
ARTICLE

Ensembled deep learning model outperforms
human experts in diagnosing biliary atresia from
sonographic gallbladder images
Wenying Zhou 1,12, Yang Yang 2,12, Cheng Yu 3,12, Juxian Liu 4,12, Xingxing Duan 5, Zongjie Weng6,

Dan Chen 7, Qianhong Liang8, Qin Fang 9, Jiaojiao Zhou 4, Hao Ju 10, Zhenhua Luo 11, Weihao Guo1,

Xiaoyan Ma7, Xiaoyan Xie 1,13✉, Ruixuan Wang 2,13✉ & Luyao Zhou 1,13✉

It is still challenging to make accurate diagnosis of biliary atresia (BA) with sonographic

gallbladder images particularly in rural area without relevant expertise. To help diagnose BA

based on sonographic gallbladder images, an ensembled deep learning model is developed.

The model yields a patient-level sensitivity 93.1% and specificity 93.9% [with areas under the

receiver operating characteristic curve of 0.956 (95% confidence interval: 0.928-0.977)] on

the multi-center external validation dataset, superior to that of human experts. With the help

of the model, the performances of human experts with various levels are improved. More-

over, the diagnosis based on smartphone photos of sonographic gallbladder images through a

smartphone app and based on video sequences by the model still yields expert-level per-

formances. The ensembled deep learning model in this study provides a solution to help

radiologists improve the diagnosis of BA in various clinical application scenarios, particularly

in rural and undeveloped regions with limited expertise.
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B iliary atresia (BA) is a rare disease of infancy that affects
both intrahepatic and extrahepatic bile ducts1, with the
prevalence rate of about 1 in 5000–19,000 infants all over

the world2–6. It is the most common cause for liver transplan-
tation in infants aged <1 year7. Optimal clinical outcome often
needs timely diagnosis and Kasai portoenterostomy (KPE) sur-
gery before age 2 months, which is associated with longer native
liver survival8–10. However, early identifying BA remains chal-
lenging in infants with cholestasis. Researchers have endeavored
to screen the direct bilirubin concentration11,12 or stool color4,10

in newborns and infants for early identification of BA and
showed promising results (with sensitivities of 97.1–100%).
Recently, serum matrix metalloproteinase-7 was reported as an
effective diagnostic biomarker for BA, with sensitivity of
97.0–98.7%13,14. However, these tests are high resource-
consumed and might be impractical in many countries and
areas with underdeveloped healthcare conditions.

Ultrasound (US) examination, due to its radiation-free and
low-cost noninvasive property, is still the most widely used
method for initial detection of BA in jaundiced infants particu-
larly in developing Asian countries like China and India15–18.
Gallbladder abnormality is one of the most popular sonographic
features used to identify BA19–22. As previously reported, gall-
bladder abnormalities can yield both sensitivities and specificities
>90% in an experienced hand in the diagnosis of BA23. However,
it is still difficult to make a correct diagnosis by US examination
mainly due to the lack of expertise in both diagnosis and man-
agement of BA in most hospitals particularly located in under-
developed regions. Consequently, a substantial proportion of
potential BA patients are often misdiagnosed followed by inap-
propriate treatments, and the average age of BA patients at KPE
surgery was delayed being >70 days in China24.

To improve the accuracy of US diagnosis of BA in under-
developed countries or regions, one potentially promising way is
to make use of the artificial intelligence (AI) techniques. Among
the AI techniques, deep learning models, particularly the con-
volutional neural networks (CNNs), have been shown superior or
comparable to human experts in many medical data analysis
tasks, such as the diagnosis of skin cancers, localization and
identification of polyps, axillary lymph node status in early-stage
breast cancer, and lung cancer screening25–31. However, as far as
we know, no AI model based on sonographic images has been
developed for the diagnosis of BA. Considering the fact that US
examination is very common in both primary and tertiary hos-
pitals in China, any well-developed AI model based on sono-
graphic gallbladder images would alleviate the shortage of
expertise in primary hospitals and may improve the diagnostic
accuracy of the rare disease.

The purpose of this study was to develop an ensembled deep
learning model (EDLM) for automatically and accurately identify-
ing BA in infants with conjugated hyperbilirubinemia, based on
limited number of sonographic gallbladder images collected from
multiple centers and to help doctors improve their diagnosis of BA.
The EDLM yields a patient-level sensitivity 93.3% and specificity
85.2% on the internal validation dataset, and sensitivity 93.1% and
specificity 93.9% [with area under the receiver operating char-
acteristic curve (AUC) of 0.956 (95% confidence interval:
0.928–0.977)] on the multi-center external validation dataset,
superior to that of human experts. With the help of the model, the
performances of human experts with various levels are improved.
Moreover, the diagnosis based on smartphone photos of sono-
graphic gallbladder images through a smartphone app and based on
video sequences by the model still yields expert-level performance.
The EDLM provides a solution to help radiologists improve the
diagnosis of BA in various clinical application scenarios, particularly
in rural and undeveloped regions with limited expertise.

