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Thyroid cancer affects 1.3 percent of the population, with rates of occurrence rising in recent years (approximately 2 percent per
year). Thyroid cancer is a common endocrine cancer with an annual increase in occurrence. Although the general prognosis for
differentiated subtypes is favorable, the rate of mortality linked with thyroid cancer has been steadily progressing. The presence of
suspicious thyroid nodules necessitates more diagnostic testing, including laboratory evaluation, additional imaging, and biopsy.
For clinical staging and appropriate patient therapy design, accurate diagnosis is necessary. In this paper, we examined the
application value of ultrasound imaging diagnosis in the clinical staging of thyroid tumor in this research. The benefit of early
diagnosis is determined in this article using ultrasonography reports from Chinese patients. Images of benign and malignant
thyroid nodules were collected and annotated in this work, and deep learning-based image recognition and diagnostic system
was built utilizing the adaptive wavelet transform-based AdaBoost algorithm (AWT-AA). The system’s efficacy in diagnosing
thyroid nodules was assessed, and the use of ultrasound imaging in clinical practice was studied. The variables that had a
significant impact on malignant nodules were studied using logistic multiple regression analysis. The sensitivity and specificity
of ultrasonography thyroid imaging reporting and data system (TI-RADS) categorization outcomes for benign and malignant
tumors were also calculated.

1. Introduction

Improved diagnostic imaging and surveillance have led to an
increase in thyroid cancer cases worldwide. The sixth most
common malignancy is thyroid carcinoma. A patient with
this ailment is almost certain to be encountered by almost
any healthcare professional during their career. In order to
avoid overtreating individuals with lower-risk illness or
benign thyroid nodules, the physicians’ treatment of thyroid
cancers must balance therapeutic methods. Simultaneously,
they must identify individuals with developed or higher-

risk disease who require a more rigorous therapeutic
approach. In the thyroid gland, tumors may range from slow
to invasive, with a moderate death rate [1].

Thyroid cancers have surged by 2.4 times in the previous
30 years, according to research. This is one of the greatest
increases in any type of cancer that has ever occurred. Thy-
roid cancer is more likely to occur as people get older. Thy-
roid cancer strikes females twice as often as it strikes men.
However, once impacted, men have a worse prognosis than
women. Thyroid cancer usually appears as the painless nod-
ules in the neck’s thyroid area. Other symptoms include


https://orcid.org/0000-0001-8473-851X
https://orcid.org/0000-0003-4502-7840
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8030262

increased lymph nodes, soreness in the front of the neck,
and a variation in voice owing to recurrent laryngeal nerve
involvement. Thyroid nodule diagnostic tests divide nodules
into two groups: benign and malignant. In this instance, sur-
gical therapy of the nodules is not indicated until the lesion
enlarges or creates problems [2].

Thyroid nodule evaluation requires the use of ultraso-
nography. Ultrasonography has been widely employed in a
variety of functions, involving fine-needle aspiration (FNA)
biopsy guidance, postoperative assessment, nodule identifi-
cation, and diagnosis, because of its lower cost and higher
sensitivity. However, radiologists typically make diagnoses
depending on the sonographic properties of nodules in
ultrasound pictures that is subjective and heavily reliant on
the radiologists’ clinical experiences [3]. Ultrasonography
performed in a clinic or office can image thyroid nodules
in real time and provide additional information that might
otherwise be missed by a history and physical assessment
or a partial referral ultrasound. The advantage of thyroid
ultrasound over physical assessment is that it permits the
assessment and characterization of thyroid nodules, the
whole thyroid gland, and the cervical lymph nodes that
may vary treatment in more than 60% of patients with a sol-
itary thyroid nodule [4].

In this work, the adaptive wavelet transform-based Ada-
Boost algorithm is used to analyze the clinical usefulness of
ultrasound imaging diagnostics in the clinical stage of thy-
roid cancer. Section II, which includes the related works, is
where the extraneous portions of this investigation are col-
lected. Section III explains the procedure. Section IV exam-
ines and assesses the methodology’s effectiveness. Section
V concludes by providing a concise summary of the findings.

