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Abstract: Antioxidants have drawn the attention of the scientific community due to being related
to the prevention of various degenerative diseases. The antioxidant capacity has been extensively
studied in vitro, and different methods have been used to assess its activity. However, the main issues
related to studying natural antioxidants are evaluating whether these antioxidants demonstrate a
key role in the biological system and assessing their bioavailability in the organism. The majority of
outcomes in the literature are controversial due to a lack of method standardization and their proper
application. Therefore, this study aims to compile the main issues concerning the natural antioxidant
field of study, comparing the most common in vitro methods to evaluate the antioxidant activity
of natural compounds, demonstrating the antioxidant activity in biological systems and the role of
the main antioxidant enzymes of redox cellular signaling and explaining how the bioavailability of
bioactive compounds is evaluated in animal models and human clinical trials.

Keywords: antioxidant; bioactive compounds; secondary metabolites; antioxidant assay; in vitro
models; in vivo models

1. Introduction

The term “antioxidant” refers to substances or molecules that are capable of delaying
or even preventing the irreversible damage of other substances/macromolecules due
to some metabolites’ instability present in a living system and thus promoting health
benefits, since oxidative stress is the root of several pathophysiological processes. Beyond
a comprehensive definition, antioxidant activity tests require different approaches, since
different classes of substances may present such activity, ranging from the well-known
vitamin C to the not-so-recently but continuously described peptides derived from animal
or vegetable sources. For instance, measuring antioxidant activity implies measuring the
reaction rate or how antioxidants may affect the autoxidation rate of the substrate which
they are known to protect [1]. Exogenous natural antioxidants may be considered as
bioactive compounds and are specially derived from food and medicinal plants, such as
fruits, vegetables, cereals, spices and traditional herbs [2–6]. Natural antioxidants present
in foods, such as phenolic phytochemicals, seem to provide metabolic benefits and are
associated with a lower risk of developing several health problems [7]. In addition, the
protective effects of antioxidants present in fruits and vegetables are related to three main
groups: carotenoids, phenolic compounds and vitamins [8].
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The supply of antioxidants acts on neutralizing reactive oxygen species (ROS), which
are produced in the system during physiological processes [9]. Singlet oxygen, superoxide,
hydrogen peroxide (H2O2), peroxynitrite, hydroxyl and peroxyl radicals are examples of
ROS, and they are ubiquitous and potentially harmful to valuable biomolecules [10,11].
Excessive and uncontrolled ROS production is called oxidative stress, which could lead to
damage, such as alterations in cell function which are linked to several conditions such as
chronic inflammation, asthma, neurodegenerative and cardiovascular diseases, senescence
and cancer [12,13].

The importance of the increase in antioxidant consumption through food has at-
tracted much attention for the development of measurement techniques assessing foods’
antioxidant content [14,15]. The concentration of specific antioxidants cannot predict the
antioxidant capacity in samples, which depends on a variety of compounds, some of which,
after their metabolization, might not be identified [16]. Antioxidants act synergistically,
both in vitro and in vivo [17], and so the determination of isolated antioxidant compounds
could result in under- or overestimation of the antioxidant activity.

Since the antioxidant capacity cannot be measured directly, assessment methods help
to evaluate the effects of antioxidants to control the extent of oxidation. The oxidation
reaction features a substrate, an oxidant and an initiator, intermediates, and final products.
The assessment of the antioxidant capacity can be performed by the measurement of any of
these items [18]. Several methods are used to examine the antioxidant properties of samples,
which may come from fruits, vegetables, plant extracts or commercial antioxidants. Basi-
cally, two types of approaches are used: hydrogen atom transfer (HAT) based-methods and
electron transfer (ET) based-methods. Nonetheless, assays that represent total antioxidant
capacity (TAC), such as the 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS)
assay, generally use measurement methods that are non-competitive ET and mixed-mode
(ET/HAT) [19].

TAC methods are used to determine both the antioxidant capacity of food and the food
components, such as plants, extracts, processed foods, beverages and isolated compounds.
The evaluation of TAC in foods can be carried out in chemical or biological oxidizable
substances (plasma or cultured cells). Likewise, TAC methods are also used to assess
antioxidant activity in tissue and body fluids to associate TAC results with specific condi-
tions, e.g., altered redox status, oxidative stress and disease states, or treatments, e.g., diet,
supplementation and pharmacological treatment [20].

In addition to the known nutritional functionality of antioxidant compounds, it is
important to consider that most of the antioxidant phytochemicals derived from food
intake can be metabolized and conjugated during the absorption process [21,22]. Therefore,
it is necessary to extend the understanding of metabolism, absorption, bioavailability and
the mechanism of antioxidants and their bioactive properties [7]. Accumulating evidence
indicates that the beneficial properties of food components with antioxidant capacity using
in vitro models occur through very specific mechanisms rather than direct antioxidant
effects [23].

Considering that some studies have focused on the development of innovative ther-
apeutic targets from natural compounds, the aim of this review is to compare the most
important antioxidant activity in in vitro methods and to evaluate biological antioxidant
activity through enzymes in in vivo models related to cellular redox signaling, along with
the bioavailability of some antioxidant phytochemicals derived from food intake.

2. Natural Antioxidants
2.1. Carotenoids

Carotenoids are mainly C40 lipophilic isoprenoids, and are the second most abundant
naturally occurring pigments on Earth, with more than 700 members. Carotenoids range
from colorless to yellow and orange to red, conferring color to fruits and vegetables [24,25]. They
occur in all photosynthetic organisms, and can also be found in autotrophic bacteria [26–28].
Although animals and humans do not synthesize carotenoids, it is present in their blood
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and tissues as precursors of retinol (vitamin A) [26]. Usually, carotenoids are located inside
cell membranes as highly lipophilic molecules. While strict hydrocarbons, such as lycopene
or β-carotene, are arranged exclusively in the inner part of the lipid bilayer, molecules with
a more polar configuration containing oxygen atoms attached (like lutein or zeaxanthin)
are oriented roughly perpendicular to the membrane surface with their hydrophilic parts
oriented to the aqueous environment [29,30].

Oxidative stress is related to many diseases, such as obesity and metabolic syn-
drome [31], atherosclerosis [32], Parkinson’s disease [33], and Alzheimer’s disease [34].
On the other hand, carotenoid intake has been associated with a reduction in the risk of
developing chronic diseases such as cancer, cardiovascular diseases, cataracts and macular
degeneration [35].

Carotenoids are characterized by an extended conjugated π-electron system that
aids in the stabilization of unpaired electrons after radical quenching [36]. They are also
able to deactivate peroxyl radicals by reacting with them to form resonance stabilized
carbon centered radical adducts [37], and they are known as efficient physical quenchers of
oxygen in both in vitro and in vivo models [38–40]. Generally, the O2 radical deactivation
by carotenoids occurs based on the conversion of an excess of energy to heat via the
carotenoid’s lowest excited state. Thus, the possible damaging effects of excited carotenoids
can be disregarded due to their low energy and short lifetime [27].

In recent years, concentrated efforts have emerged to develop improved extraction
methods for carotenoids. However, for the extraction of some complex food matrices, the
efficiency remains low, as there are several physical and chemical barriers present in the
food that prevent mass transfer during extraction [41].

The presence of molecules with varying levels of polarity also makes extraction
complex. Furthermore, the oxidative property of carotenoids limits exposure to light,
heat, sudden pH variations and long extraction times. Due to their hydrophobic nature,
carotenoids are conventionally extracted using organic solvents [42].

Typically, nonpolar solvents such as hexane, petroleum ether or tetrahydrofuran (THF)
are a good choice for extracting non-polar carotenoids or esterified xanthophylls, while
more polar solvents such as acetone, ethanol and ethyl acetate are more suitable for the
extraction of polar carotenoids [43].

The different methods used for the extraction of carotenoids from natural sources can
be classified into the following categories: extraction of liquid atmosphere using Soxhlet;
maceration; microwave (microwave-assisted extraction); ultrasound (ultrasound-assisted
extraction); accelerated solvent extraction, also known as pressurized liquid extraction
(PLE); pulsed electric field assisted extraction; supercritical fluid extraction based on the use
of CO2 as a solvent; and enzyme-assisted extraction (EAE). All these extraction methods
differ in the mode of cell disintegration, temperature used, and pressure applied for the
extraction of carotenoids [44].

Carotenoids can be extracted using organic solvents such as acetone, chloroform,
hexane, isopropanol, methanol, methylene chloride and diethyl ether. A wide variety of
solvent combinations can also be used, which provides a synergistic effect in extraction
and consequently greater extraction effectiveness due to different polarities. Choosing the
appropriate solvent or solvent combination is one of the most important factors for the
efficient extraction of carotenoids [45].

Choosing the appropriate solvent is not simple, as functional group polarity as well
as chain length, moisture content, sample matrix and its components play important roles
in the extraction. In addition, lycopene and β-carotene are highly lipophilic nonpolar
carotenoids due to their structure of conjugated hydrocarbons without polar functional
groups [46].

Acetone and hexane are often selected for the extraction of polar and nonpolar
carotenoids. On the other hand, an acetone/ethanol/hexane mixture is more often applied
for the simultaneous extraction of more polar and less polar carotenoids. Due to their mis-
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cible properties in water, acetone and ethanol are more efficient for extracting carotenoids
from plant material containing a large amount of moisture [47].

Most solvents used for the extraction of carotenoids, including ethanol, hexane and
acetone, cause environmental and human health risks (acute and chronic toxicity) [48].
However, based on environmental issues and, above all, occupational safety, ethanol
and acetone are preferred solvents compared to hexane, diethyl ether, dichloromethane
and chloroform [49]. To improve sustainability, “green solvents” and ecologically sound
ionic liquids can be exploited for the extraction of carotenoids and other bioactive com-
pounds [50].

2.2. Vitamin E

The term vitamin E is used to describe eight lipophilic, naturally occurring compounds
that include four tocopherols and four tocotrienols. All vitamin E forms have a chromanol
ring and a 16-carbon phytyl-like side chain. Depending on the nature of the isoprenoid
chain, it is possible to distinguish tocopherols with a saturated phytyl chain and tocotrienols
with an unsaturated geranylgeranyl chain having three double bonds [51–53].

Animals and humans cannot synthesize vitamin E, which is acquired through the
gestation of vegetables in food (especially tocopherols). γ-tocopherol is the most prevalent
in seeds and derived products [54,55], while α-tocopherol is the predominant form of
vitamin E in plant tissues. The low intake of vitamin E is associated with its deficiency
and ataxia [56]. Vitamin E acts as a lipid phase chain-breaking antioxidant that appears
effective in improving health outcomes in clinical trials, with diminished risk of cancer
and cardiovascular diseases [57]. As part of cell membranes and lipoproteins, due to its
apolar property, vitamin E protects lipids from oxidation [58]. Moreover, vitamin E fights
against lipid peroxidation of cell membranes and can stop the radical chain by forming a
low-reactivity derivative unable to attack lipid substrates [59].

All tocopherols and tocotrienols are potent antioxidants with lipoperoxyl radical-
scavenging activities [51] through hydrogen donation from the phenolic group on the
chromanol ring [60,61]. Natural vitamin E forms possessing an unsubstituted 5-position,
such as γ-tocopherol, can trap electrophiles, including reactive nitrogen species (NOS),
which are found to be enhanced during inflammation. Vitamin E forms with a methyl
group at 5-position, such as α-tocopherol, do not trap electrophiles [54]. Therefore, γ-
tocopherol is shown to be better than α-tocopherol in detoxifying NO2 and peroxynitrite
via 5-nitro-γ-tocopherol formation [62–64].