Results
Internal evaluation of the ensemble deep learning approach.
The ensemble deep learning approach was first evaluated in a
fivefold cross-validation manner on the training cohort. Specifi-
cally, the training cohort was partitioned into five complementary
subsets of an equivalent number of patients. Then, every time
four of the subsets were used as a training dataset to train an
ensembled deep learning model, and the ensembled model was
then applied to predict the category of each image in the
remaining one (testing) subset. Such a process was repeated five
times, each time using a unique subset as the testing dataset.

At both the image level and the patient level, the EDLM
outperformed the two experts in diagnosing BA, with the image-
level sensitivity 88.2%, specificity 89.8%, and accuracy 89.4% of
the model versus the sensitivity 93.8%, specificity 53.7%, and
accuracy 63.7% of the most experienced expert, and the patient-
level sensitivity 93.3% and specificity 85.2% of the model versus
the sensitivity 90.0% and specificity 57.6% of the most
experienced expert (Table 1). The receiver operating character-
istic (ROC) curves of the model at both levels also confirmed its
superior performance over human experts [AUC of 0.952 versus
0.738 and 0.837 at the image level, 0.953 versus 0.738 and 0.813 at
the patient level, respectively] (Fig. 1). The κ value of the
agreement between the two human experts in the identification of
BA was 0.358 at the image level and 0.306 at the patient level.

Robustness of the AI models to various scanning conditions.
Considering that the trained deep learning model could be

Table 1 The diagnostic performance of the ensembled deep learning model (in a cross-validation manner) and two human
experts on the internal dataset.

AUC Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%) P valuea

Image level
AI Model 0.952 (0.945, 0.959) 88.2 (86.0, 90.2) 89.8 (88.6, 90.9) 89.4 74.1 95.8 —
Expert A 0.837 (0.825, 0.849) 76.3 (73.4, 79.0) 91.0 (89.9, 92.1) 87.4 73.9 92.0 <0.001
Expert B 0.738 (0.723, 0.752) 93.8 (92.1, 95.3) 53.7 (51.8, 55.5) 63.7 40.3 96.3 <0.001

Patient level
AI Model 0.953 (0.939, 0.964) 93.3 (90.1, 95.8) 85.2 (82.6, 87.6) 87.6 72.0 96.9 —
Expert A 0.813 (0.789, 0.835) 65.8 (60.4, 70.9) 96.8 (95.3, 97.9) 87.8 89.3 87.4 <0.001
Expert B 0.738 (0.711, 0.763) 90.0 (86.2, 93.0) 57.6 (54.1, 61.0) 67.0 46.8 93.4 <0.001

Note: 95% confidence intervals are included in brackets. Source data are provided as a Source data file.
AI artificial intelligence, AUC area under receiver operating characteristic curve, PPV positive predictive value, NPV negative predictive value.
aThe P values were from the comparison between the AUC of the ensemble deep learning model and the AUCs of two human experts. Differences between various AUCs were compared using a
Delong test.
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deployed to various hospitals in which US scanning conditions
might be different from those of the data for model training, the
ensemble deep learning approach was also evaluated in terms of
its robustness to screening machines, transducer frequencies, and
scanning period. The same training procedure was applied to
train each ensemble model as for the internal evaluation.

In the training cohort, images were retrospectively divided into
three subsets based on whether the images were obtained from
machines of brand Mindray, Supersonic, or the others (including
TOSHIBA, Siemens, Samsung, HITACHI, ALOKA, Philips, GE,
and Esaote) or into two subsets based on whether the images were
obtained by transducers of frequencies ≥14MHz or by transdu-
cers of frequencies <14MHz or into two subsets based on
whether the images were obtained before year 2018 or thereafter.
For each scanning factor, with every unique subset of images as
the validation dataset and the remaining subset(s) as the training
dataset, the sensitivity of the trained EDLM was roughly in
between those of two human experts (Supplementary Tables 1
and 2 and Supplementary Figs. 1 and 2), supporting that the
EDLMs were robust enough to be deployable to different medical
centers and for different screening machines. Furthermore, when
using images in relatively moderate quality (with frequency
<14MHz, scanning period ≤2018, Supersonic+ others or Mind-
ray+ others) to train the model and using the remaining subset
(s) for validation, we found that the diagnostic performance of the
model was higher than that when the training set and the testing
set were reversed (AUC 0.931 versus 0.835 for transducer
frequency, 0.900 versus 0.832 for screening time, 0.950 or 0.807
versus 0.787 for screening machine, respectively at the image
level; Supplementary Table 1), which indicates that the EDLM
might still work well for new screening machines, which often
generate images in higher quality.

