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The epigenetic marks displayed by 
a cancer cell originate from two 

separate processes: The most prominent 
epigenetic signatures are associated with 
the cell of origin, i.e., the lineage and cell 
type identity imposed during develop-
ment. The second set comprises those 
aberrant cancer-specific epigenetic marks 
that appear during tumor initiation 
or subsequent malignant progression. 
These are generally thought to associate 
with tumor-promoting pathways. As bio-
chemical pathways regulating epigenetic 
mechanisms are potentially “druggable” 
and reversible, there is considerable 
interest in defining their roles in tumor 
genesis and growth, as they may repre-
sent therapeutic targets for treatment of 
human neoplasias.1 However, despite the 
potential importance of epigenetic modi-
fications in human cancer, it has been 
difficult to determine when, where and 
how epigenetic disruptions occur, and if 
they have important functional roles in 
sustaining the malignant state.

We, and others, have recently dem-
onstrated that lineage reprogramming to 
pluripotency through forced expression 
of reprogramming transcription factors 
(termed induced pluripotent stem cell 
[iPSC] technology) can be applied to 
study epigenetic mechanisms in human 
cancer.2-6 Such experimentally induced 
reprogramming provides a cellular model 
to assess the functional contribution of 
both cancer-specific and lineage-associ-
ated methylation changes in maintain-
ing the malignant cellular state. Here we 
summarize the major conclusions from 

our studies of the human brain cancer 
glioblastoma (GBM), and discuss the ben-
efits and limitations of this experimental 
approach.4

DNA Methylation is a Cancer-
Associated Epigenetic Mark

Much progress has been made during 
the past few decades in identifying the 
molecular events underlying modifica-
tions of DNA and chromatin. Methylation 
of cytosines at CpG dinucleotides has 
been strongly implicated in regulating 
transcription since its discovery in the 
1970s (reviewed by A. Bird).7 DNA meth-
ylation is the canonical epigenetic mark, 
and there are well established mechanisms 
through which the methylated status can 
be inherited through DNA replication and 
mitosis.7 While patterns of DNA methyla-
tion are faithfully inherited through cell 
division, they can nevertheless undergo 
dynamic changes during development or 
disease, including cancer.8,9

DNA methylation marks can directly 
control gene expression at specific loci. 
For example, those marks set in the germ 
cells trigger “imprinted expression” of sev-
eral transcripts (reviewed by D. Barlow).10 
DNA methylation of loci necessary for 
activation of transposable elements also 
provides an example of direct control of 
transcription.11 However, only a minor-
ity of CpG islands in promoter regions 
are methylated, and it remains unclear 
whether DNA methylation plays a general 
causal role in gene silencing, or instead 
reinforces repression that was established 
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through other chromatin-based mecha-
nisms.12 Genetically modified mice in 
which the levels of the de novo DNA 
methylases Dnmt3a or Dnmt3b are mod-
ulated display altered patterns of tumori-
genesis, and provide support for a role for 
DNA methylation in cancer initiation and 
progression.13,14 Nevertheless, how these 
alterations in DNA methylation relate to 
those observed in human primary tumor 
samples, and whether they are critical 
for driving malignant cellular behavior is 
unclear.

Rapid improvements and falling costs 
of technologies enabling genome-wide 
analysis has meant it has become feasible 
to define DNA methylation patterns at 
unprecedented scale and resolution.15,16 
Consequently many laboratories and 
international research consortia are work-
ing intensively to produce genome-wide 
maps of DNA methylation across a range 
of cell and tissue types, including human 
cancers and cancer cell lines.15 Such stud-
ies are aiding efforts to define stem and 
progenitor cell states during development 
and adult tissues (e.g., between pluripotent 
and somatic stem cells or during hemato-
poietic lineage choices,17,18 and are vital in 
providing a foundation for future studies. 
Inevitably, however, such descriptive stud-
ies cannot provide functional insights.

One observation from genome-wide 
analysis of primary human tumor samples 
has been that DNA hypermethylation 
of tumor suppressor genes commonly 
mutated in diverse human cancers (e.g., 
TP53, PTEN) is not frequently observed; 
therefore, the accumulation of DNA 
methylation at such genes following long-
term in vitro expansion is likely a tissue 
culture artifact.19 Instead, a different gene 
set is hypermethylated in human cancers, 
including genes that might act as direct 
tumor suppressors, as well as hundreds of 
polycomb-associated PRC2 target genes, 
which have been implicated in stem cell 
lineage choice.20,21 A simplistic explana-
tion for these observations is that tumor 
cells, possibly early in their development, 
ensure that their tissue stem cell identity 
becomes “locked in,” restricting alterna-
tive lineage choices and terminal differ-
entiation. This view would, however, run 
opposite to the observation that human 
cancers frequently display anaplasia and 

wildly aberrant programs of gene expres-
sion not typically observed in normal cell 
types. How can such discrepant views 
(epigenetic “lock-in” vs. epigenetic plas-
ticity) be reconciled? We would specu-
late that the perturbation of polycomb 
regulated genes through DNA methyla-
tion changes is an important step early in 
tumor development—perhaps in benign 
tumors or pre-neoplastic growths. This 
would be consistent with the “epigen-
etic progenitor” model of tumorigenesis,22 
which proposes that functionally relevant 
epigenetic alterations appear at the earli-
est stages of tumor initiation in (pre-can-
cerous) progenitor cells. The corruption 
of tissue identity and global epigenetic 
relaxation may then occur at later stages 
alongside or downstream of malignant 
transformation following accumulation of 
catastrophic widespread genetic damage.23 
Consequently, it is possible that many 
epigenetic alterations detected in mature 
tumors might not play a causal role in 
driving disease.

