, namely uncertainty quantifica-
tion. The uncertainty in cuff-based measurements has long been of concern for practitioners21, leading to the 
development of methods for estimating it4. The standard for expressing uncertainty for measurement devices22 
states that it should apply to a broad span of conditions. In practice, however, the uncertainty is often obtained 
from the measurement error with a series of measurements under repeatable conditions, which do not necessarily 
capture the practical use cases of the device. For instance, the British Hypertension Society and Association for 
the Advancement of Medical Instrumentation (AAMI) have specific protocols for testing cuff-based BP meas-
urement devices23, which have been co-opted for cuffless BP estimation. However, the uncertainty estimated 
from the accuracy and precision obtained in specific tested situations, such as in-lab conditions, is unlikely to 
be reproducible in other, potentially more challenging, conditions. Since continuous BP monitoring is likely to 
be employed outside of the clinic, it is imperative to assign a confidence metric to each estimate based on the 
quality of the BP model inputs for outcome evaluation.

This paper focuses on (1) introducing a confidence metric that clinicians could use to discern data quality, 
and (2) using the confidence metric as an input to estimation fusion to improve BP estimation accuracy. To the 
authors’ knowledge, a confidence metric has never been used for cuffless BP estimation.

Method
The method proposed herein is a three-step process. First, three BP estimation models are constructed and 
employed. Second, the uncertainty of the estimates for each model is evaluated. Finally, the three estimators and 
their uncertainties are fused, resulting in the final BP estimate and its associated uncertainty.

The prediction interval (PI) is used herein as a practical confidence metric since PI is concerned with the 
prediction accuracy of a target value24. PI is different from confidence interval (CI), which relates to the accuracy 
of our estimate of the true regression. Basically, PI considers more sources of uncertainty than CI, such as model 
error and noise variance25. In other words, CI is the uncertainty associated with the model parameters, whereas 
PI is the uncertainty associated with the estimation of future samples. The PI is, therefore, an approximation of 
the standard deviation of error in absence of the reference data.

A one-class support vector machine approach is investigated to estimate the PI of BP estimates. PI is then 
used as the input to our track fusion algorithm, which is the Covariance Intersection26. Covariance Intersection 
is employed to improve estimation accuracy by incorporating the estimators uncertainty in the fusion process. 
Different permutations of model fusion were studied to demonstrate the benefit of fusion on both BP and PI 
estimations. PI was finally used to flag BP estimates with large uncertainty to minimize the risk of false diagnosis 
due to erroneous estimates.

Measurements.  Five healthy participants (four males, age 28 ± 6.6 years) were recruited for data collection. 
All participants signed informed consent forms before participating in the study. Study protocols and proce-
dures were all approved by the University of Waterloo (ORE#41490), Clinical Research Ethics Committee and 
conformed with the Declaration of Helsinki. This dataset is detailed in Landry et al.7 and is accessible through 
the IEEE DataPort (https://​doi.​org/​10.​21227/​wysp-​gt69). Briefly, continuous arterial BP waveform was meas-
ured using finger PPG (Portapres; Finapres Medical Systems, the Netherlands) and ECG and PPG were meas-
ured via the Astroskin wearable body metrics vest (Carré Technologies Inc., Canada). An iPhone SE was used to 
measure thigh orientation. All data were stored for processing at 64 Hz.

Testing sessions consisted of 6.5 hours of continuous BP monitoring. A 15-min procedure, used for model 
training, was performed at the beginning and again during the final 15 min of the data collection. The training 
procedure, designed to change the participant’s BP within a range typical of activities of daily living, comprised 
a sequence of tasks included sitting, standing, walking, Valsalva maneuvers, and static handgrip exercises (for 
further details see Landry et al.7). During the six hours of testing, the participants were free to do as they pleased, 
excluding lying down and vigorous exercise.