External validation of the EDLM. More strictly, the effectiveness
of the EDLM was evaluated by external validation with US images
obtained from the other six hospitals. The EDLM yielded an
image-level accuracy 92.3%, sensitivity 88.6%, specificity 93.7%,
positive predictive value 84.6%, and negative predictive value
95.5%, respectively, clearly outperforming the three experts whose
diagnosis sensitivities were 77.1, 69.5, and 87.3%, and specificities
are 83.5, 90.2, and 90.2%, respectively (Table 2, rows 1–4). The

superior performance of the model could also be seen from the
ROC curve of the EDLM (AUC 0.942 versus 0.803, 0.799 and
0.888, all P < 0.05; Fig. 2a). Specifically, there were 20 images
misdiagnosed by three experts but correctly diagnosed by the
model. Of the 20 images, 12 images were false negatives (BA
misdiagnosed as non-BA) and 8 images were false positives (non-
BA misdiagnosed as BA). On the contrary, there were also 20
images misdiagnosed by the model but correctly assessed by three
experts on the external validation dataset, of which 14 images
were false positives and 6 images were false negatives. Overall,
experts missed more BA cases than the AI model.

When using the majority vote over the predicted classes of
multiple images for each patient, the EDLM achieved an accuracy
93.6%, sensitivity 93.1%, specificity 93.9%, positive predictive
value 88.8%, and negative predictive value 96.3% (Table 2, row 8).
Another way to obtain patient-level performance was from the
diagnosis of a single image for each patient, where the single
image was chosen from the multiple images of the patient by a
radiologist based on the imaging quality (e.g., choosing the
images with clear contour of gallbladder, less blurry, better view
of gallbladder, etc.). Such single-image diagnosis by the EDLM
achieved an accuracy 91.6%, sensitivity 87.3%, specificity 93.9%,
positive predictive value 88.1%, and negative predictive value
93.4% (Table 2, row 15). Both performances of the majority vote
and the single-image based diagnosis at the patient level by the
EDLM outperformed those of all the three experts (all P < 0.05),
as seen in Table 2 (rows 9–11 and rows 16–18) and in the ROC
curve (Fig. 2b, c). In addition, the κ value of the agreement
between the three experts in the identification of BA ranged from
0.570 to 0.656 at the image level, 0.592 to 0.683 at the patient level
diagnosed with all images, and 0.603 to 0.672 at the patient level
diagnosed with single image.

Combination of the diagnosis from the EDLM and expert.
Considering the potentially serious consequence of delayed
treatment for infants with BA, it is desirable to improve the
sensitivity of diagnosis while keeping the specificity at a high
level. One possible way to achieve such a goal is to combine the
diagnosis of a human expert with that of the deep learning model.
Here on the external validation dataset, each patient was diag-
nosed with BA if either an expert or the EDLM thought so. With

Fig. 1 The ROC curves of the ensembled deep learning models for the diagnosis of biliary atresia on the internal cross-validation dataset with two
human experts’ performance for comparison. a The ROC curve of the model at the image level. b The ROC curve of the model at the patient level. The
performance of the two experts is represented by individual solid circle, which is inferior to that of the ensembled deep learning model. The blue star
represents the performance of the model with the default threshold (0.5) to binarize outputs of the model. Source data are provided as a Source data file.
ROC receiver operating characteristic.
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such combined diagnosis, the sensitivities of three human experts
at the image level were improved substantially (Expert C,
increased from 77.1% to 95.3%; Expert D, increased from 69.5%
to 93.2%; Expert E, increased from 87.3% to 95.8%), although the
specificities of their diagnosis decreased moderately (Expert C,
decreased from 83.5% to 80.5%; Expert D, decreased from 90.2%
to 86.1%; Expert E, decreased from 90.2% to 86.1%) (Table 2,
rows 5–7). Similar findings were obtained when tested at the
patient level with multiple images (Table 2, rows 12–14) and at
the patient level with a single image (Table 2, rows 19–21). These
findings suggest that the combined approach outperforms not
only each expert but also the EDLM in sensitivity, as confirmed
from the ROC curve in Fig. 2d (also see Supplementary Fig. 3),
particularly in reducing the misdiagnosis of BA.