2. Related Works

In [5], using the YOLOV2 neural network and deep learning,
the author developed an automatic picture recognition and
diagnostic method for benign and malignant thyroid nod-
ules. For this study, artificial intelligence was examined for
its ability to diagnose thyroid nodules, and its utility was
assessed.

In [6], the author mentions that there are around 5% of
women and 1% of males who suffer from thyroid nodules.
Ultrasonography can detect up to 76 percent of thyroid nod-
ules that are invisible to the naked eye. A deep convolutional
neural network (CNN) framework for cytological evaluation
of thyroid nodules was the goal of this study.

In [7], the author explains about the more aggressive
form of thyroid cancer, medullary thyroid carcinoma
(MTC). Using ultrasound (US), thyroid nodules shall now
be more accurately categorized as benign or malignant,
depending on whether or not ultrasound indications of
malignancy are present. Ultrasonography features and
MTC biological behavior were examined as part of the
study’s goal.

In [8], the author discusses the imaging modalities and
their part in thyroid tumor detection and maintenance. To
that aim, we plan to spotlight cutting-edge diagnostic
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methods for thyroid cancer in order to increase diagnostic
specificity and accuracy.

It is mentioned in [9] that an analysis of incidence and
mortality details for females and males in the United States
for major thyroid tumor histologic kinds and tumor sizes
was conducted in this study to analyze the prevalence rates
of subclinical tumor in entire thyroid gland autopsies in peo-
ple with no known diseases.

In [3], the author explains that about an increasing num-
ber of people over 65 are diagnosed with thyroid cancer each
year. The study’s objective is to examine the long-term rela-
tionship between the usage of area-level imaging and the
occurrence of thyroid cancer. Thyroid cancer is more likely
to be discovered in patients living in places where imaging,
particularly thyroid ultrasonography, is more common.
They looked into this problem by utilizing the vast variances
in imaging between different regions and different points in
time. The researchers also expected to be able to identify
subgroups of people at risk for thyroid cancer diagnosis uti-
lizing ultrasonography as a first imaging method using
Medicare data.

For the purpose of providing an evidence-based
approach for treating these tumors, highlighting the lack of
proof behind guideline recommendations, and identifying
variations in diagnosis and therapy throughout recent
decades, the author of [10] conducts a review on follicular
thyroid cancer. To determine malignancy from cytological
material, ultrasonographic features may be deceiving. Follic-
ular thyroid tumor and Hiirthle cell carcinoma differ greatly
in presentation and prognosis, yet there are no specific rec-
ommendations in evidence-based guidelines.

In [11], the author mentions that a fine-needle aspiration
biopsy can only be conducted under ultrasound guidance if
necessary to rule out thyroid cancer, according to the author.
A diagnosis is made based on the patient’s clinical, ultraso-
nographic, and cytological information.

In [12], the author explains the difficulty to detect nod-
ules with ultrasonic imaging. Currently, radiologists perform
this activity manually in clinical practice, which is time-con-
suming, subjective, and significantly dependent on their
clinical expertise. They proposed new deep neural network
framework with well-planned loss function regularization
and network hyper parameters to detect nodules without
the need for expensive post-processing refinement processes.
The proposed approach is dependent on the multitask
framework Mask R-CNN and uses a deep learning frame-
work to train. In order to avoid unnecessary segmentation,
they developed a regularized loss function.

In [13], the author explains that thyroid tumor is the
most frequent endocrine tumor in humans, and it is elevat-
ing in prevalence. It is difficult to distinguish thyroid tumor
from benign thyroid nodules, which occurs in 50% of the
population over the age of 50; and it is difficult to stage thy-
roid cancer to allow for appropriate aggressive surgery in a
single session. The study’s purpose is to lay forth the funda-
mentals of good multimodal imaging for thyroid cancer and
to help doctors avoid common errors.