BP estimation models.  NARX.  A NARX architecture based on a multilayer Perceptron artificial neural 
network (ANN) was developed. The NARX model used exogenous inputs and BP at time-steps k-1 and k-2 to 
estimate BP at time point k. Exogenous inputs consisted of 0 to 18 time-step delays (19 samples) of the signals 
sampled at 64 Hz. The NARX input signals were ECG and a z-normalized PPG signal, the details of which, along 
with network training descriptions, can be found in Landy et al.7. The trained NARX model was found to ac-
curately predict the BP waveform7, from which SBP and DBP were extracted for further analysis. To reduce the 
estimation variance, five NARX models were bootstrap-ensembled27, herein referred to as NARX.

ANN.  Using the same ANN architecture, models were developed to estimate directly the SBP (ANNSys) and 
the DBP (ANNDias) from ECG and the z-normalized PPG signal (no BP estimates in the input layer). A similar 
model architecture is employed by Kachuee et al.28. Again, five ANN models were bootstrap-ensembled27, herein 
referred to as ANNSys(ANNDias).

https://doi.org/10.21227/wysp-gt69
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PAT.  According to Landry et al.7, the common logarithmic PAT model (PATLog)29 is more accurate for estimat-
ing SBP during activities of daily living than the linear PAT model or the inverse quadratic PAT with linear HR 
term and is thus employed herein (referred to henceforth as PATLog and PAT refers to the actual time delay). PAT 
was computed using the Astroskin’s embedded algorithm, for which it is defined as the time difference between 
the ECG peak and 50% of the PPG amplitude (50% of foot-to-peak)7. PAT was post-processed at 256 Hz to 
improve temporal resolution compared to extracting PAT from the 64 Hz output data.

Prediction interval estimation.  In this section, support vector machines (SVMs) are used to estimate the 
PI. The general idea of SVM is to find the hyperplane that splits data into two classes with optimal margin, that 
is, the hyperplane with the largest distance to the closest data points (called support vectors)30. SVM utilizes a 
kernel to map input data into a high-dimensional feature space wherein the hyperplane is identified. When deal-
ing with unlabeled data, one class SVM (OCSVM) can be used to find the underlying distribution of the data. In 
this scenario, the data can be separated into two categories according to a free parameter ν (0 < ν ≤ 1), instead of 
separating classes31. Note that a small value of ν leads to fewer support vectors and, therefore, a crude decision 
boundary31. In principle, OCSVM is a machine learning tool that splits the training data into “normal” and “out-
lier” categories using a hyperplane. The split is done according to a user-defined percentage of data intended to 
be outside the hyperplane. Thus, OCSVM is generally referred to as an outlier or a novelty detection algorithm32.

In this paper, a PI estimation model was trained independently for each individual’s SBP and DBP. The model 
architecture consisted of multiple OCSVMs trained on the two 15-min training sets using Gaussian kernels and a 
regularization parameter ν = 0.5. Each OCSVM was trained with all the training data, but with a different percent-
age of outliers from 0 to 99% in 1% increments. The 100 OCSVM hyperplanes were used to group data into 101 
clusters, each spanning 10 hyperplanes (i.e., between the 0% and the 9% hyperplanes, between the 1% and the 
10% hyperplanes, etc.; note that from 91 to 99%, the clusters were defined as inside the X% hyperplane, instead of 
from X% to X + 9%). The data outside the 0% hyperplane was defined as the outlier cluster. A visual representation 
of the clustering method is shown in Fig. 1 with increments of 20% outliers for an arbitrary 2-dimensional input, 
illustrating initial raw data fed into multiples OCSVMS to compute hyperplanes, which are used for computing 
the clusters. For each cluster of training data, the BP estimation (SBP or DBP) error distribution was calculated, 
and the error standard deviation ( σErr ) was associated with the uncertainty of that cluster. Therefore, any new 
datapoint assigned to a cluster was associated with that cluster’s uncertainty, herein referred to as the PI, in the 
testing phase. Clustering by intervals of 10 hyperplanes was used to increase the resolution of the estimated PI 
and ensure that σErr was calculated on a sufficient number of datapoints.