Diagnosis based on smartphone photos of sonographic images
by the EDLM. In reality, the sonographic machines used for
medical examination in hospitals are often not connected to the
internet, and it may not be convenient or allowed to extract the
original US images from the machine system. To avoid such

obstacle when applying the deep learning model in many medical
centers particularly from rural areas, one simple solution is to
take a photograph of the sonographic image by a smartphone and
then send the photo to a remotely located AI system for intelli-
gent diagnosis. However, the image quality of the photograph
would be inevitably affected by this imaging process, e.g., with
more noise included or shape and texture of gallbladder regions
deformed (Fig. 3a right, Fig. 3b right). It would be desirable if the
deep learning model could still work well when applied to the
analysis of such smartphone photos.

To evaluate the robustness of the EDLM in this case, one
original image per patient (as mentioned above for the single-
image diagnosis) from the external validation dataset was
pictured by a smartphone (HUAWEI P10, Rear Camera: 12
million pixels; Fig. 3a, b), with the original image information
kept as much as possible during picturing (e.g., by making camera
viewing direction perpendicular to the machine screen). Smart-
phone photos were saved in the JPEG format. As done for the
original images, the region of gallbladder was extracted from each
photograph and then fed into the EDLM for intelligent diagnosis.

Fig. 2 The performance of the ensembled deep learning model, human experts, and the combinations of model and humans for the diagnosis of biliary
atresia on the external validation dataset. a The ROC curve of the model at the image level. b The ROC curve of the model at the patient level based on
majority vote. c The ROC curve of the model at the patient level based on single image with best image quality for each patient. d The performance of the
combined deep learning model and human expert (circles) at the image level. The blue star represents the performance of the model with the default
threshold (0.5) to binarize outputs of the model. Source data are provided as a Source data file. ROC receiver operating characteristic.
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Fig. 3 Diagnosis based on smartphone photos of sonographic images by the deep learning model. a An exemplar original image from a patient with
biliary atresia (left) and the smartphone photo of the image (right). b An exemplar original image from a patient without biliary atresia (left) and the
smartphone photo of the image (right). c The receiver operating characteristic curve of the model for the diagnosis of biliary atresia on the smartphone
images of external validation dataset, with three human experts’ performances on the original clean external validation dataset for comparison. Source data
are provided as a Source data file.
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Although the EDLM was trained with the original clean images
from the training cohort, the performance of the smartphone
images by the model resulted in an accuracy 86.9%, sensitivity
89.2%, and specificity 85.7% (Table 2, row 22). The AUC value
(0.902) was slightly lower than that tested with the original
images (AUC= 0.930), with no statistical difference between the
two (P= 0.159), but the ROC curve (Fig. 3c) together with the
prediction performance (Table 2, row 22) suggested that such
performance was still comparable to the best performance of the
human expert (AUC: 0.902 versus 0.863, P= 0.163) and
outperformed those of the other two human experts (AUC:
0.902 versus 0.796 and 0.815, both P < 0.05) who made diagnoses
based on the original clean images.

Considering the promising external validation result based on
smartphone photos, a smartphone app was developed and
released (Fig. 4), from which users could freely upload photos
of US images and interactively locate the gallbladder regions. The
software would send photos to and collect prediction results from
a cloud platform running the EDLM. An initial prospective study
(sonographic gallbladder images were from multicenter photo-
graphed by different radiologists) with 71 BA patients and 103
non-BA patients (1 photo per patient) showed that the app
performed similarly well, with an accuracy 85.6%, sensitivity

85.9%, specificity 85.4%, and AUC value 0.856. The small
variation in performances between the prospective study and
the above external validation was probably due to the
uncontrolled picturing conditions in the prospective study, where
different users might use different smartphones in varying
lighting environments. Such smartphone app provides the
opportunity to help clinicians improve their diagnostic perfor-
mance particularly for hospitals in rural areas.

Diagnosis based on sonographic videos by the EDLM. In
practice, human radiologists make diagnoses not based on
observing one or a few static sonographic images but by dyna-
mically observing the gallbladder region with real-time US
scanning. Also, it would be inconvenient for radiologists to select
one or a few static images and then draw bounding boxes sur-
rounding the gallbladder before sending the images to the intel-
ligent diagnosis system. Therefore, it would be ideal if the
intelligent diagnosis system can make fully automatic diagnosis
just based on the recorded video sequences of sonographic ima-
ges. To achieve this goal, we trained an auto segmentation model
and an initial prospective study was performed with a collection
of 34 sonographic videos obtained from 34 infants (17 with BA
and 17 without BA). The diagnostic performance of EDLM was

Fig. 4 The user interface for each step of the smartphone app. Firstly, the users open the app and take a photo of gallbladder from the screen of a
sonographic machine. The photo should include the maximum longitudinal section of gallbladder image obtained by high frequent probe and exclude
structures other than gallbladder as much as possible. The users then press “Ok” to send the photo to a cloud platform. The outcome of BA or non-BA will
show on the smartphone screen in a few seconds. BA biliary atresia.
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compared with performances of three human experts, each of
whom independently made diagnoses by reviewing videos and
was blinded to other clinical information.