In [14], the author explains the purpose of evaluating the
diagnostic utility of the TI-RADS; the author cites the TI-
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RADS classification and pathological data [14] in his study.
Patients with thyroid nodules can use the TI-RADS score
to determine whether or not more invasive testing is neces-
sary for a proper diagnosis and treatment.

In [15], the author explains that lymphatic drainage
channels and enhancement patterns were employed to
determine the sentinel lymph nodes and the targeted lymph
nodes. Each targeted node was provided a score and recom-
mended for ultrasound-guided fine-needle aspiration
depending on the features of conventional US and enhanced
patterns. US lymphatic imaging was used in this study as a
way to determine the involvement of central lymph nodes
in PTC patients prior to surgery and the method’s potential
for assessing nodal burden, which could offer objective data
to help guide surgical decisions.

In [16], the author explains that the thyroid nodule iden-
tification, segmentation, classification, and feature extraction
methods are shown by providing and discussing noteworthy
trends. The benefits and drawbacks of various CAD methods
are discussed in detail.

In [17], the author explains about that the contrast-
enhanced computed tomography (CECT) is increasingly
being used in thyroid tumor individuals, while ultrasonogra-
phy is the gold standard for assessing cervical lymph node
metastases (CT). In order to assess the diagnostic behavior
of CT in the identification of metastatic cervical lymph
nodes and to determine the factors that lead to diagnostic
heterogeneity, they performed a systematic survey and
meta-analysis of the literature.

In [18], the author mentions that thyroid cancer inci-
dence estimates and treatment can be affected by the method
of thyroid cancer detection used. In order to find out how
common it is for tumors to be identified accidentally and
to pinpoint the factors that lead to an accidental thyroid can-
cer diagnosis, the researchers combed through a large num-
ber of literature describing thyroid cancer detection
methods.

In [19], using task-specific prior knowledge, the author
proposes a novel CAD system based on deep learning for
autonomous nodule recognition and categorization in ultra-
sound images in [19]. It is proposed that their CAD system
has two steps. A first multiscale detection network is built
to understand the features of pyramids for spotting nodules
at various scales. The region proposals are constrained by
our prior understanding of the size and shape dispersions
of actual nodules. Then, a multibranch categorization net-
work is built, wherein every branch collects and improves a
particular category of features that radiologists typically use.

In [20], the author implies that when it comes to subjec-
tive diagnosis concerns, which are typically dependent on a
patient’s personal experience, computer-aided diagnostic
(CAD) technology can help. A CAD system is made to iden-
tify between malignant and benign thyroid nodules on ultra-
sound images depending on deep learning methodologies.
Radiologists’ diagnostic abilities were contrasted to those of
the CAD system.

In [21], the author explains that malignant nodules can
be detected by using an MRI-based “computer assisted diag-
nostic” (CAD) system. A multi-input convolutional neural

network is used in our method to merge the diffusion
weighted image (DWI) and “apparent diffusion coefficient”
(ADC) maps from MRI scans. There are a number of key
advantages to their system. Convolutional neural networks
(CNN) can be used to classify thyroid DWI and ADC
images, increasing the probability of identifying deep texture
structures in thyroid nodules. Additionally, additional chan-
nels can be added to each input, allowing for integration
with other MRI modalities and imaging technologies such
as diffusion tensor imaging (DTI).

Earlier, investigations have reported inconsistent out-
comes when it comes to the diagnostic efficiency of CT in
the assessment of lymph node metastases, and the utility of
CT stays unknown, according to [22]. As a result, the
author’s purpose was to see if combining CT with ultra-
sound could aid in the identification of lymph node metasta-
ses in thyroid tumor individuals.

In [23], the author mentions that 40 thyroid nodules
were studied and that many variables, such as histogram
parameters and fractal dimensions, were retrieved from the
data. Support vector machines and random forests classifiers
were used to categorize nodules into malignant and benign
groups based on the attributes.