Traditional solvent extraction methods after saponification have been widely used
in extracting vitamin E compounds from different types of samples, including food and
feed, tissue and biological fluids [65]. The purpose of saponification is to hydrolyze esters
linked to glycerides, phospholipids and sterols, as well as to destroy pigments and disrupt
the sample matrix to release vitamin E compounds. However, saponification can affect
the analysis of vitamin E in biological samples due to the degradation results of these
compounds, which in turn are not very stable under alkaline conditions [66].

Ultrasound-assisted extraction has been used in the analysis of pesticides or organic
contaminants in the soil, animal tissue and food packaging materials. Furthermore, it
has been used in the extraction of oils and phytochemicals [67]. Ultrasound-assisted
extraction can increase the yield of target compound extraction in sample preparation. That
is, the frequency of ultrasound can break the micelle or sample matrix to facilitate solvent
access to hydrophobic compounds. This is in contrast with saponification breakdown
under alkaline conditions, as there would be no chemical involvement in the ultrasound-
assisted extraction, which could prevent a possible chemical degradation of the target
components [68]. Furthermore, the ultrasound, when interacting with the extraction
solvent, increases the contact between the solvent and the target compounds, making the
extraction more efficient. Ultrasound can be applied to many other processes, including
intracellular metabolite extraction and microbial inactivation. The greatest impact of
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ultrasound in liquid media is attributed to acoustic cavitation, leading to cell rupture,
which enhances the mass transfer of the extractors [69].

The ultrasonic power, intensity, temperature and density of the mixture (solvent/sample
ratio) are important factors to be optimized for efficient extraction of metabolites. The use of
an optimized ultrasound intensity range is a crucial parameter to obtain a higher extraction
yield. Above the optimal range, increased ultrasound intensity can lead to the formation
and accumulation of OH- and H+ radicals during the cavitation process, which can lead to
the significant degradation of antioxidant compounds, including carotenoids [70].

2.3. Ascorbic Acid

Ascorbic acid, also known as vitamin C, is a ketolactone with a molecular weight
of 176.1 g/mol and has polar properties, being soluble in water and considered a very
important component for human health [71,72]. Different from humans, most mammals
are able to synthesize ascorbic acid from glucuronic acid or galactonic acid derived from
glucose [71]. As a non-enzymatic antioxidant, vitamin C works by interrupting free radical
chain reactions [37]. Ascorbic acid is endowed with enhanced antioxidant activity, being
promptly oxidized to dehydroascorbic acid, which suffers irreversible hydrolysis to 2,3-
diketo-L-gulonic acid with subsequent decarboxylation, resulting in carbon dioxide and
pentose phosphate cycle components, or oxalic acid and threonic acid. Ascorbic acid is in-
volved in maintaining vascular and connective tissue integrity in iron absorption and collagen
biosynthesis, neuroprotection, hematopoiesis and leucocyte functioning [13,73,74]. Ascorbic
acid in the brain plays an essential role, being a cofactor of dopamine beta-hydroxylase,
and thus being part of catecholamine biosynthesis. Additionally, it protects membrane
phospholipids from peroxidative damage and is an efficient free-radical scavenger in the
brain [74,75]. Ascorbic acid accelerates hydroxylation reactions in several biosynthetic
pathways. During many of these reactions, ascorbic acid directly or indirectly can provide
electrons to enzymes that require prosthetic metal ions in a reduced form to function with
full enzymatic activity [76]. Although ascorbic acid is not a direct scavenger of lipophilic
radicals, it acts in synergy with tocopherols in lipid peroxide radical removal by regenerat-
ing vitamin E in combination with reduced glutathione (GSH) or with compounds capable
of donating reducing equivalents [37,77–79].

2.4. Phenolic Compounds

The course of different diseases can lead to increased oxidative stress, which triggers
the development of metabolic disorders such as the increased production of reactive oxygen
species (ROS) and the glycosylation of non-enzymatic proteins [80]. All these factors can
damage DNA molecules, lipids and proteins, leading to the development of diseases such
as rheumatism, inflammatory bowel diseases, coronary heart disease [81], cancer, diabetes
and degenerative diseases [82]. In this context, medicinal plants have been widely used
over time to treat different diseases [83], as they have natural phytochemicals that can be
present in leaves, stems, fruits, flowers, roots and bark that represent an important source
of antioxidant compounds such as flavonoids, phenolic acids, tannins, anthocyanins and
other phenolic compounds [81,84,85], which can treat or prevent oxidation effects; thus,
medicinal plants arouse great interest in the food and pharmaceutical industry [86].

There are a great variety of phenolic structures present in plants. These compounds
grant plants protection against any damage that microorganisms, pests and predators
may cause. They influence the nutritional and sensorial quality of food, conferring colors,
textures and astringency [87]. Phenolic compounds are classified as secondary bioactive
metabolites, possessing at least one aromatic ring linked to one or more hydroxyl groups,
with a simple structure to high molecular weight complex polymers [88]. They are divided
into flavonoids and non-flavonoids and their subclasses, based on the number of linked
hydroxyls and to structural elements that connect benzene rings [89].

The flavonoid group in nature contributes to the majority of phenols, representing up
to 50% of all phenols [90] and, until now, over 9000 flavonoids have been reported [91]. They
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are derived from aromatic amino acids, phenylalanine and tyrosine, containing 15 carbon
chains with two benzene rings linked by a heterocyclic pyrene ring [90]. Flavonoids occur
as aglycones, glycosides and methylated derivatives, where aglycones hold the most basic
structure of all; they are synthesized by acetate and shikimic acid pathways [92]. The main
subclasses of flavonoids are flavonols, flavones, flavan-3-ols, anthocyanins, flavonones and
isoflavones, and they can be differentiated by small variations in the structure of the carbon
chain [90,93].

Flavonols are the most prevalent in the plant kingdom, with the exceptions of algae
and fungi. The main components are kaempferol, quercetin, myricetin and isorhamnetin.
They possess a ketone group in their structure and hydroxyl in position 3 of their C-
ring [90,94]. Conversely, flavones are less present in the plant kingdom, except for in some
herbs. Some citrus species contain hesperidin and naringenin. Regarding the chemical
structure, flavan-3-ols are the most complex of flavonoids, varying from simple monomers,
such as catechins, to complex structures such as condensed tannins. The hydroxyl group of
those compounds is always interacting with the position 3 of the C-aromatic ring [90].

Anthocyanins are present in different plants and are responsible for red, blue and
purple colors. These pigments are employed in the food industry to promote color without
using synthetic food coloring [95]. These colors depend on pH levels, methylation and
acylation of hydroxyl groups in the rings A and B. The most common types are cyanidin,
peonidin, petunidin, malvidin, delphinidin and pelargonidin, which are differentiated by
the number of hydroxyl groups, the nature and the number of sugars that these groups
are linked to and their position, and being monosaccharides, the most likely sugar in these
positions [90].

Flavonoids are mainly present in citrus fruits. This group is associated with health
benefits due to its ability to quench free radicals [90,91]. The bond, in flavonone structure,
is found at positions 2 and 3 in the aromatic ring [90,94]. Additionally, isoflavones, also
known as phytoestrogens, are responsible for ovulation blockage, especially in animals
that feed directly from the source with a high concentration of this compound. Isoflavone
intake by humans could aid in prostate and breast cancer prevention due its hormone-like
property. Isoflavone can be found in a limited number of plants, such as soybean. These
compounds differ from other flavones because their B-aromatic ring is linked to the C-ring
by the carbon 3 [90].

Phenolic acids, tannins, stilbenes and lignans represent the non-flavonoid group [89].
Phenolic acids are phenols that have carboxylic acid function and are divided into hydrox-
ybenzoic and hydroxycinnamic acids. Hydroxybenzoic acid possesses a C6–C1 structure in
its aromatic rings and is derived from dihydrobenzoic acid. Its antioxidant activity is de-
pendent on the hydroxyl position in the ring. There are five types of phenolic acids: gallic,
p-hydroxybenzoic, procatequic, vanillic, and syringic acids. Hydroxycinnamic acids hold
the C6–C3 structure and occur in various conjugated forms, such as hydroxy acid esters.
Caffeic acid is present in several foods, is responsible for blocking leukotriene synthesis and
is involved in immunoregulatory diseases. Other compounds of this family include ferulic
and synaptic acids [96]. The antioxidant activity of this group occurs via hydrogen electron
donation to free radicals [97]. Stilbenes have a core of 1,2-diphenylethylene with hydroxyl
groups in their aromatic rings and are produced by plants as a response to sickness or
injuries, with trans-resveratrol the best-known dietetic form. Trans-resveratrol is present in
red wine and is able to inhibit and slow down a number of pathological conditions, such
as cardiovascular diseases and some types of cancer [90,96].

Lignans are precursors of phytoestrogens, found in seeds, vegetable oils, cereals,
fruits and vegetables as aglycones, esterified glycosides or oligomers forms, with a phenyl-
propane unit present in their chain. They are classified into five subclasses: lignans,
neolignans, norlignans, hybrid lignans and oligomeric lignans. These subclasses differ by
the carbon chain structure, the way in which oxygen is incorporated into the structure and
the cyclization pattern [87,98].
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Tannins have high molecular weight, can either be water soluble or insoluble, and
are able to combine with proteins or other polymers. There are two classes of tannins:
condensed tannins and hydrolysable tannins. Both are chemically reactive, forming intra-
and inter- hydrogen bonds, and precipitating molecules [89,99,100]. Moreover, condensed
tannins (also known as proanthocyanidins) are found in superior plants and are formed
by catechin polymers and leucoanthocyanidins [89,101]. Hydrolysable tannins are formed
by a glucose or by a polyhydric alcohol skeleton, esterified with gallic or hexahydroxy
diphenyl acids, and are prone to weakening the acid–base balance and interfering with
some enzymatic hydrolysis reactions [100].

Phenolic compounds metabolism promptly occurs in the human organism and re-
lies on physicochemical properties such as configuration, lipophilicity and solubility [96].
Within each of their structures, the absorption process happens when aglycones are ab-
sorbed in the small intestine and then metabolized before reaching systemic circulation. Hy-
drophilic flavonoid glycosides are transported across the small intestine by Na+-dependent
cotransporters in the intestine. However, an alternative mechanism proposes that flavonoid
glycosides must be converted into aglycones by lactase phlorizin hydrolase enzyme (LPH)
in the small intestine brush border membrane. Thus, the non-degraded flavonoid glyco-
sides by LPH are absorbed in the colon by means of the action of the microbiota which
are able to rearrange theirs structures, adding or removing methoxy and hydroxyl groups,
but in smaller amounts due to the absorption limitation of the site [102]. Regarding the
absorption process of these compounds, the molecular weight is considered a key factor.
While phenolic compounds with low molecular weight such as isoflavones, flavones and
catechins are easily absorbed, proanthocyanidins, which have a high molecular weight,
have more difficulty during this process [103].

Phenolic Compounds Quantification

The identification of specific phenolic groups in foods is difficult to assess, since
they are susceptible to interference; therefore, the most common determination is given
in total phenolic compounds [104]. To isolate compound structures, the choice of an
adequate solvent and method of extraction is necessary, since many factors can affect
this process. The exposure to heat can either enhance or diminish phenol extraction and
antioxidant activity. While exposure to heat may facilitate the extraction of phenolic
compounds due to plant cell disruption [105], excessive heat may decrease phenol and
antioxidant activity [106]. Moreover, the time of extraction also interferes with phenol
obtainment [107]. Singh et al. [104] considered the sample powder extraction the most
recommended protocol among all methods, since it promotes a larger contact surface and
the rupture of the sample’s cell wall, optimizing the process.

One of the most used methods to assess phenolic compounds is the Folin–Ciocalteu
reagent (FCR) method. First, this method was used for protein analysis, taking advantage
of the reagent’s activity toward protein tyrosine (containing a phenol group) residue [108].
Thereafter, the assay was extended to total phenols analysis in wine and, ever since, many
applications for this method have been found [109].