Since only part of the images in each video contains clear
gallbladder regions and the intelligent diagnosis system make
decisions based on the gallbladder image region only, such
images and corresponding gallbladder regions need to be
automatically selected and localized for automatic diagnosis of
BA from each video. The automatic localization of gallbladder
regions was obtained by the well-known semantic image
segmentation model DeepLab32. The segmentation model was
trained on 2383 sonographic images, which were randomly
selected from the original 3705 training images and then
annotated by roughly drawing the boundary of the gallbladder
regions. For each video, the trained segmentation model was
applied on each video frame, and 20% frames with relatively
large segmented gallbladder regions were selected for intelligent
diagnosis. The rectangular region tightly containing the seg-
mented largest gallbladder region was cropped from each
selected frame and then sent to the intelligent diagnosis system
for BA diagnosis. The video was diagnosed as BA if >20%
selected frames were diagnosed as BA by the EDLM (Fig. 5).

Based on the fully automatic diagnosis process, 16 out of the 17
BA videos were correctly diagnosed as BA (sensitivity 94.1%), and
16 out of the 17 non-BA videos were correctly diagnosed as non-
BA (specificity 94.1%). Compared to the diagnostic performances
from the experts (Table 2, last 3 rows), the EDLM was
comparable to three experts (all P > 0.05). More evaluations
showed that the diagnostic performance of the EDLM changed
little when the model hyperparameters varied, such as changing
the percentage of the selected images from 20 to 10% and
changing the percentage of diagnosed BA images from 10 to 30%,
suggesting strong robustness of the EDLM.

Initial attempt to interpret AI diagnosis. One widely used method
to interpret the black-box AI diagnosis is the class activation map
(CAM), which can provide the attended image region(s) for each
specific prediction from the model33. Based on the attended region
from CAM, people may infer why the model makes the current
prediction for each image (e.g., “because the model focuses on the
gallbladder region and therefore uses the visual features within this
region to make the decision”). If the attended region obtained by
CAM covers or partly covers the regions used by human experts for
diagnosis (“Consistent” in Supplementary Table 3), it may improve
the sense of trust in the AI model for the current diagnosis. Other-
wise, if the attended region obtained by CAM does not cover any
region of interest used by experts (“Inconsistent” in Supplementary
Table 3), this may indicate that the AI model does not use appro-
priate visual features to make current (either correct or incorrect)
decision. For each image in the external validation dataset, there were
five activation maps generated by five individual models within the
EDLM. Within the activation maps whose associated individual
models had the same classification result as that of the EDLM, the
activation map that had the highest mean activation was selected for
consistency assessment in comparison with human experts. Of all the
external validation images, detailed inspection showed that 99.0%
were consistent in decision-making between the model and human
experts. Of the correctly diagnosed external validation images, 99.5%
were consistent (Supplementary Table 3, row 3; also see Fig. 6a) and
0.5% were inconsistent (Supplementary Table 3, row 3; Fig. 6b); Of
the incorrectly diagnosed external validation images, 100% were
consistent (Supplementary Table 3, row 6; Fig. 6c).

Discussion
In this multicenter study, we trained and validated a state-of-the-
art EDLM for the diagnosis of BA based on sonographic

Fig. 5 The diagnostic process for each sonographic gallbladder video by the ensembled deep learning model. BA biliary atresia.
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Fig. 6 The attended regions obtained by the class activation map during diagnosis by the individual model that was within the ensembled deep
learning model but had strong activation and the same classification result as that of the ensemble deep learning model (with reddish regions
corresponding to more attention in the heatmap on each row). a The image from an infant with BA diagnosed correctly by the model, and the region of
interest was consistent between the model and human experts. b The image from an infant with BA diagnosed correctly by the model, and the region of
interest was inconsistent between the model and human experts. c The image from an infant with non-BA diagnosed incorrectly by the model, and the
region of interest was consistent between the model and human experts. BA biliary atresia.
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gallbladder images. The EDLM outperformed human experts on
both internal and external validation cohorts. Moreover, com-
bined with the prediction of the EDLM, the sensitivities of human
experts in identifying patients with BA were substantially
improved from 69.5–87.3 to 93.2–95.8% in image-level diagnosis
and were even better than that of the EDLM alone. A higher
sensitivity would lead to fewer missed diagnosis and hence benefit
patients with suspected BA in clinical practice. Hence, all these
findings indicate that the EDLM could not only be used to help
diagnose BA in primary hospitals lacking experts but also help
experienced experts to further improve their performances in the
diagnosis of BA.