In [24], the author explains that assessing cervical lymph
node metastasis (LNM) in patients with papillary thyroid
cancer (PTC), ultrasound is the first imaging modality that
is used. Even in those with LNM, the computer tomography
(CT) has an impact on the surgical procedure. Ultrasound
and computed tomography have been found to be beneficial
in identifying cervical LNM.

3. Proposed Work

Our proposed work focused on designing an automatic diag-
nosis system for differentiating thyroid nodules into benign
and malignant nodules for diagnosing the clinical stages of
thyroid cancer based on ultrasound images. The approach
involved preprocessing, feature extraction, and classification.
Initially, the acquired images were preprocessed using a
hybrid Wiener-Gabor filter. Then, important features were
extracted using the functional gray level Cc-occurrence
matrix (FGLCM). Finally, the thyroid nodules were classified
using AWT-AA model based on the extracted features. The
detailed flow of our work is illustrated in Figure 1 and
explained in this section.

3.1. Patient Data Collection and Image Acquisition. Between
Jan 2016 and Oct 2020, 384 cases suffering solid thyroid
nodules were documented at the Weifang Hospital of Tra-
ditional Chinese. Individuals’ detailed health information,
including essential patient records, medical diagnosis, lab
test results, inspection analyses, and clinical notes, among
other things, was gathered. They never should have had
any previous medical interventions. The ultrasound pic-
tures of their thyroid nodules have been obtained using
ultrasonography. The ultrasound equipment (GE Logiq
E9, S7) was used to capture all of the pictures, with probe
frequency set to 5-12 mHz or 8-15 mHz. The database
contains 450 thyroid nodule photos from 384 individuals,
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FiGure 1: Flow of the illustrated work.

322 of whom are cancerous and 128 of whom are harm-
less. Fine needle aspiration (FNA) biopsies and pathology
findings were used to determine if a nodule is cancerous
or normal.

3.2. Image Preprocessing Using Hybrid Wiener-Gabor Filter
(HWGEF). During the capture of the image data, distortion
and extraneous indications could well have happened. As a
result, pictures should be standardized before beginning sub-
sequent image analytical procedures in order to reduce noise
and improve image quality. For preprocessing, the images
were acquired in this investigation; we can use a HWGF.
This method is a combination of the Wiener and Gabor fil-
ters. The pictures are first treated with a Wiener filter to
eliminate Gaussian noise. The pictures are then run through
a Gabor filter to improve the texture clarity of the pictures
even more.

The Wiener filter is preferred because it is straightfor-
ward, quick, and also has a reduced noise-related peak sig-
nal. This is usually applied in the deconvolution approach
via linear invariant technique to diminish distortion. Equa-
tion (1) gives the kernel’s convolution with the picture’s

pixels, which is specified by a Gaussian function:

(o)

cx g Y ([l].g[v.]].

I=—c0

(1)

Equation (2) defines the 2-dimensional Gaussian func-
tion [c(f,g)], which is employed to construct the kernel with
size (3 x 3).

_ <m+m)
o(f.g)=Ae \ T (2)

Here, A indicates the magnitude, (f,, g,) depicts the cen-
ter, and of and 0g mean the standard deviations in the x and
y directions.

Weiner was deemed authentic since it employs a linear
equation method to calculate a collection of ideal filter
weights that reduce the noise level of a received data. It ana-
lyzes the bend correlation as well as covariance matrices of
noisy data in order to determine such weights, and it gives
an accurate assessment of an identifiable stochastic message
under linear distortion. The distortion values are calculated
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and employed to determine the ideal weight of the filter. The
Wiener filter would be used to remove noise from a recog-
nized distorted picture based on data derived from a local
neighborhood of every pixel by assessing a new input data
having similar noise attributes with optimal filtering weights.
As a result, the input photos are free of Gaussian noise.