A proposal for standardizing the routine quality control and the antioxidant capac-
ity measurement of food products and dietary supplements with the FCR method was
made [110]. The FCR method relies on the electron transfer in an alkaline medium from
phenolic compounds to phosphomolybdic/phosphotungstic acid complexes to form blue
complexes that are determined spectroscopically at approximately 760 nm [109,111]. The
FCR method, also known as the total phenols (or phenolic) assay, assesses a sample’s
reducing capacity without reflecting the name “total phenolic assay”. Diverse publications
applied the total phenols assay by FCR and an ET-based antioxidant capacity assay and
frequently found excellent linear correlations between the results of FCR and the antioxi-
dant activity. This can be explained by the similarity of FCR and ET-based methods, both
assessing a sample’s reducing capacity. However, the use of FCR along with an ET-based
method is redundant [112].
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3. First Issue: Common Antioxidant Activity Methods In Vitro
3.1. DPPH

The 1,1-diphenyl-2-picryl-hydrazyl (DPPH) is considered a stable free radical by virtue
of the delocalization of the spare electron over the molecule, which prevents the molecules
from dimerizing, as would happen with most other free radicals. This configuration confers
a violet color, with the absorption band in an ethanol solution centered at about 520 nm.
When a substance that could donate hydrogen is mixed with a DPPH solution, it produces
the reduced form of DPPH with loss of the violet color, expressed by the Equation (1),
where DPPH is represented by Z• and the donor molecule is represented by AH, resulting
in the reduced form ZH, and A• is a free radical produced in the first step.

Z• + AH = ZH + A• (1)

Then, the free radical will undergo further reactions (Equation (2)), and create a stable
product, represented by RS-SR [113]. While DPPH is able to accept an electron or hydrogen
radical to become a stable, diamagnetic molecule, it can be oxidized only with difficulty,
and then irreversibly [114].

RS• + RS• = RS − SR (2)

DPPH is a rapid, simple, inexpensive and widely used method [115] to assess an-
tioxidant properties in wheat grain and bran, vegetables, conjugated linoleic acid, herbs,
edible seed oils, and flours in several solvent systems including ethanol, aqueous acetone,
methanol, aqueous ethanol and benzene [116,117]. It can be used in biological samples
and in solid or liquid samples [115], even though its use is questioned in the evaluation
of amino acids, since it was demonstrated to be insensitive to these compounds. Only
cysteine (Cys) displayed noticeable DPPH• scavenging activity among the several protein
amino acids tested [118].

Another issue is the validity for plasma samples. The alcohol medium precipitates
the proteins within the plasma, which is not useful for these kinds of samples [115]. Al-
though the method is simple, it is limited because DPPH interacts with other radicals. The
time response curve to reach the steady state is not linear with different ratios of antioxi-
dant/DPPH [119,120]. Due to the fact that several events can interfere in antioxidant assays,
the DPPH free radical method is performed at room temperature and, thus, eliminates
the risk of the thermal degradation of the molecules tested [121]. Moreover, for being a
colorimetric assay, the method can be distributed to compounds that confer colors, such
as carotenoids [122], and, therefore, the results should be adjusted to correct the access of
antioxidant activity. Conversely, the DPPH assay can be influenced by the reaction time;
some compounds react immediately with DPPH depending on their structure, while for a
number of compounds already tested, the reactions might be slower, due to the presence of
more complex mechanisms [7,119].

Once DPPH is applied to evaluate the overall antioxidant capacity, it allows to us assess
weak antioxidants, which, in turn, ends up slowing down the reaction time [119]. Regarding
the reaction time, the original method recommends 30 min for reading [123]. Nonetheless,
the rate of reaction varies among substrates [119,121], and it has been proposed to follow
the reaction to completion (plateau) [120,124,125]. Additionally, the reaction time can
be influenced by the sample concentration and the nature of the antioxidants, as the
fixed-time experiment underestimates radical scavenging activities through slow reacting
molecules [126] and, therefore, achieving the plateau state could be more accurate for
assessing the antioxidant capacity in these samples.

The efficient concentration value (EC50) is the quantity of antioxidants capable of
decreasing the DDPH• concentration by 50% [97]. This parameter is used in the in-
terpretation of the DPPH method results and was introduced by Brand–Williams and
co-workers [113,119,121]. However, some issues have been reported on the use of the EC50
value. Since the determination made an analogy to lethal dose (LD50), one could be led to
think that the assessment takes place in a biological system [113,124,126].
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Another parameter used to evaluate is the TEC50, which is the time necessary to reach
the steady-state EC50 concentration. The antiradical efficiency (AE) is derived from these
parameters, represented by the following equation (Equation (3)):

AE = 1/EC50·TEC50 (3)

While EC50 is a common method, AE is less popular. However, some authors prefer
to use AE, since the interpretation is clearer [127]. The higher value of AE is equal to a
higher antioxidant content, in opposition to EC50. Aside from that, some authors have
simplified the equation, not taking into account the time of reaction [127–129], which does
not fulfill the purpose of the parameter to consider slow antioxidants, and instead seems
to only simplify the interpretation of the method. Conversely, antiradical power (ARP) is
the reverse of EC50, and, similarly to AE, the higher the ARP value, the more efficient the
antioxidant activity is [119]. The use of this parameter can also facilitate the comprehension
of antioxidant efficiency.

3.2. TEAC/ABTS

The 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assay expressed in
Trolox equivalent antioxidant capacity (TEAC) is a spectrophotometric assay, based on the
extent of the ABTS•+ radical cation reduction in an aqueous medium at a fixed time point,
rather than the rate of reduction [130]. Trolox is a synthetic antioxidant (water-soluble
vitamin E analogue) used as a standard of comparison, giving rise to TEAC. The TEAC
refers to the millimolar concentration of a Trolox solution with the antioxidant capacity
equivalent to a 1 mM solution of the substance under investigation. Thus, TEAC reflects
the relative ability of hydrogen or donating-electron antioxidants to scavenge ABTS radical
cation in relation to Trolox [18].

ABTS presents a long-wavelength absorption spectrum with maxima at 660, 734
and 820 nm. Originally, this assay measured the ability of a compound to reduce the
ABTS radical, formed by ABTS with a ferryl myoglobin radical species, generated by
the activation of metmyoglobin with H2O2. However, the compound can also react with
the ferryl myoglobin species, reducing them [131]. Aside from that, Miller and Rice–
Evans (1997) found that the results of a myoglobin-ABTS assay and the direct reduction
of the ABTS radical cation were very similar; therefore, the antioxidant activity was via
ABTS scavenging rather than inhibiting the formation through the reduction of ferryl
myoglobin or a reaction with H2O2. ABTS cannot be considered a pro-oxidant, since it is
quite stable [132] when it occurs with DPPH. Although the ABTS assay is a well-known
method to assess total antioxidant activity and is used in diverse samples, such as food
and body fluids [133], some authors do not consider it an accurate method. Since it does
not use a substrate to be oxidized, it cannot adequately mimic the processes in food and
biological samples, meaning it is considered artificial [18]. Moreover, ABTS is not found in
the human body, and thus it is recognized as a non-physiological assay [7]. ABTS shows a
positive correlation with the DPPH method results and is strongly correlated with oxygen
radical absorbance capacity (ORAC) from the USDA database when compared to the DPPH
assay [134]. Floegel et al. [135] also found a better correlation between ABTS and ORAC
database when analyzing fruits, vegetables and beverages. The authors suggested that
ABTS better reflects the antioxidant content in different foods than DPPH. The correlation
of results between the methods might be explained once all methods are associated with
total phenolics content measured by the Folin–Ciocalteu method [135,136].

3.3. ORAC

The oxygen radical absorbance capacity (ORAC) assay uses β-phycoerythrin (β-PE)
as an oxidizable protein substrate and 2,2′-azobis (2-amidinopropane) dihydrochloride
(AAPH) as a peroxyl radical generator, or Cu21-H2O2 as a hydroxyl radical generator [131].
It consists of measuring the decrease in the fluorescence of the protein as a result of its
conformation loss when it suffers oxidative damage, caused by the radicals in the test. The
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assay evaluates the ability of the antioxidants in the sample to protect the protein from
oxidative damage [137,138].

The method using β-PE suffers from some disadvantages, such as β-PE presenting
with great lot-to-lot variety, being photo-bleached under plate-reader conditions, interact-
ing with some polyphenols via nonspecific protein binding, and losing its fluorescence
even without a radical generator [131,135,137]. A modification of the method was proposed
by Ou et al. in 2001, exchanging PE for fluorescein (3′,6′-dihydroxyspiro[isobenzofuran-
1[3H], 9′[9H]-xanthene]-3-one) as a protein target, addressing the inconsistency problems
regarding batches, photosensitivity and interaction with phenolic compounds owing to
nonspecific protein binding, as occurred with PE [139]. Another variation of the method
was described using pyrogallol red (PGR) as a probe, rather than fluorescein, in developing
a food database in South America [140,141]. As seen when modifying the probe from β-PE
to fluorescein, the results differed through the probe chance to PGR.

The ORAC method has been successfully used to evaluate antioxidant capacity in
foods (tea, fruits, vegetables, herbal mixtures) [142,143] and in biological systems [144,145].
ORAC measurement has an advantage over other methods, since there is a database
providing food equivalents in ORAC values, which might provide valuable information
in assessing antioxidant intake [146] along with other databases containing ORAC values
available for products from the South Andes and South America [147]. The ORAC database
used to be available on the USDA site; however, in 2012, the database was withdrawn
under the allegation that “the values indicating antioxidant capacity have no relevance to
the effects of specific bioactive compounds, including polyphenols in humans”, but it is
still available on a private site with updated information.

3.4. FRAP and TRAP Assays

The ferric ion (Fe3+) reducing antioxidant power (FRAP) and the total antioxidant
radical scavenging parameter (TRAP) are tests that evaluate the total antioxidant capacity
of a compound using the same prerogative; that is, the capacity of antioxidants to reduce a
colorless complex to a color that can be analyzed by spectrophotometry with the proper
pattern, average length and wavelength. However, FRAP is an electron transfer-based
method, while TRAP is classified as a hydrogen atom transfer-based method; both can be
used to assess the total antioxidant capacity of a compound or an organism (blood serum
or macerated tissues) [10,148].

The FRAP assay chemical reaction is based on the capacity of a Fe3+ complex reduction.
When a substance has antioxidant properties, the colorless complex is changed into a
blue-colored one [Fe2+(TPTZ)2 ]2+ in acid medium, also known as Prussian blue. As a
colorimetric assay, color changes can be measured at 593 nm on a spectrophotometer; the
standard used is a ferrous ion solution, and Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylic acid), a soluble analogue of vitamin E, is used as a positive control. The result
is expressed in FRAP units, since the FRAP unit is related to the reduction of ferric ion 1 M
into one ferrous ion [149].

The tripyridyltriazine (TPTZ) is used as the linking ligand of the iron ion but, more
recently, potassium ferricyanide has been the most common ferric reagent used in the
reaction. The acquisition of Prussian blue by the end of reaction can be performed in two
different ways: Fe3+ can be reduced to Fe2+, which binds to ferricyanide to yield Prussian
blue, or antioxidants can reduce ferricyanide to ferrocyanide, which binds the free Fe3+,
and also results in Prussian blue [150].

There are some limitations of the FRAP assay, such as the redox potential of the
Fe2+/Fe3+ pair that can induce a false Fe3+ reduction when testing compounds with a
lower redox potential, the rapid time of reaction which considers that redox reactions are
fast, but is not always the case, and the hydrophilic environment of the reaction preventing
the hydrophobic compounds from being efficiently tested [149].