Ten different inputs to the OCSVM were tested by varying the length of the input time series (ECG and 
PPG) in increments of 0.3 s (segment lengths were τ = 0.3n seconds long, where n ∈ {1,2,3,4,5}) with (w/ BP) 
and without (w/o BP) the estimated BP waveform of length τ. The BP waveform was provided only for NARX. 
For ANNSys(ANNDias) and PATLog, the estimated SBP (DBP) was provided instead.

Estimation fusion.  The covariance intersection method was used to fuse the BP estimates from the differ-
ent models. For consistent estimates, Ai = {ξai , Pai }, where i = 1 to n number of estimates, and ξ and P are the mean 
and covariance of the estimate, respectively, the mean and covariance of the fused estimate C can be determined 
as

where ωi are weights determined through an optimization process to minimize Pc and 
∑n
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Figure 1.   Prediction interval algorithm schematic featuring arbitrary data. Raw data are fed to multiple one-
class support vector machine (OCSVM) models with their respective, user-defined, percentage of outliers. The 
outputs of the OCSVMs are hyperplanes that are projected on the two-dimensional input space (circles in this 
example). The clusters are upper and lower bounded by the hyperplanes (except inside 80% and outside 0%).
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In this paper, ξ refers to the estimated BP and P is the PI estimated by the OCSVM model. Covariance inter-
section was used to fuse NARX and ANNSys(ANNDias) (NARX + ANNSys(ANNDias)), PATLog with other models 
(NARX + PATLog and ANNSys(ANNDias) + PATLog), and for fusion of all three models (NARX + ANNSys(ANNDias) 
+ PATLog).

Validation and data analysis.  The 6 h of data between the two training procedures were used for testing 
the PI estimates of the models. For the NARX model, the estimated BP waveform was supplied to the OCSVM 
for training. For ANNSys(ANNDias) and PATLog models, only the estimated SBP(DBP) was fed to the OCSVM.

For each of the 10 PI model configurations, the MeRCI score33, defined as

was computed for the test dataset for each participant, where N is the number of SBP(DBP) datapoints, σ is the 
BP estimated PI from the OCSVM model, and �α is obtained by first evaluating all ratios �i =

∣∣ŷi − yi
∣∣/σi and 

then extracting the αth percentile of the �i distribution; in this study the 99.7th percentile was used. The MeRCI 
score represents a mean scaled PI that contains α% of the data; thus, a smaller MeRCI score represents a better 
PI estimation. The MeRCI scores were calculated only for the BP estimates associated with a PI; i.e., if the BP 
estimate was classified outside the 0% hyperplane, the estimate was discarded.

The PI model configurations with the lowest MeRCI scores for SBP(DBP) were further investigated for each 
of the BP models. The Pearson correlation coefficients (r) were calculated for each participant to examine the 
linear relationship between σErr of each cluster in the training and of the test data. The expected σErr ± standard 
deviation (SD) in each cluster was also plotted against the percentage of outliers in the cluster.

The performance of the three BP models and the four fused models were analyzed using the mean error 
( µErr ), σErr , mean absolute error (MAE), Pearson correlation coefficient, MeRCI score, and mean PI computed 
for the six-hour test data for each participant. To visualize each models performance in estimating changes in BP 
(ΔP), the mean absolute value of ΔPmodel − ΔPportapres was used (MAEΔP), where ΔP is defined as the BP deviation 
from the mean and the subscript indicates whether the data are from the model or the Portapres device (herein 
considered the “ground truth”). The errors were separated into bins representing the distribution of the BP in the 
test dataset over the day. Each bin spanned a range of 5 mmHg, and the bins indicate deviations from the mean 
BP of the participant by 5 m to 5(m + 1) mmHg, where m ranged from −6 to 6 for SBP and −4 to 4 for DBP. The 
difference of each bin with analogous bins from PATLog was computed as a function of |ΔP|. The previous step 
was done only for visualization purposes since PATLog’s MAEΔP is not on the same scale as the other models, 
which made visualization difficult if not used as a reference. The MAEs were compared for each bin using a 2-way 
ANOVA test followed by a t-test with Bonferroni corrections to identify statistical differences across the models.