To enrich the texture information, the denoised picture
acquired from the Weiner filter is processed through the
Gabor filter. Corners, edges, and blobs were identified using
Gabor kernels. Gabor parameters were calculated by the
Fourier transform of an assessed physiological signal in this
space-frequency relation. The width and phase of the Fou-
rier transform is used to determine Gabor functions based
on the amplitude and phase of an input signal at specified
frequencies. The Gabor transform synchronizes with the
input to clearly identify image edges. Equation (3) defines
the specific formula of the Gabor kernel (Gf g).

2z
G, =A —q(Ffcosf+Fgsind) 05 (é+é) 3
fg =€ € - (3)

Here, F =frequency and 0= orientation, respectively, A
= constant, and Z; and Z, are sinusoidal functions.

Convolution with the picture is performed using numer-
ous Gabor kernels, referred to as a Gabor bank, in the pro-
cess of extracting maximum information from different
frequencies and orientations. As a result, HWGEF is used to
augment the input pictures.

3.3. Feature Extraction Using Functional Gray Level co-
Occurrence Matrix (FGLCM). Medical pictures contain a
wealth of textural data that is important in clinical research.
The textural features detected in ultrasound medical imaging
of the thyroid gland aid in the differentiation of a malignant
or benign thyroid nodule from a normal thyroid nodule. We
employed a texture feature extraction technique relying on
FGLCM. Equation (4) defines the co-occurrence matrix P
for a grayscale picture I of size VxV:

P<q,z>=zz{ + Aeo)=

e=1g=1

qandQ(e = Ae, g+Ag) = }

otherwise
(4)

The offset specifies the distance between a particular
pixel and its next-door neighbors (Ae, Ag). The co-
occurrence matrix is susceptible to rotation when the offset
(Ae, Ag) parameterization is used. The identical (rotated)
images will have a various co-occurrence matrix if the offset
vectors are chosen so that the rotations of the images are not
equal to 180 degrees. It could be prevented by forming the
co-occurrence matrix with a set of offsets sweeping through
180 degrees at the same distance parameter A, resulting in an
extent of rotational invariance of [0 A] for 0 degree, P hori-
zontal; [-A, A] for 45 degrees, P right diagonal; [A-0] for 90
degrees, P vertical; and [-A -A] for 135 degrees, P left diago-
nal. For the thyroid nodule ultrasound pictures, the FGLCM
matrix was constructed. The calculated GLCM matrix was
then used to extract texture features. Ten different features

extracted for our dataset namely autocorrelation (AC), con-
trast (CT), correlation (CR), cluster prominence (CP), clus-
ter shade (CS), dissimilarity (D), energy (EN), entropy
(ET), homogeneity (H), and maximum probability (MP)
are determined:

AC= ZZ (4. 2)P(q, 2),
CT=ZZIq—ZIZP(q>Z)
CR= ZZ (q—pe).(z-ug)P(q2)

>

ge.0g
CP=) ) (q+2~pe—ug)'P(q2),
q z
CS=YY (q+z- pe-pug)’P(q,2),
q z (5)

D=)>|a-2|P(q2)
q z
EN=) Y |P(¢.2)],
q z
_ _ZZP(q, z) log (P(g,2)),

H= ZZ1+|q z|’

MP = max,P(q, z).

Here, p(q, z) represents the (q, z) gray-tone of GLCM.
The retrieved texture aspects are then employed for addi-
tional categorization procedure.

3.4. Classification of Thyroid Nodules Using Adaptive
Wavelet Transform-Based AdaBoost Algorithm (AWT-AA).
The classification of thyroid nodules was carried out
depending on the features extracted for ultrasound thyroid
nodule images using AWT-AA strategy. The model is
designed based on the concepts of wavelet transform and
Adaboost algorithm. Other than texture features, adaptive
wavelet transform (AWT) features were extracted at the first
stage of classification process.