For the hydrophilic/lipophilic limitation, Berker, Demirata and Apak [122] proposed
the use of a 1:9 (v/v) water-acetone medium in the reaction in the absence of the methylated



Molecules 2022, 27, 3563 11 of 37

β-cyclodextrine (RMCD) solubility potentiator to assess the antioxidant capacity of both
hydrophilic and lipophilic compounds simultaneously. Their results were similar to that
using the solubility potentiator, which can support a more affordable experiment, not
losing its reliability. Wojtunik-Kulesza [149] tested the addition of a surfactant (Tween-20)
to enhance some monoterpenes’ solubility and observed a reduced clouding in the studied
solutions and a false positive effect, and also applied thin-layer chromatography (TLC)
with FRAP, demonstrating that the combined methods could be used as a fast, more reliable
and reproducible way to determine the reducing activity of extracts [122,149].

Another derivation of the FRAP method was performed by Berker et al. [151] to ensure
a more optimized, reproducible assay and more linear results. For this purpose, they used
ferricyanide and Fe (III) simultaneously to promote a more favorable redox environment for
a wider range of antioxidants. To avoid the precipitation of Prussian blue, the researchers
added sodium dodecyl sulphate (SDS), a tensoactive compound, and adjusted the optimal
pH to 1.7, maintaining the redox activity of ferric ion while preventing its hydrolysis.

The FRAP assay is a method widely used to assess total antioxidant capacity of foods,
beverages, plant extracts, essential oils and biological fluids, and can be also used as
a prognostic biomarker for several conditions, such as hypertension, acute myocardial
infarction followed by cardiogenic shock and chronic kidney disease [150–154].

The TRAP method was developed by Wayner et al. [155] and, originally, it was based
on measurements of induction times in the oxidation of lipids, measuring the total peroxyl
radical-trapping ability of plasma. The plasma peroxidation was triggered by ABAP [2,2′-
azo-bis- (2-amidipropropane hydrochloride)] thermolysis to yield peroxyl-radicals, and the
time of oxygen uptake inhibition by plasma antioxidants was registered. The inhibition
time of O2 absorption is called the induction period, and is quantitively measured as the
TRAP index (number of mols of ROO•/liter of fluid). In this way, TRAP can be calculated
as follows: TRAP = R ROO x τplasma, where RROO is the free radical formation rate and
τplasma is the delay time in the oxygen consumption.

Considering the information obtained from this review, some modifications were
made to the original method as follows: (i) the incorporation of a chemiluminescence
enhancer such as luminol proposed by Lissi et al. [156], where luminol could oxidate from
ABAP-derived ROS, losing its hydrogen atom and then emitting fluorescence; (ii) the
total antioxidant parameter (TAR), which represents the total capacity of all antioxidants
present in the sample to modulate the damage associated with enhanced free radical
production; (iii) and the validated adaptation by Dresch et al. [157] that proposes the use of
the area under the curve (AUC) to evaluate homogenously different kinds of antioxidants
and samples, including those without presenting a lag phase and/or samples presenting
multiple antioxidant curve profiles. Instead of measuring a steady point of the curve, the
assessment of the AUC combines the lag time-based method, the initial rate-based method
and samples with complex kinetics.

The TRAP assay measures the antioxidant/compound’s capacity to scavenge luminol-
derived radicals generated from ABAP or 2,20-azobis(2-amidinopropane) dihydrochloride
(AAPH) thermolysis, which is the most used peroxyl radical generator in hydrophilic
systems, using β-phycoerythrin, fluorescein, dihydrofluorescein diacetate (DCFH-DA) or
luminol as fluorescent probes and free radical sources as well. The reactions are usually
performed at 21 ◦C in an alkaline medium (pH 8.6), sodium phosphate or glycine buffer,
and the chemiluminescence is captured by a luminometer or a scintillation counter [150].

Some practical uses of the TRAP assay are its correlation with pathological conditions,
which could be used as an oxidative stress biomarker for diagnostic, prognostic and
epidemiological purposes. Praud et al. [158] found an inverse relation between TEAC,
FRAP and TRAP with the gastric cancer odds ratio, and concluded that an antioxidant
capacity-rich diet (vegetables, fruits, whole cereals and moderate consumption of wine)
was able to reduce gastric cancer risk.

Siegfried and Shui [159] observed that patients who had undergone a vitrectomy
had significantly lower TRAP results, i.e., decreased antioxidant capacity of aqueous
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humor following vitrectomy in a prospective cross-sectional study (n = 288 eyes). The
authors concluded that an elevated intraocular oxygen pressure with antioxidant depletion
following the vitrectomy procedure may suggest an alteration of the intra-ocular oxidant–
antioxidant balance, and the oxidative stress generated from that imbalance may contribute
to intraocular pressure elevation and an increased risk of glaucoma.

3.5. DPPP

Okimotoa et al. [160] tested the ability of diphenyl-1-pyrenylphosphine (DPPP) to be
used as a fluorescent probe to monitor lipid peroxidation in cells. The fluorescence of DPPP-
labeled cells was measured with fluorescence microscopy and with a spectrofluorometer
for cell-free systems. Subsequently, the flow cytometer was also used as a means of
fluorescence detection, and DPPP proved to be an excellent probe for long-term cell
oxidation studies [161].

Adaptations of the assay based on the oxidation of a non-fluorescent DPPP to a fluores-
cent phosphine oxide were developed in order to quantify the activity of 15-lipooxygenase
(15-LOX) and discover its inhibitors. This enzyme plays important roles in humans,
being part of various conditions related to inflammatory processes (diabetes, obesity, car-
diovascular diseases among others) but also related to homeostasis and physiological
events [162–164]. The assay principle is based on 15-LOX, which catalyzes the introduction
of molecular oxygen into polyunsaturated fatty acids, such as arachidonic and linoleic
acids. The enzymatic reaction gives rise to lipid hydroperoxides that play the role of
oxidative mediators due to their instability, leading to more free radicals and oxidation
reactions with DPPP, resulting in a fluorescent phosphine oxide. In this way, DPPP can be
used both as a 15-LOX marker and as an identification tool for 15-LOX inhibitors, or as a
method to study lipid hydroperoxides in various samples [164,165].

The final fluorescent compound of the reaction is not sensitive to temperature and
proved to be stable for more than 2 h after the experiment. It can be performed in enzyme
(biochemical) or cell-based assays using a black 96- or 384-well plate, being amenable for
high-throughput screening and scaling down. Another feature of the DPPP assay is the
possibility to determine the potency of the 15-LOX or any other treatment inhibition on the
oxidation process by analyzing IC50 values, and it is a peroxidase-free assay not relying
on a secondary enzymatic step. The fluorescence signal intensity can be measured with
a fluorescence plate reader from the excitation wavelength of 363 nm and the emission
wavelength of 380 nm [163].

Several reactions in solutions are initiated by factors such as heat, light, enzymes,
metals and metalloproteins that trigger lipid oxidation, generating lipid hydroperoxides
that can also trigger other peroxidation chain reactions. These compounds do not add
any odor or flavor to food products, but they may decrease the nutritional value. Proteins
can also be targets of free-radicals and form hydroperoxides as well, thus contributing
to carbonylation and cross-linkage formation. When it comes to protein oxidation and
protein hydroperoxide formation, the food industry faces a more complex scenario once
these reactions lead to protein aggregation and loss of solubility, interfering in the sensory
quality and in the nutritional value which could affect the product shelf-life [165].

Adaptations of the original DPPP method allowed the determination of lipid and
protein hydroperoxides at the same time, which appears to be an important tool for
food quality control. The method combines a well-known lipid extraction step [166],
which can be directly performed in chloroform and water/methanol phases followed by
centrifugation and the acquisition of three distinct phases: an upper water/methanol layer
corresponding to water-soluble secondary lipid oxidation products, a bottom chloroform
layer corresponding to lipid hydroperoxides, and a middle thin layer, also called a disc,
corresponding to protein hydroperoxides and precipitated proteins. In this way, it is
possible to isolate each layer and perform the DPPP assay for lipo- and water-soluble
hydroperoxides with a single sample. The adapted method was considered rapid, with
high accuracy, simple and reproducible, being useful in the analysis of lean fish or meat as
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well as protein hydrolysates. This assay can be performed either using a 96-well plate and
a spectrofluorometer or using the macerated sample on a fluorescence microscopy which
allows not only lipid and protein hydroperoxide quantification, but also the visualization by
fluorescence imaging as a complimentary analysis or in the absence of a spectrofluorometer.
The fluorescent signal of DPPP is not affected by pigments absorbing at 560 nm or by iron
and chelators present in muscle meat [165,167].

The main advantages and disadvantages of the discussed methods are shown in
Table 1.

Table 1. Advantages and disadvantages of DPPH, ABTS, ORAC and FRAP, TRAP methods.

Method Advantages Disadvantages

DPPH
Easy procedure

Low cost
Fast reaction

EC50 concept could be hard to interpret
No standardization among time to assess or

endpoint reaction

ABTS

Low cost
Fast reaction

Can be used to assess pH effect on activity, since is
stable pH

Now standardized, which difficult comparison
among results

It is necessary an extra step to generate free
radical from ABTS salt

The generated free radical is not stable for long
periods of time

ORAC
Once the method is standardized allows comparison
Takes in account both time and antioxidant reaction

Use biologically relevant antioxidants

Expensive
pH-sensitive

Quantification of results takes long time
Results can vary across different equipment

FRAP Used in samples of plant origin. Uses high volume of reagent.

TRAP It is sensitive to all antioxidants present in the sample.
It is a complex and time-consuming technique
that requires a high degree of knowledge and

experience.

Adapted from Zulueta et al. [138].

Different medicinal plants have been used as a source of natural antioxidants, phy-
tochemical properties and antioxidant capacity. Yousfi et al. [86] evaluated the phenolic
composition and antioxidant activity of hydroethanolic extracts from the leaves of Salvia
officinalis, Rosmarinus officinalis, Olea europaea, and Punica granatum, as well as the leaves and
stems of Ruta graveolens, Mentha piperita and Petroselinum crispum. According to their re-
sults, P. granatum has the highest content of antioxidant compounds such as total phenols,
flavonoids, tannins and ortho-diphenol and the highest antioxidant capacity, measured
by the DPPH, FRAP and ORAC methods. Furthermore, a strong correlation between
the phenolic composition and the antioxidant properties of plants was observed by the
authors [86].

Mwamatope et al. [84], when evaluating the methanol extract of plants of the species
Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor, from the northern
Malawi, Africa, also demonstrated a direct positive relationship between the content
of total phenols and the antioxidant capacity, and the highest total phenolic content
(27.64 ± 0.09 mg GAE g DW) was quantified in the bark of L. discolor, a species belonging
to the Anacardiaceae family that has been demonstrated as a good source of antioxidant
natural and used in the treatment of the effects of cancer. Other plant species also have
antioxidant potential. In fact, the antioxidant activity using DPPH, reducing power and
metal chelating assays was determined in crude juices extracted by the hydraulic pressing
of leaves of Ficus carica (fig), Psidium guajava (guava), Olea europaea (olive) and Punica
granatum (pomegranate) leaves and bark, all plants from Giza, Egypt. According to the
results, the raw juice from F. carica bark had the highest antioxidant activity compared
to the juice from other medicinal plants and from the F. carica leaves, while the flavonoid
content was similar in all species studied [81].
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4. Second Issue: Evaluation of Antioxidant Activity in Biological Systems—The Role
of Enzymes in Redox Cellular Signaling

Cells have complex antioxidant systems to regulate cellular redox and to protect them
against free radical damage. This control happens with enzymatic and non-enzymatic
systems. Non-enzymatic antioxidants rely on the action of glutathione, melatonin, vitamins
C and E, carotenoids and flavonoids, while enzymatic systems rely on several enzymes,
including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx),
peroxiredoxin and glutathione S-transferase (GST). Nicotinamide adenine dinucleotide
phosphate (NADPH), reduced glutathione (GSH) and thioredoxins act with these enzymes
in defense against the damage caused by free radicals [168].