A standard deviation threshold ( σT ) was used to filter the data, such that all BP estimates associated with a PI 
higher than σT were removed from the dataset. For the remaining BP estimates (PI < σT ), the percentage of data 
removed as a function of the absolute estimation error was computed for different σT . The σErr and the percent-
age of data kept were computed for the six-hour test data to observe the tradeoff between the two. To visualize 
the error in estimating ΔP for the remaining data (PI < σT ) in comparison with the initial dataset, MAEΔP as a 
function of |ΔP| was computed for σT = 8 and 9 mmHg. To understand better the PI estimation performance, 
the percentage of data removed in each |ΔP| bin was computed. To assess the performance of the fused models 
during activities of daily living, σErr was computed for different activities (sitting, standing, and walking), and 
compared with the value when using σT = 8 mmHg using t-tests after validating data normality with one-sample 
Kolmogorov–Smirnov tests.

Results
Herein only the results for SBP are presented for brevity. DBP results are included as supplementary material.

The MeRCI scores (mean ± SD) across the five subjects exhibited differences between the models, ranging 
from 24.4 for τ = 0.9 w/ BP (best) to 30.3 for τ = 0.3 w/o BP (worst) for NARX, from 24.9 for τ = 0.9 w/ BP (best) 
to 28.4 for τ = 1.5 w/o BP (worst) for ANNSys, and from 28.0 for τ = 0.6 w/ BP (best) to 33.1 for τ = 0.3 w/o BP 
(worst) for PATLog.

The MeRCI score for PATLog using the τ = 0.9 w/ BP model was 28.5, only slightly higher than its best con-
figuration (τ = 0.6 w/ BP); therefore, we use the PI model τ = 0.9 w/ BP for the three BP models for simplicity of 
comparison for the remainder of the analysis. The estimated and actual clusters’ σErr as a function of the clusters’ 
percentage of outliers (lower bound) are shown in Fig. 2 for the NARX, ANNSys, and PATLog models. Note that 
the σErr on the training data (in blue) are used to estimate the testing data σErr (in red). Therefore, Fig. 2 com-
pares the estimated and the actual σErr during activities of daily living. The over/underestimation of σErr in each 
cluster reflects the three BP models’ difference in precision on the training vs test data. The difference in the σErr 
evaluated on all the training data compared to the σErr evaluated on all the test data was, on average, 17%, -22% 
and 82%, for NARX, ANNSys, and PATLog, respectively. Note that the training σErr at 0% of outliers is not defined, 
as there are no training data in this cluster. In the test data, the data points outside the 0% hyperplane are outli-
ers and represent 3.9 ± 2.0%, 3.3 ± 1.3% ,and 4.9 ± 4.2% of the BP estimates for the NARX, ANNSys, and PATLog 
models, respectively. The Pearson correlation coefficients between the training and testing σErr of each cluster are 
r = 0.88 ± 0.11, r = 0.81 ± 0.09, and r = 0.86 ± 0.13 for the NARX, ANNSys, and PATLog models, respectively. It can 
be observed in Fig. 2 that the model overestimates, on average, σErr of the test data by 21% and 68% for NARX 
and PATLog, respectively, and underestimates it by 3% for ANNSys.

The mean and SD of the MAE, µErr , σErr , r, MeRCI score, and mean of the PI during activities of daily living 
computed across the five subjects are shown in Fig. 3. The results exhibit differences in mean MAE between 
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the models, ranging from 5.74 mmHg for NARX + ANNSys + PATLog (best) to 6.91 for PATLog (worst). The IEEE 
cuffless wearable standard limit34, which is met by all fused models except NARX + PATLog and by none of the 
initial models, is also shown. The horizontal dashed lines in Fig. 3b indicate the AAMI requirement limit for 
µErr 35, which is met by all models. All models meet the σErr AAMI standard except for PATLog. It is noted that 
σErr is under 8 mmHg for all participants except for NARX, PATLog, and NARX + PATLog. The average Pearson 
correlation coefficient between the estimated and measured SBP for all five participants obtained with the fusion 
of at least the two ANN models (NARX and ANNSys) is higher than the other models. The MeRCI score shows 
that model fusion improves PI estimation when compared to the three initial non-fused models. ANNSys has the 
lowest mean PI, but a larger MeRCI score than the other fused models, indicating that it underestimates the PI.