We also evaluated the EDLM with gallbladder photos taken by
a smartphone. Although the image quality of smartphone photos
was inevitably downgraded compared to the original clean ima-
ges, surprisingly, the model still performed well, with similar
accuracy but higher sensitivity than the experts. Another pro-
spective study with the developed and released smartphone app
showed similar diagnostic performance. This opens an opportu-
nity of remote and convenient online diagnosis especially for
rural and underdeveloped regions without experts. In China,
sonographic machines for medical diagnosis are usually not
allowed to connect to the internet. However, the expert-level
performance of the EDLM on the smartphone app, together with
the nation-wide mobile networks and low-price smartphones,
would make it easy and convenient for clinical staff even in
remote underdeveloped areas to upload gallbladder photos with
smartphones for online and real-time diagnosis consultancy. Such
photo-based online consultancy would largely improve the
diagnostic accuracy particularly for those radiologists with less
experience or from underdeveloped regions.

In addition, an initial video-based intelligent diagnosis showed
that the EDLM, together with automatic selection of relevant
images and localization of gallbladder regions, could yield similar
diagnostic performance compared to those of human experts. Such
video-based diagnosis avoids the manual effort in image selection
and gallbladder region localization by radiologists and can be
potentially embedded into the existing diagnostic US system for
fully automated diagnosis of BA during medical examination.

The initial attempt to interpret the model’s predictions showed
that the model also attended to the gallbladder regions during
diagnosis as human experts did. However, among a small pro-
portion of the correct diagnoses, the model made decisions just
based on the visual features outside the gallbladder regions. There
was 0.5% of inconsistency among correctly diagnosed external
validation images, which indicates that the model can make a
correct diagnosis by recognizing features other than gallbladders
in some circumstances. This suggests that there might exist cer-
tain non-gallbladder features associated with BA. More investi-
gation is necessary to explore the potentially novel biomarkers for
the diagnosis of BA.

Deep learning models are usually powered by a large scale of
dataset34. However, BA is a rare disease with low incidence,
making it challenging to obtain large dataset as for other dis-
eases27–30. To alleviate the potential over-fitting issue due to
limited training dataset, we applied a few numbers of effective
strategies for model training, including the ensemble learning,
data augmentation, class weight for the imbalanced dataset
between the BA and the non-BA classes, dropout of neurons
during learning, and transfer learning from a pre-trained deep
learning model based on large-scale natural images. Experiments
showed that these strategies largely improved the generalizability
of the deep learning model particularly when evaluated on the
external validation dataset, suggesting that such strategies may be
adopted in prospective studies relevant to medical image
classification.

In most of this study, the gallbladder region in each image
needs to be manually located with a form of bounding box pro-
vided by radiologists, which would inevitably increase burden on
human experts during diagnosis. This issue could be avoided by
automatically detecting the region of gallbladder from each
image, which is feasible based on the recently developed deep
learning models like Faster R-CNN35 and will be part of the
future work. Furthermore, the initial investigation of model
interpretation told us that, if there were vascular or intestinal gas
interference around the gallbladder, the model might mistakenly
identify these interfering tissues as gallbladder and made a
diagnosis partly based on these non-gallbladder regions. Auto-
matic precise localization of gallbladder could make the AI model
focus on the correct gallbladder region and therefore potentially
further improve the performance of intelligent diagnosis. This
may be achieved by the recently developed deep learning-based
semantic image segmentation models like the U-Net36 and Dee-
pLab32. The more automatic precise localization of gallbladder
regions would also enable more accurate video-based intelligent
diagnosis. In addition, recent study37 showed that the AI per-
formance could be improved when using three-dimensional
sonographic data. Therefore, one possible future work is to use
sonographic volume data to potentially further improve the
performance of the deep learning model.

In conclusion, we developed an EDLM that outperforms
human experts in the diagnosis of BA based on a set of relatively
small-scale sonographic gallbladder images acquired from five
different hospitals. The generalization capability of the model was
confirmed with an external validation dataset obtained from
another six hospitals. Moreover, this model is potentially
deployable in multiple application scenarios, such as remote
diagnosis based on a smartphone app to conveniently help the
unexperienced radiologists in primary hospitals, diagnosis based
on the combined predictions of the model and human radi-
ologists to further improve the diagnosis sensitivity even for
experienced radiologists in tertiary hospitals. To the best of our
knowledge, this is the first deep learning model for the diagnosis
of BA based on sonographic gallbladder images. Since there are
still lots of underdeveloped regions without sufficient healthcare
support and experts for diagnosing BA all over the world, the
application of the EDLM in clinical practice will benefit those
jaundiced infants with suspected BA.