The SOD, CAT and GPx enzymes that make up the enzymatic defense system work
together to control the formation of free radicals, thus protecting cells from oxidative
damage as shown in Figure 1 below:

Figure 1. Integration of enzymes that participate in the antioxidant defense of the enzymatic an-
tioxidant system. Note: During the processes of aerobic metabolism, reactive oxygen species are
formed, such as superoxide (O2−) radicals. The enzymatic system is the first to act to prevent the
accumulation of these molecules and their intermediates. Superoxide dismutase (SOD) catalyzes
the dismutation of the superoxide radical into hydrogen peroxide (H2O2), which despite not be-
ing a free radical, due to the absence of unpaired electrons in the last layer, H2O2 is an oxygen
metabolite that participates in the Fenton and Haber–Weiss reaction and results in hydrogen perox-
ide (OH−)production, responsible for major cellular damage. To avoid this, other enzymes act in
conjunction with SOD, namely catalase (CAT) and glutation peroxidase (GPx). CAT catalyzes the
reduction of H2O2 to water (H2O) and oxygen (O2). GPx catalyzes the reduction of H2O2 to H2O at
the cost of converting reduced glutathione (GSH) to glutathione disulfide (GSSG). In the oxidation
process, glutathione reductase (GR) regenerate GSH in the presence of NADPH (H+) as a cofactor.
The integrated action of these enzymes is responsible for protecting cells from oxidative damage.

4.1. Reduced Glutathione

Reduced glutathione (GSH) is a compound with low molecular weight composed
of glycine and cysteine glutamic acid. GSH is present in all plant and animal cells, and
acts as an intra-cellular reductant that protects cells against free-radicals, peroxides and
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other toxic compounds [169,170]. Besides the antioxidant action, GSH has also different
functions not related to defense against free radicals and participates in the detoxification
process of electrophilic compounds (xenobiotics), the metabolization of prostaglandins and
leukotrienes, the transport of amino acids and the absorption of micronutrients from the
intestine, such as iron and selenium. Nevertheless, the predominant role of GSH is as an
antioxidant [169,171].

It is proposed that, in the process of regenerating other antioxidants, GSH is oxidized
to glutathione disulfide (GSSG), which can be reduced by glutathione reductase (GR) to
regenerate GSH in the presence of NADPH (H+) as a cofactor [172]. However, the mere
redox state of GSH/GSSG was questioned by Flohé (2013), who concluded that GSH/GSSG
balance does not exist in biological systems [173]. Despite this, the same author affirmed
that the thiol/disulfide ratio might still reflect what happens in the organism and has
diagnostic/prognostic value.

GSH ameliorates free radical damage during enzymatic and non-enzymatic reac-
tions. It regenerates other oxidized small molecule antioxidants, such as vitamin C and
vitamin E [174], and is involved in the repair of protein molecules, nucleic acids and lipids
damaged by peroxidation, and in the maintenance of sulphydryl protein groups in the re-
duced state [175–177]. Intracellular glutathione in its reduced form (GSH) has a significant
role in maintaining the redox homeostasis, since it can act as a direct antioxidant and as
a substrate for GPx, the radical scavenging enzyme [178]. The GSH/GSSG ratio is used
to evaluate the intracellular oxidative stress in which an increased ratio of GSSG/GSH
indicates increased oxidative stress [173,179]. The quantification of GSH and GSSG can
be determined enzymatically using the Brehe and Burch method [180]; another way to
quantify GSH is using the fluorometric method, also described by Brehe and Burch [180],
using a smaller amount of tissue.

4.2. Glutathione Peroxidase

Glutathione peroxidase (GPx) is the general name of an enzyme family with peroxidase
activity whose main activity is to protect the organism from oxidative damage. GPx reduces
lipid hydroperoxides to their corresponding alcohols and reduces H2O2 into water [181].
GPx 1–4 contain a selenocysteine (SeCys) at the active site, while GPx 5, 7 and 8 have a Cys
instead of SeCys at the active site; therefore, they are called non-selenium GPx. GPx 6 has a
SeCys at the active site in the human organism, and other organisms contain a Cys at the
active site [182,183]; the SeCys-containing GPx has a greater ability to reduce H2O2 than
the Cys GPx [182].

Regarding the SeCys GPx, the selenocysteine in the active site is responsible for the
catalytic activity. It was first isolated and described by Flohé and co-workers [183] in 1973,
when it was confirmed that the enzyme contained selenium atoms. Furthermore, selenium
is considered an essential element by the World Health Organization (WHO), regarding its
antioxidant properties and, therefore, the recommended dietary allowance (RDA) and the
estimated average requirement (EAR) for this element is based upon the maximization of
seric GPx [184].

GPx, along with SOD and CAT, are the most important antioxidant enzymes and are
usually used as biomarkers to indicate the production of ROS [185,186]. The activity of
GPx can be accessed with a kinetic method first described by Strauss et al. [187], which
involves two steps: (i) the neutralization of H2O2 by GPx in the presence of GSH and
(ii) recycling of the resulting GSSG by GR in the presence of NADPH; the consumption of
NADPH is then used as a proxy for GPx activity.

4.3. Superoxide Dismutase

Metal ion-dependent superoxide dismutases (SOD) are essential components in the
defense of the antioxidant system. There are three types of SODs present in mammalian
physiology with tightly regulated localization patterns. That is, there are two copper/zinc
containing members, CuZnSOD (SOD1), located within the cytosol, mitochondrial inter-
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membrane space and nucleus, and EcSOD (SOD3), being the predominant antioxidant
enzyme, secreted into the extracellular space [188–190]. Moreover, manganese-containing
SOD (SOD2) is located in the mitochondrial matrix and shows minimal similarities with
other SODs [189].

SOD is an enzyme that acts to regulate superoxide levels through the conversion of
superoxide to H2O2 and cellular oxygen. The antioxidant function performed by SOD
has been the subject of several studies due to its potential as a therapeutic agent in the
treatment of inflammatory disorders [191–194].

Topical administration containing the SOD enzyme in patients with atopic dermatitis
demonstrated the ability to significantly reduce the production of nitrogen oxide (NO)
and the secretion of inflammatory cytokines (TNP-a, IL-1, IL-6, etc.) responsible for patho-
genesis of the disease [195]. In addition to the known action of SOD in diseases such as
cancer, diabetes, bronchopulmonary dysplasia and arthritis, there are currently records of
the action of SOD mimetics as a therapeutic against cancer progression [196]. The action
of SOD mimetics is also confirmed as protecting the epithelial tissue of the prostate and
inhibiting the development of radiation-induced cancer [197], by increasing the concentra-
tion of H2O2 in the tumor [198]. The existence of another benefit is the improvement of
liver function due to improved insulin resistance and reduced inflammation promoted by
type 2 diabetes [199].

Radiation-induced free radical production directly results in the development of fibro-
sis, causing damage to normal tissues. Thus, SOD overexpression attenuates the induced
damage, and the addition of SOD mimetic after total radiation exposure demonstrated
protection against pulmonary fibrosis [200]. Another model of pelvic irradiation concluded
that there is prevention of chronic and acute damage due to SOD mimetics by myofibroblast
differentiation [201]. In contrast, the reduction in the activity or mutation of this enzyme is
associated with the genesis of several diseases, including degenerative, renal, ocular and
auditory diseases [202,203].

All SODs require metal cofactors to catalyze one-electron oxidation, followed by one-
electron reduction of two O2•– anions to affect disproportionation. Therefore, changes
in the levels of these cofactors, especially the presence of manganese (Mn), zinc (Zn) and
copper (Cu) found in the SOD structure, can reduce the efficiency of these enzymes [203].
Considering their distinct localizations and the membrane impermeability for O2•–, each
member of the SOD family is expected to have specific compartmentalized roles for the
regulation of redox-sensitive transcription factors, mitochondrial oxygen level sensing and
the protection of surrounding tissue from oxidative inflammation during infections [204–207].

Thus, SOD1 is responsible for destroying free radicals in the body and plays an im-
portant role in apoptosis signaling and oxidative stress [208], while EcSOD is a superoxide
scavenger, which is a precursor to diverse ROS and NOS [209]; however, its redox mod-
ulation effect is not limited to controlling the levels of this radical. EcSOD suppresses
the accumulation of superoxides, preventing spontaneous dismutation of superoxides
into H2O2. Beyond that, generation of •OH via the Fenton reaction and the Haber–Weiss
reaction might be prevented by EcSOD, which, in turn, might be responsible for preventing
the superoxide-mediated oxidation of NO•, controlling the formation of ONOO– [210].
SOD assays use the competitive kinetics of O2•– reduction of cytochrome c (probe) and
an O2•– scavenger (sample) [111]. The method has been adapted to a microplate for-
mat [211]. Since cytochrome c can be reduced directly by antioxidants, it can also inhibit
the xanthine oxidase, which makes this method unsuitable for quantifying non-enzymatic
antioxidants [212].

4.4. Catalase

Catalase (CAT) is an enzyme found in nearly all living organisms, and it is part of
the first line of antioxidant defense, preventing the formation of free radicals. Similarly to
GPx, CAT also reduces H2O2 to H2O and molecular oxygen completes the detoxification
process imitated by SOD [191,213–215]. Moreover, CAT reacts with hydrogen donors (such
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as methanol, ethanol, formic acid, phenols with peroxidase activity). CAT activity takes
place in two steps: (i) a molecule of H2O2 oxidizes the heme group to an oxyferryl species
(a porphyrin cation radical is generated when one oxidation equivalent is removed from
iron and one from the porphyrin ring), and (ii) a second H2O2 molecule acts as a reducing
agent to regenerate the resting state enzyme, with an oxygen molecule and H2O as the final
products [213].

CAT enzymes are abundant in cells, where they continually scout for H2O2 molecules
and, being extremely efficient, are able to break down millions of H2O2 molecules in
one second [216]. Animals use catalase in organs, with particularly high concentrations
occurring in the liver [217]. The deficiency or mutation of CAT is linked to various disease
conditions and abnormalities [218]. CAT is quantifiable, determined by spectrophotometry,
by following the action of catalase with H2O2 based upon the measurement of ultraviolet
absorption of peroxide. The breakdown of H2O2 follows first order kinetics under a
variety of conditions and increases linearly with CAT concentration. Although CAT is
measured by spectrophotometry, the interference of other compounds is minimized by
using a wavelength at which the absorption of the foreign components is at a minimum, in
the region from 200 to 300 nm, or by preparation of a new calibration curve to which an
appropriate amount of the absorbed foreign substances has been added [219].

4.5. Thiobarbituric Acid-Reactive Substances

Thiobarbituric acid-reactive substances (TBARS) are used as markers of lipid perox-
idation and products that reflect oxidative damage to DNA [17]. The assessment occurs
by spectrophotometry, which measures malondialdehyde (MDA) and other aldehydes
produced by lipid peroxidation induced by hydroxyl free radicals [220]. The validity of
this assay is based on the facility of polyunsaturated fatty acids being targets for oxidants
and, because the process of lipid peroxidation is initiated as a self-sustaining free radical
chain process, the accumulation of peroxidation products provides the most common
biochemical marker of oxidative stress [221]. Many criticisms have been made about the
use of the TBARS method to assess oxidative processes in complex biological systems.
The method is a colorimetric assay in which the formation of MDA and products leads
to a pink color without interference in vitro. Concerning more complex systems, many
compounds (including simple and complex carbohydrates, protein oxidation products,
and nucleic acid oxidation products) react with thiobarbituric acid to produce colored
adducts. Thus, the use of TBARS as a single indicator of lipid peroxidation in complex
biological systems is not appropriate [222]. This method could be used in combination
with other techniques, such as separation and mass spectroscopic analysis of thiobarbituric
acid products, particularly MDA, and has value in accessing the role of lipid peroxidation
in oxidative stress, as proposed by Kadiiska et al. [223].