The difference between MAEΔP of each model and the MAEΔP of PATLog (in percentage) as a function of 
absolute BP deviation from the mean is shown in Fig. 4a; the data distributions when aggregating the data of all 
participants are included in Fig. 4b. The range of SBP shown is the minimum range spanned by all participants.

The percentage of data removed is plotted against the absolute estimation error in Fig.  5a for the 
NARX + ANNSys + PATLog model. The tradeoff between the amount of data retained and σErr when varying σT 
is shown in Fig. 5b.

MAEΔP as a function of |ΔP| is plotted in Fig. 6a for the NARX + ANNSys + PATLog model using σT = 8 and 
9 mmHg. The percentages of data removed in each |ΔP| bin are plotted in Fig. 6b. When using the OCSVM model 
of PI to remove data with large expected error SD (PI ≥ 8 or 9 mmHg), all expected MAEΔP values are lower than 
their original values. In every case, the BP estimates by the fused model at large |ΔP| have higher expected error 
than BP estimates closer to the mean BP. There were, however, statistical differences when comparing each bin; 
randomly removing the same amount of data in the dataset did not result in the observed reduction in MAEΔP.

The σErr for the NARX + ANNSys + PATLog model is shown in Fig. 7a when estimating BP during sitting, 
standing, and walking. The σErr is shown for original beat-by-beat estimation and for the σT = 8 mmHg case; the 
percentage of data kept for each activity is shown in Fig. 7b. It can be seen that estimating BP during walking is 
difficult. The expected σErr of NARX + ANNSys + PATLog is 10.3 mmHg, which is lower by 0.6 mmHg, 1.6 mmHg, 
and 3.9 mmHg, than the NARX, ANNSys, and PATLog, models, respectively. Moreover, the expected σErr decreases 

Figure 2.   The SBP estimated and actual data standard deviation of error in every cluster for (a) NARX, (b) 
ANNSys, and (c) PATLog. Lines represent the mean of all subjects, and the error bars show ± SD.

Figure 3.   Comparison of (a) mean absolute error, (b) mean error, (c) standard deviation of the error, (d) 
Pearson correlation coefficient between different model estimates and the BP measurements, (e) MeRCI score, 
and (f) mean estimated prediction interval. Bars represent the mean of all subjects and the error bars show ± SD. 
Each data point represents one participant. The IEEE cuffless wearable and the AAMI standard limits are also 
shown via horizontal dashed lines in subplots (a), and (b,c), respectively.
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Figure 4.   (a) Mean of SBP MAEΔP relative to MAEΔP – PATLog for all participants, and (b) the distribution of 
data (all participants aggregated) against the distribution of |∆P| from µSBP measured throughout the day. The 
MAEΔP are binned in increments of 5 mmHg from −30 to 30 mmHg then grouped according to their absolute 
value. Legend according to Fig. 3.

Figure 5.   For the NARX + ANNSys + PATLog model, (a) percentage of the data removed as a function of the 
absolute error using different σT . The results are calculated from all the test data from every participant and 
grouped in increments of 1 mmHg. (b) Percentage of data kept as a function of the error standard deviation 
when varying the threshold on the prediction interval. The line was computed by varying the σT , where specific 
values are marked with circles according to the legend.