The term AWT refers to the wavelet idea. Wavelets are
sophisticated mathematical instruments for data analysis.
Mother wavelets that have been scaled and transformed
could be used to breakdown an input. It decomposes signals
into low and high pass elements using filter banks made up
of finite impulse response filters. The low pass element pro-
vides data about image properties that change slowly, while
the high pass element includes data about image changes
that happen quickly. Filtering both rows and columns of
images with low pass filters yields coeflicients that indicate
how much energy is in each image. The resulting coefficients
include the vertical features of the image when low pass fil-
tering is applied to the rows and high pass filtering is con-
ducted on the column values. The coeflicients are
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Input images

F1GURE 2: Samples of input images and analyzed images observed during ultrasound diagnosis of thyroid nodules.

produced through row-wise high pass filtering and column-
wise low pass filtering, and they include the image’s horizon-
tal features. The finest-scale coefficients are produced via
high pass filtering of both row and column values, and they
contain the image’s diagonal features. These details are also
taken into consideration along with texture features for clas-
sification process.

Then, the AdaBoost algorithm is applied for classifying
the images. It is a machine learning algorithm. It is adaptive
since the examples miscategorized by the first classifier are
restructured into the succeeding classifiers to increase classi-
fication performance, and it is frequently utilized to improve
the performance of several other poor learning algorithms.
The enhancing approach gives all examples in the training
data equal weights at first. The weight is redistributed for
each example based on the output of classifiers on this train-
ing set. When reallocating the weights, the one for each cor-
rectly identified example is reduced, whereas the one for
incorrectly classed instances is enhanced. A classifier refor-
mulates on this reweighted data in the next round, attempt-
ing to accurately identify the examples with increased
weight. The weights are adjusted once more based on the
output of the new classifiers. When the weights are adjusted,
the normalization is done to keep the sum of the weights the
same as it was before. The final hypothesis value is obtained
after all rounds. The final hypothesis is either 0 or 1, which is

what the strong classifier H(a') in Equation (6) predicts.

Ui log (') > 1Y log !
H(a)={" 5% ()=32e
0 otherwise

The strong classifier constructed using AWT-AA is used
for classifying the thyroid nodules into benign and malig-
nant nodules.

3.5. Statistical Analysis Using Logistic Multiple Regression
Algorithm. The researchers looked at the link between
patients’ essential principles and benign and malignant thy-
roid cancers. The risk variables for thyroid hormone in thy-
roid nodules were studied using logistic multiple regression
analysis. The influence of categorization on the diagnosis

of thyroid nodules was investigated using the TI-RADS clas-
sification system for ultrasonography diagnostics. Sensitiv-
ity, specificity, and accuracy values were all computed. The
area of the receiver operating characteristic (ROC) curve
was constructed to examine the link between ultrasound
findings and the final benign or malignant prognosis.

4. Result and Discussion

The Matlab simulation tool is used to test the proposed
approach. Specifications such as (a) accuracy, (b) specificity,
(c) sensitivity, and (d) area under curve (AUC) are used to
validate the suggested approach’s behavior. This evaluation
will take into account four factors: ¢, indicates true positive,
t, indicates true negative, f,, indicates false positive, and f,

indicates false negative.

(i) tpdenotes that the data is normal, and it turned out
to be exactly that

(ii) t, denotes that the data is expected to be affected by
tumor, and it is really affected

(iii) f, denotes that the data is expected to be affected by
tumor, yet it is a normal data

(iv) f, denotes that the data is expected to appear nor-
mal data, however it is an affected one

Here, we compare the proposed adaptive wavelet
transform-based AdaBoost (AWT-AA) with the existing
methods such as clinical knowledge guided multiscale detec-
tion network (CKG-MDN) and SVM-based computer-aided
diagnosis.

Figure 2 depicts the enhancement and high-lighting of
the input ultrasound images for the assessment procedure.
Thyroid nodules are blurred in the input pictures. The clear
thyroid nodules were displayed in the analyzed pictures
through the highlightened regions.