5. Third Issue: Bioavailability of Natural Antioxidants and the Role of Their
Antioxidant Activity in Biological Systems

The bioavailability of antioxidants varies greatly, and the most ingested compounds
are not necessarily those with major concentrations of active metabolites in the target
tissues [224]. The bioavailability can be affected by several factors, such as food source
and chemical interactions with other compounds [225]. Antioxidants present in foods are
usually found with other macromolecules such as carbohydrates, lipids and proteins in the
food matrix, while in plant tissues, the most predominant form of compounds found are
carbohydrates, especially in free conjugated forms [226].

The results of the studies on polyphenols, vitamins and carotenoids are summarized
in Table 2, which describes the tested compound, study design, results on bioavailability
(if analyzed), tests performed, acquired results and related antioxidant activity as a brief
result of each study analyzed in the sections below.
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Table 2. Summary of studies on bioavailability and action of polyphenols, vitamins and carotenoids using animal models or clinical trials.

Compound Study Design Bioavailability Assays Results Related Antioxidant
Activity Reference

Guaraná
powdered seed

(Paullinia cupana)

Humans (healthy overweight
adults) n = 12

Detected 1 h after
intake and remained

after plasma clearance
(plasma HPLC)

ORAC ↑ORAC
Guaraná is a rich source of bioavailable

catechins and contributes to reducing the
oxidative stress parameters of clinically
health overweight individuals by direct
antioxidant action and up-regulation of

antioxidant enzymes.

Yonekura
et al. (2016)

[178]

Single dose (3 g/90 mg
catechins and 60 mg

epicatechins equivalent) daily
for 15 days

SOD/CAT/GPx activities ↑CAT/GPx
↔SOD

Blood samples:
overnight-fasting and 1 h after

intake

Ex vivo LDL oxidation/H2O2
induced DNA damage in

lymphocytes (Comet Assay)

↓LDL oxidation (only in the first
day of study)

↓DNA damage (only after 1 h
intake)

Green (GT) and
Black Tea (BT)
(commercially

acquired)

Male Wistar rats (n = 18)

Not evaluated

Drug metabolizing enzymes
activity (hepatic and pulmonary)

↑P450 (CYP) 1A1 (hep)
↑UDP-glucoronosyltransferase

(hep/pulm)
↑CYP 1A2 (hep)
↓CYP 2C (hep)
↓CYP 2E1 (hep)
↓CYP 3A (hep)

Feeding both tea drinks to rats modulated
drug metabolizing enzymes at a

transcriptional level and reduced oxidative
stress in the liver and lungs, but green tea
was more effective in reducing oxidative

stress. Their possible interactions with
drugs or toxic compounds should be taken

into account.

Yao et al.
(2014) [179]

Ad libitum with food and as
water replacement for 5 weeks GSH, GSSG and GSH/GSSG ratio

↓[GSH] (hep/pulm)
↓Lipid peroxide (pulm/GT)

Blood and tissue (liver and
lungs) samples after being

euthanized

GPx and GSR
TBARS and ROS

DNA-binding activity of nuclear
factors

Coffee (caffeic
and ferulic acids)

Humans (n = 20) Detected 1 h after
intake (plasma HPLC)

ORAC ↑ORAC Lara-
Guzmán et al.
(2016) [180]

FRAP/TRAP ↑FRAP/↔TRAP The experiments on plasma with caffeic
and ferulic acids showed a significant

increase in the antioxidant activity as well
as delay of LDL oxidation.

After acute consumption
(1 h/400 mL) Ex vivo LDL oxidation ↓LDL oxidation

Vitamin C
supplementation

Male Sprague Dawley rats
(n = 6–7 per group)

Detected in plasma and
cerebral tissue

(spectrophotometry)

Histopathology
Diabetic state: ↑infarct volume

and edema
Vit. C: ↓damage

Daily intake of ascorbic acid attenuates the
exacerbation of cerebral ischemic injury in
a diabetic state, which may be attributed to

anti-apoptotic and anti-inflammatory
effects via the improvement of augmented
oxidative stress in the brain. Ascorbic acid
supplementation may protect endothelial
function against the exacerbated ischemic
oxidative injury and improve its transport

through SVCT2 in the cortex.

Iwata et al.
(2014) [184]

Streptozotocin-induced type 1
diabetes

IHC (SVCT2, GLUT-1, cleaved
caspase-3, TNF-α, IL-1β

↓cleaved caspase-3
↓inflammatory cytokines

(TNF-α and IL-1β)
100 mg/kg of ascorbic acid
(gavage) for 2 weeks before

cerebral ischemia-reperfusion
protocol

PCR (SVCT2 and GLUT1)
↑SVCT2 (neurons and

endothelial cells)
↑GLUT1 (endothelial cells)

Cerebral ischemia-reperfusion
(infarct induction) Superoxide production ↓superoxide radical
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Table 2. Cont.

Compound Study Design Bioavailability Assays Results Related Antioxidant
Activity Reference

Multivitamin
supplementation
(vit. C + vit. E +

sodium selenite +
β-carotene)

Female Sprague Dawley rats
(n = 40)

Not evaluated

Histopathology
↓honeycomb-like injury

↓edema
↔inflammatory infiltrate

The antioxidant combination protected
lung tissue against damage by enhancing
biochemical parameters and pulmonary

edema, while no significant effect on
protection of pulmonary inflammation
was observed. The antioxidant vitamin
supplementation with selenium can be

used in the prevention of acute lung injury.

Bayrak et al.
(2016) [185]

Vitamin C (100 mg/kg/day),
vitamin E (100 mg/kg/day),

sodium selenite
(0.2 mg/kg/day and

β-carotene (15 mg/kg/day)
via gavage for 3 days before

the injury protocol

D-galactosamine-induced
(DGaIN) acute lung injury

GSH/GPx/PON
TF/LDH/CAT/SOD/MPO/

XO /

↑GSH/GPx/PON
↓TF/LDH/CAT/SOD/MPO/

XO/Na+/K+ ATPase
LPO (MDA) ↓LPO

Multivitamin
supplementation
(vit. C + vit. E +

sodium selenite +
β-carotene)

Female Sprague Dawley rats
(n = 40)

Not evaluated

Histopathology
↓edema
↓necrosis

↓inflammatory infiltrate

The combination of antioxidants
suppressed histopathological changes in
the liver and biochemical parameters in

D-GaIN-induced hepatotoxicity rats. The
antioxidant vitamin supplementation with
selenium can be used in the prevention of

acute hepatotoxicity.

Catal et al.
(2017) [186]

Vitamin C (100 mg/kg/day),
vitamin E (100 mg/kg/day),

sodium selenite
(0.2 mg/kg/day and

β-carotene (15 mg/kg/day)
via gavage for 3 days before

the injury protocol

Blood GSH/CAT
Blood

AST/ALT/ALP/GGT/LDH
Blood sialic and uric acid

Hepatic
CAT/SOD/GSH/GPx

Hepatic GST

↑blood GSH and CAT
↓blood

AST/ALT/ALP/GGT/LDH
↓blood sialic and uric acid

↑hepatic CAT/SOD/GSH/GPx
↔hepatic GST

D-galactosamine-induced
(DGaIN) acute liver injury

LPO (MDA) ↓hepatic LPO
Histopathology

Carotenoids
derived from

microalgal
biomass

(Spirulina
platensis,

Haematococcus
pluvialis and
Botryococcus

braunii)

Male Wistar rats (n = 25) Detected in plasma after 2 h,
in the liver after 4 h and in the
eyes after 6 h (HPLC/LC-MS)

Carotenoid’s accumulation:
liver > eyes >

plasmaAstaxanthin from H.
pluvialis had better
bioavailability and

accumulation than other
groups.

Plasma and hepatic SOD,
CAT, peroxidase and lipid

peroxidation (TBARS)

↑plasma and hepatic SOD, CAT
and peroxidase
↓Lipid peroxidation

Rao et al.
(2013) [194]

Sigle dose of microalgal
biomass (200 µM equivalent

of β-carotene, astaxanthin and
lutein) via gavage for 15 days

These results indicate that the astaxanthin
from H. pluvialis has better bioavailability

and better antioxidant properties
compared to other carotenoids. Microalgae

biomass is capable of preventing lipid
peroxidation through scavenging free

radicals and hydroxyl radicals in living
cells and also restoring antioxidant

enzyme activity.
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Table 2. Cont.

Compound Study Design Bioavailability Assays Results Related Antioxidant
Activity Reference

Fucoxanthin
(FUCO)

solubilized in
glycolipid (GL)
and absorbed
from chitosan
nanogels (NG)

Rat model
Groups: control, FUCO,

FUCO+NG-GL,
FUCO+NG+GL

Plasma FUCO (HPLC).
After single dose: ↑ 227.5%

After repeated doses: ↑ 292.4%
(compared to control and -GL

groups).

CAT/GST/SODLipid
peroxidation (TBARS)

↑CAT/GST/SOD
(+GL > �GL > controls)
↓Lipid peroxidation

(controls > �GL > +GL)

The advantage of CS-NGs + GL for
improved FUCO bioavailability via

passive and active transport through
PPARc mediated SRB1 activation was

demonstrated. Elevated plasma and tissue
levels of FUCO in these groups could be

the reason for a higher activity of
antioxidant enzymes and lower lipid

peroxides.

Ravi and
Baskaram

(2017) [195]

Single dose study: 48 h
Repeated dose study: 14 days

Dietary feeding study:
1 month

Plasma FUCO (HPLC) after
dietary feeding:

↑ 57.5% (compared to �GL)
↑ 400% (compared to

seaweed)
↑ 287% (compared to control)

PPARγ/SRB1 ↑PPARγ/SRB1(FUCO and GL
had an agonist action)

Lycopene

Murine emphysema model
(n = 40)

Not evaluated

Histopathology Inhibited emphysema-like
features when treated with LY

Lycopene acts as an antioxidant and
anti-inflammatory through the

neutralization of reactive species
production in vitro and in vivo, the
restoration of the GSH/GSSG ratio,

decreasing oxidative damage, decreasing
pro-inflammatory cytokines through
decreased cell influx and the direct

suppression of cytokine production. Campos et al.
(2017) [196]Cigarette smoke exposure

3 times a day for 60 days
SOD/CAT/GPxGSH/GSSG

ratio
↔SOD/↓CAT/↑GPx
↑GSH/GSSG ratio

Treatment with lycopene (LY)
diluted in sunflower oil (25

and 50 mg/kg/day)

TBARS ↓TBARS
IFN-γ/TNF-α/IL-10

(bronchoalveolar fluid) ↓ IFN-γ/TNF-α/IL-10

Leukocyte influx
(bronchoalveolar fluid) ↓ Leukocyte influx
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The studies on polyphenols’, vitamins’ and carotenoids’ bioavailability and action
using animal models or clinical trials in the following sections are summarized in Table 2

5.1. Polyphenols

The absorption of polyphenols from the diet was first thought to be minimal, since
the majority of food flavonoids are bound to glycosides [94], and it was supposed that
only aglycones could cross freely into the bloodstream from the gut wall because there
is no specific enzyme in the gut that could transport or break glycosidic bonds [224]. In
order to enable flavonoid absorption, glycosides must be removed from the flavonoid skele-
ton [227], which is performed by the action of enzymes present in the small intestine [228].
Nonetheless, not all flavonoids are readily absorbed in the small intestine, passing into the
large intestine, where they can be degraded by the colonic microbiota into simple phenolic
acids, and exert antioxidant activity in the intestine environment or absorbed into the
bloodstream [229].