Figure 6.   For the NARX + ANNSys + PATLog model, (a) mean and standard deviation of MAEΔP for all 
participants, and (b) percentage of data removed from each bin versus |∆P| from µSBP measured throughout the 
day using different threshold ( σT ). In (a) lines represent the mean of all subjects and the error bars show ± SD. 
t-test with p < 0.05/3 (*). Original vs σT = 9 mmHg, (−), original vs σT = 8 mmHg, and ( +) σT = 8 mmHg vs σT = 
9 mmHg (p < 0.05/3).
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to 7.95 mmHg when using a σT = 8 mmHg threshold on the PI, and the expected mean error is down to 
1.7 mmHg (t-test p < 0.05). The previous results show that using the fusion approach presented herein results 
in BP estimates during walking achieving the AAMI standard 29% of the time (Fig. 7b). Using σT = 9 mmHg 
increases the error SD to 8.3 mmHg while 53% of data are kept. Estimating BP while sitting and standing is an 
easier task, as can be observed with their respectively lower σErr values in comparison with walking. However, 
they still benefit by using a σT = 8 mmHg threshold, which decreases their σErr by 12% and 14%, respectively 
(both t-tests p < 0.05), while keeping 71% and 64% of the BP estimates, respectively.

Discussion
This work was motivated by two needs: (1) to improve cuffless BP estimation, and (2) to provide a measure of the 
degree of confidence a practitioner should have in the BP estimates. The PI model architecture using OCSVM 
presented herein can be applied to different BP models, from simple PAT models to more complex NARX models. 
The Covariance intersection fusion algorithm is also generic since it does not rely on any assumptions on the 
variables to be fused; only their means and covariances are needed. The method developed herein is not limited 
in terms of the number of models that can be fused. However, the Covariance intersection algorithm will become 
more complex to optimize as the number of models increases36. Herein, we used a small dataset specifically 
designed to train subject-specific BP models; however, the method is also applicable to population-based models. 
The one modification that would be needed for Big Data is to add kernel approximation techniques to minimize 
the training time of the OCSVMs37. Further studies are required to assess the fusion of population-based models.

In this study, the data of two 15-min training procedures separated by a six-hour testing time window were 
used to train the models. The test period was limited to six hours for practical reasons, namely recruiting par-
ticipants. In real-life scenarios, this period could be extended without affecting the models accuracy. Therefore, 
a clinician could obtain a whole day (nighttime excluded) of BP data by collecting only 15-min data segment at 
the beginning and at the end of the day, which is deemed reasonable, practical and useful. While a single calibra-
tion utilizing only a single data segment at the beginning of the day would have practical benefits, preliminary 
studies showed an increase in model performance by using two data segments performed at different times of 
the day14. The hypothesis therein was the model is better able to capture changes in the physiological state of the 
person and/or sensor position. Nevertheless, the intended goal of this monitoring system was for a clinician to 
post review the data, making sure the blood pressure measurements are accurate and reliable. Therefore, having 
the extra training session at the end of the day, although it hinders the access to real-time estimations of BP, is 
not detrimental to the goal of this study.

Herein, we have shown that the PI estimation varied depending on the inclusion of estimated BP as an input 
to the OCSVMs, and the length of the input signals (ECG, PPG, and BP). The obtained MeRCI scores, indicating 
how well the PI represented the observed error33, demonstrate the importance of using estimated BP as an input 
to the PI model. This pilot testing showed that 0.9 s of data (τ = 0.9) yielded the most accurate estimation of σErr 
and, therefore, PI for the models for every cluster indicating sufficient information encoded in that duration. The 
lower performance when using more than 0.9 s is probably caused by overfitting of the OCSVMs to the training 
data due to too many parameters of the model.

High Pearson correlation coefficients for the NARX, ANNSys, and PATLog models have been observed between 
the estimated and actual PI for each cluster. This shows the validity of using σErr from the training data clusters as 
a surrogate for the PI when estimating BP, as is typically done in clustering-based PI computations38. The over/
underestimation of σErr in each cluster can be explained by the difficulty of estimating the training dataset and 
by how each model is trained. The 15-min procedures performed by the participants to train the models were 
designed to create large BP variability in a short amount of time. This makes it a short but difficult time series to 
estimate for PATLog, which has only two tunable parameters, in comparison with the ANNSys (780 parameters) 
and NARX (820 parameters) models. NARX has more parameters, but it is trained in a feedforward fashion, 
and predicts as a recurrent ANN, which makes the prediction of the training data more difficult compared to 
ANNSys. Apart from over/underestimating, all models exhibit negative trends in Fig. 2, which shows that the 
further away from the center of the training dataset is a BP estimate, the more likely the estimation error will be 
large. This highlights the importance of using an outlier detection algorithm, such as OCSVM, to cluster data.