Methods
Patients and data collection. This multicenter study was approved by the insti-
tutional Clinical Research Ethics Committee of the First Affiliated Hospital of Sun
Yat-sen University, and written informed parental consent was obtained before
collecting the sonographic images from each patient. Prospective research of this
study was also registered at www.chictr.org.cn (ChiCTR1800017428).

Infants age <5 months with hyperbilirubinemia (serum direct bilirubin level
>17.1 μmol/L and the ratio of direct to total bilirubin level >20%)38 and suspected
of BA were initially selected from 11 hospitals (Supplementary Note 1) between
January 2010 and June 2019 (Fig. 7). The exclusion criteria for patients were as
follows: (1) the final diagnosis was unclear; (2) jaundice was caused by bile duct
obstruction to which abdominal mass compression gave rise; (3) the patient had a
history of abdominal surgery; and (4) the visualization of gallbladder was
indeterminate. For the patients satisfying (4), the diagnosis was highly suggestive of
BA and referral to the experienced centers for further examination would be
recommended. In order to expand the sample size, we also randomly selected some
infants from the same 11 hospitals who did not have any known liver diseases and
were considered as non-BA with a normal transcutaneous bilirubinometer test.
Finally, a total of 1100 patients with suspected BA and 339 infants without jaundice
were enrolled. Of the 1100 patients with suspected BA, 432 infants had BA and 668
infants had non-BA. All diagnoses were confirmed by intraoperative
cholangiography under laparoscopy, percutaneous US-guided
cholecystocholangiography, liver biopsy, or follow-up. The demographic
characteristics and serum bilirubin level of all the included infants are listed in
Supplementary Table 4.

All images were reviewed by a senior sonography expert (L.Z.) and those in
poor quality were excluded. We finally retrospectively and prospectively obtained
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3705 sonographic gallbladder images (925 from 330 patients with BA, 2780 from
811 patients without BA) from the principal hospital and 4 collaborating hospitals
as the training cohort and prospectively obtained 841 sonographic gallbladder
images (236 images from 102 patients with BA and the other 605 images from 196
patients without BA) from the remaining 6 collaborating hospitals as external
validation cohort (Supplementary Table 5). Considering that each image included
irrelevant regions (e.g., dark regions close to image boundaries and text
information around the top regions), a bounding box containing the entire
gallbladder was manually drawn with the free software ImageJ (version 1.52a) by
two radiologists (W.Z. and W.G.), and then a senior doctor (L.Z.) double-checked
and ensured that the bounding box was selected appropriately.

Diagnosis by human experts. In order to evaluate the efficacy of the deep learning
approach, the performance of human experts was obtained in advance for direct
comparison between the AI model and humans. To obtain the patient-level
diagnostic performance, each random-ordered patient’s image data in the training
cohort was presented and diagnosed as either BA or non-BA independently by
each of the two human experts (J.L. and C.Y.), and each patient’s image data in the
external validation cohort was presented and diagnosed independently respectively
by the other three human experts (Z.W., D.C. and X.D.), both only based on all the
available (often 1–3) images for each patient diagnosis. All five experts had >10
years of experience with pediatric US. Similarly, to obtain the image-level diagnosis
performance, each image without any patient ID information was presented

randomly and diagnosed independently by the same experts as for the patient-level
diagnosis. All these five experts have not read any of the patient images before
attending this study and had no access to any other patient information (e.g.,
clinical history, other imaging results, etc.) during their diagnoses.

Ensembled deep learning framework. In this study, two types of effective AI
techniques called deep CNNs and ensemble learning were adopted and combined
together for intelligent diagnosis of BA. Multiple (e.g., 5 here) CNNs were trained
with the training cohort and then the output predictions of these CNNs were
averaged to predict the class label of each image in either the internal or the external
validation dataset, resulting in an EDLM (Fig. 8a). Specifically, the training cohort
was randomly separated into five complementary subsets (i.e., fivefolds), each
containing the images of an equivalent number of patients. Then, each CNN was
trained with four subsets and the training was stopped when the performance of the
CNN started to decrease on the remaining subset. The subset used to determine the
time point to stop the training of each CNN was unique (e.g., subset 1 for first CNN,
and subset 2 for second CNN), which also means that the combination of four
subsets for training each CNN was also unique (e.g., subset 2–5 for first CNN, and
subsets 1, 3–5 for second CNN). In this way, we not only solved the issue about
when to stop training a CNN but also made the five trained CNNs a bit more
diverse from each other, where the diversity among CNNs would improve the
generalization ability of the ensembled model as confirmed in the empirical
evaluation. The adopted CNN model Se-ResNet (Supplementary Fig. 4) and