It is possible to quantify flavonoid-derived secondary metabolites in the blood and
urine after the ingestion of foods containing flavonoids; however, unconjugated flavonoids
in the original form can be found in small amounts in the same sample [226]. This fact
suggests that the flavonoid secondary metabolites enter into the circulation and may exert
biological effects in the body [228,230].

The major phenolic compounds in the human diet are the phenolic acids. These
compounds are classified into two classes: cinnamic acid derivatives and benzoic acid
derivatives [231]. Phenolic acids are rapidly absorbed from 1–2 h after the intake of fruits
and vegetables [232], since they are usually absorbed in the upper part of the gastrointesti-
nal tract. Diverse polyphenols, such as caffeic, galic, coumaric, ferulic and chlorogenic
acids, can be actively absorbed in the stomach [231,233]. On the other hand, the small
intestine also is another absorptive site, although the absorption of aglycone phenolic acids
occurs to different degrees. Generally, esterified phenolic acids have a lower bioavailability,
with only 0.3–0.4% of original intake, and need to be hydrolyzed in the enterocytes to reach
the bloodstream, which does not occur in an efficient way in the ester bonds [234].

The bioavailability of guaraná (Paullinia cupana) catechins was assessed by Yonekura
et al. in a clinical trial [235]. The participants (healthy overweight adults, n = 12) were eval-
uated for 15 consecutive days, followed by intervention, with a daily intake of powdered
guarana seed (3 g) containing 90 mg (+)-catechin and 60 mg (−)-epicatechin. Blood was
collected on the first and last day from fasting individuals and 1 h after guarana intake,
and the bioavailability of catechins was assessed. Plasmatic catechins, epicatechins and
their metabolites were found 1 h after intake, and plasma ORAC was higher than before
guarana intake, but it was not cumulative. Additionally, SOD, GPx and CAT methods
were performed to assess antioxidant activity. After the trial period, GPx and CAT activity
was augmented and remained higher even after plasma catechin clearance, while SOD
remained the same. These findings show the bioavailability of catechins derived from
guarana seed 1 h after intake, the direct antioxidant action due to increased levels of plas-
matic ORAC and other assays performed (ex vivo LDL oxidation and H2O2-induced DNA
damage in lymphocytes followed by the lymphocyte single cell gel electrophoresis), and
the maintenance of SOD and CAT up-regulation.

The effects of green and black tea on oxidative stress were assessed in rats by Yao et al.,
where the animals were distributed over three groups: tap water (control), green tea (GT)
and black tea (BT), both containing gallic acid, epigallocatechin, epigallocatechin gallate,
epicatechin, and epicatechin gallate. The phenol constituents were determined by high-
performance liquid chromatography (HPLC). During the experiment (5 weeks), the animals
only had tea as a liquid source, and the consumption of food and water or tea was ad
libitum. GSH was assessed in all groups and GT and BT showed increased levels compared
to the control group in both the liver and lungs, and the GSH/GSSG ratio was higher as
well. Lipid peroxidation was evaluated by TBARS, and the results did not differ in the
groups [236].
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Caffeic acid (CA) and ferulic acid (FA) were determined via gas chromatography mass
spectroscopy (GC-MS) in individuals (n = 20) 1 h after the acute consumption of 400 mL of
coffee or in the control group in a clinical trial developed by Lara-Guzmán et al. Neither
CA nor FA were detected in the control group, while their presence was detected in the
test group. ORAC, ferric reducing antioxidant power (FRAP) and trapping antioxidant
potential (TRAP) were used to evaluate the antioxidant potential of these phenols in plasma
samples. A significant increase in antioxidant activity was observed using FRAP and ORAC
assays, while no difference was noted using the TRAP assay. The ex vivo LDL-oxidation
was also performed and showed a highly significant delay of the oxidation reaction, once
more demonstrating direct antioxidant activity and bioavailability of CA and FA from
coffee [237].

The use of Zingiber officinale (ginger) in herbal medicine has been associated with
the treatment of different diseases, including the prevention and treatment of cancer due
to the presence of bioactive compounds with high anti-inflammatory, antimicrobial and
antioxidant potential [238]. According to the observations of Ghafoor et al. [83], who
evaluated the total phenolic content, total carotenoids, individual phenolic compounds
and antioxidant activity by DPPH in dried ginger samples using different drying methods
such as oven, microwave, freeze and room temperature drying, there is a significant
difference in the drying processes and resulting bioactive compounds and antioxidant
activity. In this case, the freeze-dried ginger rhizomes had a higher content of total phenolics
(931.94 mgGAE/100 g), total carotenoids (13.17 µg/g) and antioxidant activity (82%) when
compared to those samples dried using other techniques, presenting a good correlation
between the total phenolic content and the antioxidant activity. Yousfi et al. [86] observed
that the antioxidant capacity of ginger varies as a function of the type of preparation of the
extract, such as in ethyl acetate, ethanol and water, as well as a function of the preparation
temperature. In addition, the ethanol extract presented the highest polyphenol content at
20 and 40 ◦C (297.63 and 322.11 µg EAG/mg Ex) and higher antioxidant capacity compared
to other extracts.

5.2. Vitamins C and E

Vitamins C and E have a more elucidated bioavailability than polyphenols. Vitamin C
in foods is fairly available and easily transported in the intestine, since it is soluble in water,
but is not stored in the body [239,240]. About 80–90% of the ascorbic acid is absorbed
when the intake is up to 100 mg/day, decreasing rapidly with higher consumptions
(500 mg/day) [240]. Vitamin E absorption depends largely on various factors, and one of
the most important factors which affects bioavailability is the food matrix. The accessibility
of α- and γ- tocopherols in different food matrices ranged from 0.5 in apples to nearly 100%
in bananas and lettuce [47]. Besides that, lipids might enhance vitamin E bioavailability by
providing a hydrophobic phase that could solubilize vitamin E. Moreover, the presence of
lipids stimulates biliary secretion, resulting in micelle formation [241].

Iwata et al. [242] evaluated the effects of ascorbic acid supplementation in diabetic
rats (streptozotocin-induced type 1 diabetes) after cerebral ischemia-reperfusion. Either
100 mg/kg of ascorbic acid or 100 mg/kg of water was administered through gavage for
2 weeks before the induction of ischemia as a pre-treatment. The diabetic state aggravated
middle cerebral artery occlusion and reperfusion, causing more edema and enhanced
infarct volume in brain tissue, but pre-treated animals with ascorbic acid significantly
suppressed neuronal damage from nondiabetic and diabetic rats. In addition, the vitamin
C pre-treatment suppressed the superoxide radical production, the caspase-3 activation and
the inflammatory cytokines TNF-α (tumor necrosis factor α) and IL-1β (interleukin 1 β) in
the peripheral ischemic area. It was possible to determine the upregulation of the sodium-
dependent vitamin C transporter (SVCT2) on neurons and capillary endothelial cells and
the presence of ascorbic acid in all nondiabetic cerebral tissue by immunohistochemistry
protocol, but this response was suppressed in diabetic tissue. Thus, Iwata and colleagues
concluded that vitamin C supplementation before brain ischemia and reperfusion acts
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to protect brain tissue from injury by means of an antiapoptotic and anti-inflammatory
mechanism [242].

The effects of vitamins C (100 mg/kg/d) and E (100 mg/kg/d), β-carotene (15 mg/kg/d)
and sodium selenite (0.2 mg/kg/d) combined and previously administered via gavage for
3 days on D-galactosamine-induced acute lung injury performed in rats were investigated
by Bayrak et al. [243]. Four groups were described: control (saline), D-galactosamine (D-
GaIN); D-GaIN + antioxidants and antioxidants. CAT, SOD, GSH and GPx activities were
evaluated to assess antioxidant activity and MDA was conducted as well to assess lipid
peroxidation. The tests were performed in lung tissue. CAT and SOD levels decreased as
follows: D-GaIN > antioxidants > saline > D-GaIN + antioxidants. GSH levels were found
as follows: D-GaIN + antioxidants > saline > D-GaIN > antioxidants. In the meantime, GPx
levels decreased in the following order: D-GaIN + antioxidants > antioxidants > saline > D-
GaIN. Lipid peroxidation increased in the following order: D-GaIN + antioxidants < saline
< antioxidants < D-GaIN. Histologically, D-GaIN group presented with extensive edema,
inflammatory infiltrate around the venules and honeycomb-like injury in the alveolar
area, while the antioxidants-treated group had improved pulmonary edema improved
but showed no effect in preventing pulmonary inflammation. The authors concluded
that oxidative stress drives this experimental model and the administration of combined
antioxidants induced antioxidant enzyme activities in the injured tissue, improving edema
but being unable to prevent pulmonary inflammation [147].

Catal et al. [244] used the same injury model using D-GaIN to test the effects of
antioxidant supplementation (100 mg/kg/day ascorbic acid +100 mg/kg/day α-tocopherol
+ 15 mg/kg/day β-carotene + 0.2 mg/kg/day sodium selenite) in the liver. The study
described four groups: control, control + antioxidants, D-GaIN and D-GaIN + antioxidants.
GSH and CAT activity were measured in the blood, with the higher GSH concentration in
the control group, followed by D-GaIN + antioxidants, control + antioxidants and finally
the D-GaIN group. CAT in blood decreased in the order: D-GaIN + antioxidants, control +
antioxidants, control and D-GaIN group. Meanwhile, CAT, SOD, GST and GPx activities
were evaluated in the liver tissue, and MDA was detected to assess lipid peroxidation.
Both SOD and GPx were more concentrated in D-GaIN + antioxidants, followed by control,
D-GaIN and control + antioxidants. GST in the liver tissue decreased in the following
order: control, control + antioxidants, D-GaIN + antioxidants and D-GaIN; while CAT was
higher in D-GaIN + antioxidants followed by control + antioxidants, control and D-GaIN.
Lipid peroxidation increased in the following order: control, control + antioxidants, D-
GaIN + antioxidants and D-GaIN. The D-GaIN animal model promoted an acute injury in
the liver with edema, necrosis and mononuclear cell infiltrate, but the administration of
antioxidants could enhance biochemical parameters and avoid severe histological damage,
e.g., necrosis and edema, in addition to suppressing some mononuclear infiltrate [237,238].
It is possible to conclude that, when it comes to an acute liver injury animal model, the
use of vitamin C, E, β-carotene and selenite combined presented antioxidant and anti-
inflammatory properties by modulating the plasma and hepatic levels of enzymes and
preventing/suppressing inflammatory features in the tissue.

5.3. Carotenoids

The bioavailability of carotenoids is related to absorption, which depends on the
release of carotenoids from the food matrix, diffusion in lipid emulsion, solubilization in
bile salts and pancreatic lipases and the formation of micelles to lead to transportation
across the microvilli. Then, carotenoids may be uptaken by intestinal mucosal cells and
incorporated in chylomicrons to finally reach the lymphatic system and circulation [245].

Several studies have been published focusing on carotenoid bioavailability [246–249].
It is clear now that carotenoid absorption is highly influenced by the food matrix and
its extraction from it. The alteration of the food matrix can enhance bioaccessibility, aug-
menting carotenoid bioavailability, e.g., the lutein in chopped spinach is higher than in
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whole-leaf spinach [250]. Thermal or non-thermal treatment also increases carotenoid
bioaccessibility [251,252].