4.1. Accuracy. It determines the number of data that are suc-
cessfully classified. It decides how closely the outcomes
match the initial outcome. To get an idea of a test’s accuracy,
we should look at the percentage of true positive and false
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negative results across all cases:

t,+1,

Accuracy= ———————.
t,+1, +fp +f,

(7)

Figure 3 depicts the accuracy ratings for the currently
employed and newly proposed approaches. The SVM-
based CAD method provides the accuracy of 92.5% which
is higher when compared to the accuracy of CKG-MDN
which is 92%. The proposed AWT-AA acquires the accuracy
of 95% which is far better than the existing methods.

4.2. Sensitivity. A test’s sensitivity refers to its capacity to
appropriately identify patient cases measures how many
people test positive for the disease out of all the persons with
the ailment. Compute the fraction of true positives in patient
instances to evaluate it. It could be defined quantitatively as

b

Sensitivity = —2— =
¥ t,+f, totalnumber of ill person in the community

= probabilities that the test will be positive if the person has the disease.

(8)
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In order to rule out a disease, it is important to get an accu-
rate test result that does not show anything. People who have
the disease are rarely misdiagnosed by tests that have a high
sensitivity. A test with 100% sensitivity will be able to tell if a
person has the disease if they test positive. A negative test
result would be a sure way to say that a patient does not have
the disease. However, a positive result in a test with a high level

of sensitivity does not always mean that you have a disease.
Figure 4 depicts the sensitivity ratings for the currently
employed and newly proposed approaches. The SVM-based
CAD method provides the sensitivity of 96.4% which is higher
when compared to the accuracy of CKG-MDN which is 96%.
The proposed AWT-AA acquires the sensitivity of 97% which
is superior than the existing methods.
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TaBLe 1: Comparative analysis of existing and contemporary
methods.

Accuracy Sensitivity Specificity
Method (%) (%) (%)
Radiologists 84 89 71
AWT-AA 95 97.5 86
(proposed)

4.3. Specificity. The capacity of a test to correctly reject
healthy patients without a problem is referred to as its
“specificity.” Test specificity is the percentage of people
who actually do not have the condition that test negative
for the condition. Compute the fraction of true negatives
in healthy instances to evaluate it. It could be defined
quantitatively as

n

t t
Specificity = : =

n i " total number of well person in the community

= probabilities that the test will be negative if the person is well.

©)

Figure 5 depicts the specificity ratings for the currently
employed and newly proposed approaches. SVM-based
CAD method provides the specificity of 83.1% which is
higher when compared to the specificity of CKG-MDN
which is 78%. The proposed AWT-AA acquires the spec-
ificity of 85% which is superior than the existing methods.

4.4. Area Under Curve (AUC). The shorthand for “area
under the ROC curve” is “AUC.” It is a measure of the over-
all two-dimensional area beneath the ROC curve. AUC is a
compound performance statistic that considers all potential
classification degrees. One way to look at AUC is to see
how likely it is that the system will rate a randomized posi-
tive case better than a randomized negative one. AUC com-
parison is given in Figure 6. AUC percentage of AWT-AA
method was higher than the existing methods.

From the above result analyses, it is confirmed that the
proposed AWT-AA model exhibited higher performance
efficiency in classifying thyroid nodules compared to other
existing models. Further, we contrasted the classification
performance of our model with the manual classification
outcomes produced by the radiologists to analyze the appli-
cation value of ultrasound imaging diagnosis using AWT-
AA in Table 1. The proposed method shows greater accu-
racy, sensitivity, and specificity compared to the perfor-
mance of radiologists.

5. Conclusion

Thyroid cancer is among the most dangerous cancers that
people can have. As a result, it must be diagnosed correctly.
Based on ultrasound scans, we utilized the adaptive wavelet
transform-based AdaBoost algorithm (AWT-AA) classifica-
tion model to detect and classify thyroid nodules. Our sug-
gested approach outperformed existing thyroid nodule
classification algorithms with the accuracy of 95%. Further-

more, our proposed system outperformed expert radiologists
in terms of accuracy, sensitivity, and specificity. As a result,
our suggested diagnostic model may effectively identify
benign from malignant thyroid nodules. In the future, fur-
ther enhancements must be carried out to improve the effi-
ciency of classification performance.
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