Fig. 7 Flow chart of the study. For each infant, sonographic gallbladder images were acquired either prospectively or retrospectively. The prospective
image acquisition needed to satisfy the following criteria: (1) images were acquired after the patient fasted for at least 2 h; (2) gallbladder was detected by
high-frequency transducers (>7MHz); (3) a complete outline of the gallbladder long axis was included; (4) there was no mark or caliper within the image;
(5) the depth of the image was <5 cm; (6) the image resolution was large enough (often larger than 300-by-300 pixels); (7) at least 2 independent
gallbladder images were obtained from each patient. When images were acquired retrospectively, at least the criteria (1), (2), (3), (4), and (6) need to be
satisfied.
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the training of each Se-ResNet (Fig. 8b) are described in detail in Supplementary
Notes 2 and 3. Note that, although the training cohort was the whole internal
dataset (3705 images) for the external validation, the training cohort for each of
the five internal cross-validation datasets was the remaining four subsets. That
means, for the internal validation, every time four of the subsets were used as a

training cohort (which is divided into five new subsets) to train an ensembled deep
learning model, and the ensembled model was then applied to predict the category
of each image in the remaining one (internal validation) subset. Such a process was
repeated five times, each time using a unique subset as the internal validation
dataset.

Fig. 8 The ensembled deep learning approach for this study. a The ensembled deep learning framework. b The training process for each individual CNN
model. CNN convolutional neural network.
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Comparing with the existing ensemble strategies using all training data for each
individual model, the proposed ensemble strategy was better than existing ones,
which was supported with different CNN backbones (Supplementary Note 4 and
Supplementary Tables 6–9).

Measurements of the diagnostic performance. The performance of each EDLM
was evaluated on the test (validation) dataset, with the test dataset varied for
different purposes (as seen in the “Results” section). By comparing the predicted
classes from the model with the ground-truth classes obtained in advance over all
the test images, the sensitivity, specificity, accuracy, positive predictive value,
negative predictive value, and AUC of the ensembled model were calculated. The
confidence intervals for sensitivity and specificity were calculated using the “exact”
Clopper–Pearson confidence interval. At the image level, the ROC curve of the
EDLM was generated by varying the threshold for the output prediction of the
model, where the threshold was used to binarize the model’s real-number output.
Different thresholds could lead to different binary predictions of the model for each
image and therefore resulted in different sensitivities and specificities on the test
dataset. Similarly, at the patient level, a specific threshold would lead to the specific
binary predictions for the (often multiple) images of each patient and therefore
resulted in one specific binary prediction for each patient after the majority voting
over the multiple binary predictions of the images from the same patient. Then, by
varying the thresholds, one ROC curve would be generated based on the sequence
of sensitivities and specificities at the patient level. The confidence interval for the
AUC was calculated using the Binomial exact confidence interval. In addition, for
comparison, the above measures were also obtained for human experts based on
their diagnostic results and the ground-truth classes for the test images.

Statistical analysis. Differences between various AUCs were compared using
Delong test. The agreement between human experts was assessed by weighted κ
statistics. The agreement was graded as follows: poor (κ < 0.20), moderate (κ=
0.20–<0.40), fair (κ= 0.40–<0.60), good (κ= 0.60–<0.80), or very good (κ=
0.80–1.00).

All statistical tests were two sided and P values < 0.05 indicated statistically
significant differences. The analyses were performed with the SPSS software
package version 25 (IBM Corporation, Armonk, NY) and MedCalc Statistical
Software version 15.2.2 (MedCalc Software bvba, Ostend, Belgium). All the
required libraries for training the model are available in Supplementary Note 5.

Statistics and reproducibility. The EDLM was verified and replicated using
regular machine learning metrics on external validation dataset. The software of
the model was released for evaluation on new data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Excel files containing raw data for Figs. 1, 2, and 3c and Tables 1 and 2 can be found in
Supplementary Materials. Compressed images from the training dataset and external
validation dataset are available at https://zenodo.org/record/444573439. All other datasets
generated and analyzed in the current study (including original image data) are available
from the corresponding author (L.Z.) on reasonable request. Source data are provided
with this paper.

Code availability
The training code base for the deep learning framework is available at: https://github.
com/youngyzzZ/Sonographic-Gallbladder-Images-for-BA-Diagnosis39.
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