The antioxidant and carotenoid bioavailability from microalgal biomass in a rat model
was evaluated by Rao et al. [253]. Biomass containing a 200 µM equivalent of β-carotene,
astaxanthin and lutein, derived from Spirulina platensis, Haematococcus pluvialis and Botry-
ococcus braunii, respectively, was dispersed in olive oil and administered to rats for 15 days.
The levels of carotenoids in plasma, liver and eye were examined by HPLC and confirmed
with mass spectroscopy. CAT, SOD and peroxidase were assessed to determine the an-
tioxidant activity and TBARS to assess lipid peroxidation. The carotenoids’ accumulation
was higher in the liver, followed by the eye and then in the plasma. The activity of all
antioxidant enzymes was enhanced after the administration of carotenoids and anti-lipid
peroxidation activity (TBARS) was higher in the groups supplemented with carotenoids
than in the control group. Astaxanthin from H. pluvialis showed better bioavailability and
accumulation than other groups and the H. pluvialis-fed group had a higher CAT, SOD
and peroxidase levels and anti-lipid peroxidation activity (TBARS) in the plasma and liver
when compared to S. platensis- and B. braunii-fed groups. These features point to H. pluvialis
as a feasible source of antioxidant carotenoids due their bioavailability, organ accumulation
and antioxidant properties [253].

Ravi and Baskaran [254] hypothesized that the bioavailability of fucoxanthin absorbed
from nanogels (NGs) was increased. Chitosan (CS) NGs were prepared using fucoxanthin
(FUCO) solubilized in glycolipid (GL) or not. Fucoxanthin bioavailability was assessed after
a single dose (48 h), after repeated doses for 14 days, and as dietary feeding (1 month) of CS-
NG with or without GL. Regarding single (pmol/mL/48 h) and repeated dose (nmol/mL)
studies, plasma FUCO was higher by 227.5% and 292.4% in CS-NGs + GL compared to CS-
NGs (−GL) and control groups. Concerning the dietary study, plasma FUCO (nmol/mL)
was higher by 57.5%, 400% and 287% in CS-NGs + GL compared to CS-NGs (−GL), in
seaweed and control groups. Fucoxanthin was determined in plasma and tissues by HPLC.
Lipid peroxidation was assessed using the TBARS technique, and was higher in the control,
sequenced by FUCO + CS-NG, and then FUCO + CS-NG + GL, a result which authors
attributed to the antioxidant activity protection from carotenoids. Likewise, CAT, GST and
SOD activities were higher in the group FUCO + CS-NG + GL, followed by FUCO + CS-NG
and with a minor concentration in the control group, corroborating that fucoxanthin could
act in vivo as an antioxidant and the GL inclusion enhanced fucoxanthin bioavailability.
Furthermore, the researchers also found that, beyond the well-known passive diffusion
of carotenoids as the means of absorption, GL and FUCO had an agonist action on the
transcriptional factor reported to regulate carotenoid absorption (PPARγ), which could
also activate the membrane-bound lipid transporter SRB1 (enterocyte apical membrane
transporter), positively regulating the active transport of carotenoids [254].

Campos et al. [255] evaluated the effects of lycopene on reducing the redox imbalance
and inflammation induced by cigarette smoke (CS) in a murine emphysema model. During
the in vivo study, 40 mice were divided into five groups: a control exposed to ambient
air (CG), a vehicle-control group that received 200 µL of sunflower oil by gavage (OG), a
group exposed to CS and two groups with lycopene administered (diluted in sunflower oil)
at doses of either 25 or 50 mg/kg/day prior to exposure to CS (LY25 + CS and LY50 + CS).
The animals were exposed three times a day to an amount of smoke equivalent to that of
12 cigarettes in a smoke chamber, and the total treatment time lasted 60 days. Animals
were euthanized 24 h after the 60th day of smoke exposure. Lipid peroxidation was
performed using TBARS and SOD, and GSH/GSSG ratios were used to assess antioxidant
potential. SOD activity showed no difference between CS and groups with lycopene
and was higher in CG and OG groups. CAT activity was higher in CS in comparison
to CG and OG groups, while in both groups with lycopene, CAT was lower than in the
CS group. GPx activity increased in the CS group compared to the CG and OG control
groups. An increase in GPx activity in the LY25 + CS group compared to the CG, OG
and CS groups was demonstrated. GPx activity was lower in the LY50 + CS group than
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in the LY25 + CS group. Regarding GSH/GSSG ratios, CS presented a lower ratio than
all groups and LY50 + CS showed a higher ratio. There was an increase in TBARS levels
in the CS group compared to the CG group. Conversely, administration of lycopene
reduced TBARS levels in the LY50 + CS group compared to the CS group alone. In addition
to the lycopene proven antioxidant activity, the authors also performed the analysis of
histopathological features of the pulmonary parenchyma, cell influx by bronchoalveolar
lavage and inflammatory cytokines from the bronchoalveolar fluid. Both lycopene-treated
groups presented a histological pattern similar to the CG instead of CS group, which
presented fragmented collagen fibers, alveolar septa rupture, increased airspace and other
emphysema-like features. Furthermore, lycopene-treated groups presented less leukocyte
influx in bronchoalveolar lavage when compared to the CS group and both lycopene-
treated groups presented a reduction in inflammatory mediators (IFN-γ, TNF-α and IL-10)
which were overexpressed in the CS group. Thus, besides antioxidant properties, lycopene
also presented anti-inflammatory action [255].

6. Data Interpretation

The results using different techniques of antioxidant assays might differ among each
other, both in vitro and in vivo, and can be influenced by the proper choice of the method
(such as misuse of a method, designed for an in vitro experiment but extrapolated to an
in vivo procedure) or by the nature of the assay, where the antioxidant in question could
trigger a reductive or oxidative response.

Since it was proposed for solid food evaluation by the QUENCHER approach (sub-
stances capable of absorbing energy from a fluorophore), an antioxidant capacity assay
should be able to be performed quickly, easily, cheaply and be reproducible [256]; there-
fore, many described methods were adapted to this approach (ABTS, DPPH, ORAC,
FRAP among others) [257–260]. Despite the advantages and previous applications of the
QUENCHER methods, these assays are not yet extensively used, probably due to a lack
of validation studies of these methodologies [257]. Another feature of an in vitro assay is
that it should be fairly correlated with in vivo assays. In vivo methods are usually used in
combination with other methods to corroborate the findings in studies, since some aspects
might be misinterpreted or lead to false results by the reactions in biological systems.

Other studies demonstrate the total concentration of an endogenous in vivo antioxi-
dant as a single marker of antioxidant activity. Nevertheless, some in vivo antioxidants
might be enhanced in stress situations and/or act as pro-oxidants instead. The targeting of
the oxidation is discussed, with some considering it as an aggravating factor, while other
situations present these species as targeting specific deleterious molecules/cells.

The protective effects of SOD have been demonstrated in animal models, where
SOD significantly correlates with the protection of the heart and brain from ischemic
injury [261,262]. The down regulation of SOD in diabetic mice correlated to escalation of di-
abetic nephropathy, while the treatment with mimetic SOD ameliorated these changes [263].
The effectiveness of SOD3 application has been proven in the treatment of skin infections
in in vivo and in vitro studies, acting as a regulator of signaling cells and inflammatory
cytokines [264,265]. However, SOD overexpression is associated with oxidative stress,
verified by increased lipid peroxidation in cell models presenting high levels of CuZn-
SOD [266]; along with that, another model in cell culture also demonstrated that CuZnSOD
overexpression results in hypersensitivity to oxidative stress, which could be compensated
by increased catalase [267] or GPx levels [268]. In addition, in mouse tumor cells, SOD3
overexpression increased vessel length and diameter, attenuating hypoxia, resulting in
better chemotherapy prognosis [201]. High levels of lipid peroxidation are associated with
Down syndrome, where the oxidative stress in this population might be due to elevated
CuZnSOD activity [269,270]. Similarly, higher concentrations of SOD and GPx were found
in people with coronary artery disease (CAD), which had a higher pro-oxidant-antioxidant
balance [271]. SOD1, GSH and GPx were elevated in patients with multiple myeloma (MM)
and increased resistance to bortezomib, the reference drug. The patients that presented
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this condition showed poor prognosis for MM [272]. Correspondingly, CAT expression can
be enhanced in response to acute stress, as in the presence of the oxidation intermediate
H2O2 [273–276].

Despite the controversial applications and methods of the GSH/GSSG ratio being
applied, the importance of this ratio in identifying stressful situations has proven it to be
valid [172,277]. Thus, the ratio GSH/GSSG could be used to evaluate oxidative stress.

Bioavailability of bioactive compounds is defined as the proportion of an antioxidant
that is digested, absorbed, and utilized in normal metabolism, which can be an issue,
since the absorption and transport processes of many of these compounds are complex
and not fully understood [231]. Several issues must be considered in the evaluation
of the bioavailability of antioxidant compounds. One of the most important issues to
address is the food matrix, since bioaccessibility is directly linked to it, thus affecting the
bioavailability [278]. Aside from that, chemical interactions with other phytochemicals and
biomolecules present in food interfere in the bioavailability of antioxidants [225,231].

While vitamins and carotenoids are usually assessed in isolated forms, several polyphe-
nols are assessed in combination with other compounds, or within the food matrix (as
described above in guarana, tea and coffee studies). Therefore, the studies should be clear
to state whether the food matrix improves or reduces the bioavailability of the compound
in question. The use of a lipid medium to evaluate carotenoids strongly augments the
bioavailability of this compound [249], while the aqueous medium enhances the bioavail-
ability of ascorbic acid, as it is a water-soluble vitamin [279]. Furthermore, the assessment
of more than one antioxidant at a time could influence the results of bioavailability. Ascor-
bic acid is known to reduce vitamin E phenoxyl radicals, recycling vitamin E [280]; while
this feature enhances vitamin E levels, it lowers ascorbate levels [281]. To correctly assess
the bioavailability of bioactive compounds, a few points should be taken into considera-
tion. Overall, the bioavailability of many bioactive compounds has been underestimated;
since some metabolites might have been ignored, some methods need to be optimized
and the conservation of samples that could be degraded under frozen storage should be
performed. Moreover, other aspects might modify bioavailability, such as the interaction
and modification of gut microbiota. The sample must be assessed in the proper site; for
example, most studies collect urine to determine bioavailability and some compounds are
excreted in bile preferentially. Additionally, personal differences in individuals, such as
the background diet of the studied population, can interfere in the results, which makes it
difficult to compare the studies [224].

It is important to realize that, despite natural antioxidants positively affecting health
status, they should not be compared or equated to pharmaceutical drug action, and, there-
fore, no clear pharmacological responses should be expected from them. Pharmaceutical
drugs act on a specific site, such as an enzyme, a receptor or a transporter. Preferably, the
action of a drug should be specific—that is, act on a unique target and induce a strong effect
allowing its clinical effects to be relatively easy to measure [282]. Food and food-derived
compounds have a multitude of actions that are not specific and their effects on health are
not easy to determine [283], and therefore, this extrapolation is erroneous.

7. Conclusions

Antioxidant assessment in vitro and in vivo are largely used to determine the antioxi-
dant capacity in diverse foods and biological samples. However, due to the lack of method
and interpretation standardization, there are non-comparable results and untrustworthy
information. The careful choice of method, and its proper application, are fundamental to
achieving reliable results.

Regarding antioxidant activity methodologies that are widely used, the ORAC method
has the most applicable correlation to food intake in the database; however, this assay
is an expensive method, while other methods, such as ABTS, have related results with
minor costs. When antioxidant activity is performed in in vivo assays, the isolated use of
a method can be controversial. Diverse techniques have results that correlate with both
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the antioxidant protective status and the stress markers. The bioavailability of secondary
metabolites or bioactive compounds also needs to be analyzed properly. It is important to
evaluate the kinetics of the substance to successfully determine the site of sample collection
and analysis, as well the use of adequate methods for these determinations.
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