Figure 7.   (a) Comparison of error standard deviation for the original NARX + ANNSys + PATLog model and 
the same model using a σT = 8 mmHg during sitting, standing, and walking, and (b) percentage of data kept 
(prediction interval < 8 mmHg). Bars represent the mean of all subjects and the error bars show ± SD. Each data 
point represents one participant. (*) t-test with p < 0.05 with respect to their original counterpart.
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The estimated σErr of the BP was smaller when fusing all three models (Fig.  3c). On average, the 
NARX + ANNSys + PATLog model decreased σErr by 1.2 mmHg, 0.8 mmHg, and 2.0 mmHg over the individual 
NARX, ANNSys, and PATLog models, respectively, with a consistent decrease for every participant. The µErr , 
however, is slightly higher when compared with NARX and PATLog due to the fusion with ANNSys, which is 
more biased than the other estimators (Fig. 3b). Nevertheless, MAE is the lowest when fusing all the models 
(Fig. 3a). A simple approach to decrease the bias of the fused models would be to correct its mean estimation to 
that of the least biased model (PATLog). However, a larger sample size would be required to validate that PATLog 
is the least biased.

Using PATLog in the fusion process is beneficial for the activities of daily living dataset because the model is 
good at estimating small change in BP (Fig. 4a); for this dataset, as observed in Fig. 4b, about 50% of the time BP 
fluctuates between ± 5 mmHg of the mean BP. The NARX + ANNSys + PATLog model benefits from this and per-
formed similarly to PATLog in that range of ΔP. Fusion of the three models is beneficial up to a ΔP of ± 10 mmHg, 
where NARX + ANNSys + PATLog model outperformed the other models for 80% of the data (except PATLog for ΔP 
of ± 5 mmHg), explaining its best overall MAE. This result, however, will be highly dependant on the distribu-
tion of BP that is to be estimated. With a larger change in BP, NARX + ANNSys might be more suited for the task.

Estimation of PI is best when using both NARX + ANNSys and NARX + ANNSys + PATLog models based upon 
the MeRCI scores. Mean PI is, however, lower for NARX + ANNSys. Estimation of the degree to which PI is 
over/underestimated can be computed by dividing the MeRCI score by the mean PI, which should give 3 for 
an ideal PI when computing the MeRCI score with 99.7% of the �i distribution (99.7% of the data of a normal 
distribution should be covered by ± 3 SD). For the NARX + ANNSys model, this ratio is 3.5, thus, on average the 
PI is underestimated by 16%. For the NARX + ANNSys + PATLog model, the mean underestimation is 4%. This 
computation is a crude estimation of the goodness of the PI since it only considers the mean PI and MeRCI 
score, and not the PI estimation accuracy at different ranges of PI and ΔP. Nevertheless, it was shown that the 
estimated PI could be effectively used to remove large errors from the BP estimation time series. However, it 
comes with a compromise between removing BP estimates with low and high errors for different σT , as shown 
in Fig. 5a. This compromise is, however, successful in decreasing σErr as σT is decreased (Fig. 5b). Moreover, the 
PI model is successful in decreasing σErr for every individual.

The goal of this study is to provide an uncertainty measure for the BP estimates and to remove the problem-
atic data that can confuse a diagnosis (to make the cuffless measurement more reliable). As shown in Fig. 6a, 
an increase in the BP variation intrinsically increases the error the model in the estimating BP; therefore, one 
might expect that OCSVMs cluster the data by range of BP and, when using a σT = 9 (or 8) mmHg threshold on 
the PI, it would remove only estimates at both ends of the BP range. However, this is not the case, as observed 
in Fig. 6a, the PI estimation model decreased the error for the whole range of BP, and removed data from every 
|ΔP| bin (Fig. 6b). To evaluate the success of the proposed method for removing outliers, one should: i) compare 
the estimates after the removal of samples with the original estimates (Fig. 6a, pink vs blue and red); ii) look at 
the percentage of removed data points with the proposed method with the threshold of 9 (or 8) mmHg, which 
is hardly beyond 15% (35%) of data and represent a nonmonotonic behavior with respect to the variance of BP 
indicating that the variation in BP is not the only factor in removing more samples, but the samples are removed 
objectively to lower the error of the fused models.

Figure 7 shows the PI model capability to remove BP estimates with large errors for different activities of daily 
living. For the OCSVMs, there is no distinction between motion artefacts and estimation error due to model 
inaccuracy since the PI model only learns uncertainty based on the statistical error distribution from the training 
data. In other words, large uncertainty, whether from noise or model inaccuracy, leads to larger estimation errors, 
and those data points should be discarded before diagnosis. For instance, estimation of BP during walking was 
not precise due two main factors. First, the BP waveforms are distorted due to, both, the interaction between the 
heart’s pressure wave and the wave generated by the whole body vertical movement39. The latter is difficult for 
the BP model to capture. Second, the presence of motion artefacts in the PPG and ECG signals creates artefact 
in the BP estimation. While it was not the focus of this research, the motion artefacts can be filtered out using 
movement information acquired from wearable inertial measurement units40. In such cases, the PI model will 
learn the error distribution based on the filtered signal, and therefore the underlying error distribution with the 
removed effect of artefacts.

A limitation of this study is the that the number of subjects is somewhat small. We note, however, that the 
validation for each subject extends for 6 h, with only 15 min of training at the beginning and 15 min of training 
at the end of the session. The method detailed herein to estimate BP shows great potential for improving continu-
ous BP estimation by filtering out BP estimates with large uncertainty. Despite the relatively small sample size, 
we showed in Fig. 7a statistical improvement in the BP estimation by using this method”.

An ideal PI model would, when selecting σT , result in no individual σErr larger than σT in every activity/
posture. This was not the case with the NARX + ANNSys + PATLog model as it could not reach 8 mmHg for every 
participant while walking (Fig. 7), although it reaches that level of error on average and for every participant while 
sitting and standing. This shows that the approach presented herein is a viable solution for cuffless BP estimation 
to be used in clinical settings as the BP estimates with a PI lower than 8 mmHg will meet the AAMI standard 
independent from the conditions in which the BP is measured. In the worst-case scenario, there are no high-
quality BP estimates (PI < 8 mmHg), but at least erroneous estimates would not be mistakenly used for diagnosis.

Conclusion
This paper examined the estimation fusion of up to three state-of-the-art models to achieve better cuffless BP 
estimation accuracy. We emphasized the importance of the prediction interval in the process of fusion, also in the 
context of clinical use of the estimated BP data, for which high quality estimates are essential. For that purpose, a 
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clustering approach using one-class support vector machines was developed to estimate the prediction interval 
independent of the model architecture.

It was shown that the prediction interval model can cluster the BP estimates in terms of their quality, which 
was quantified by the error standard deviation and used to estimate the prediction interval. The prediction 
interval model was used with the three different BP estimation models (NARX, ANNSys, and PATLog), and the 
results were fused using the covariance intersection fusion algorithm. The fusion of the three models showed 
improvement in BP estimation accuracy as well as in its estimated prediction interval.

Although this work went throught a very technical method to demonstrate the importance of PI, the essence 
of the work is simple; PI (or other confidence metrics) should be used to assess the quality of cuffless BP estimate. 
Withtout it, there is no way to ensure that the BP estimates represent well the actual BP of an individual during 
daily life, risking erroneous clinical evaluation.

Data availability
Data are available on IEEE DataPort under “Wearable Physiological and Blood Pressure Measurements During 
Activities of Daily Living”.
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