A further observation is that the rela-
tionship between DNA methylation to the 
transcriptional state of adjacent genes is 
less clear than originally thought; a situa-
tion made further complicated by the dis-
covery of new DNA modifications, such 
as 5-hydroxymethylcytosine. Although 
correlations between DNA methylomes 
and transcriptomes have been reported, 
these are often usually weak and hold 
poor predictive value, arguing against a 
widespread generic role in transcriptional 
repression. New experimental approaches 
would clearly be helpful to enable func-
tional insights into the interplay between 
cancer genome and epigenome.24,25 This 
has prompted us,4 and others,2,3,6 to 
explore whether strategies to experimen-
tally reprogram cell fate might be useful 
to study the functional consequences of 
human cancer-specific epigenetic changes.

Epigenetic Resetting  
of Human Glioblastoma

The transcriptional networks that con-
figure the pluripotent cell state are present 
within the pre-implantation epiblast and 
germ cells,26 but do not normally occur in 
somatic cells. However, somatic cells can 

be forced into a pluripotent state using 
techniques such as nuclear transfer, cell 
fusion or transcription factor-mediated 
reprogramming—i.e., iPSC technology 
(reviewed by S. Yamanaka and H. Blau27). 
It is well established that somatic cells 
undergo a widespread resetting of DNA 
methylation marks as they transit from a 
differentiated state toward pluripotency,28 
thereby potentially providing an experi-
mental tool to reconfigure the epigenetic 
restrictions that are acquired through nor-
mal development.

Glioblastoma (GBM), also termed 
high-grade astrocytoma, is the most com-
mon and aggressive type of primary brain 
tumor. Serum-free cell culture conditions 
developed for the propagation of normal 
human neural stem cells can be success-
fully applied to GBM, enabling propa-
gation of primary cultures from these 
tumors.29-31 Given the accessibility and 
expandability of primary human GBM 
cells, as well as the possibility to use genet-
ically normal cultured neural stem cells 
as reference controls,32 we reasoned this 
would be a useful experimental system 
to explore cancer epigenetics using iPSC 
technology. Methylation patterns found 
in cultured glioblastoma-derived neural 
stem cell (GNS) cells mirror those found 
in the human disease, including some of 
the most frequent epigenetic anomalies 
observed in primary GBM tumors, such as 
hypermethylation of thousands of PRC2 
target sites and the tumor suppressor 
genes cyclin-dependent kinase inhibitor 
1C (CDKN1C, encoding p57KIP2) and 
TES.33

Previous studies had indicated that 
mouse and human cancer cell lines might 
be amenable to experimentally induced 
reprogramming, using either nuclear 
transfer,34,35 or more recently forced 
expression of reprogramming transcrip-
tion factors C-MYC, OCT4 (POU5F1), 
SOX2, and KLF4.2,3 Normal neural stem 
cells can be efficiently reprogrammed 
using two factors, OCT4 and KLF436 
(the other “Yamanaka factors,” SOX2 
and C-MYC, are already expressed). We 
reasoned that such “two factor” repro-
gramming might therefore be sufficient 
for reprogramming of GBM stem cells. A 
further incentive to explore iPSC repro-
gramming using human GBM stem cells, 
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is that well defined protocols exist to steer 
the resulting iPSCs along the neural lin-
eage,37,38 thus enabling analysis of the 
functional consequences of a cancer-spe-
cific epigenetic resetting in the appropri-
ate lineage context. Glioblastoma iPSCs 
(GiPSCs) would also be useful to explore 
how the GBM genome behaves in dis-
tinct non-neural lineages, and if they are 
able to engage in distinct differentiation 
programs.

Despite the extensive genetic and 
karyotypic changes in GBMs, we found 
that a subset of GNS cells were amenable 
to transcription factor mediated repro-
gramming, through forced expression of 
only OCT4 and KLF4.4 Reprogramming 
was no more efficient than control NS 
cells, and switching cells into hESC cul-
ture conditions did not result in iPSC con-
version. Prior to reprogramming, we also 
failed to observe transcription of key plu-
ripotency markers in the GBM stem cells, 
and the promoter regions of OCT4 and 
NANOG were hypermethylated. Thus, 

the core pluripotency network driven by 
OCT4 and NANOG is not likely to be a 
feature of human GBM; an earlier study 
suggested that this was the case,39 but 
has since been challenged by the finding 
that only the MYC-driven transcriptional 
module is shared.40

GiPSCs gained expression of pluripo-
tency-associated genes and extinguished 
neural lineage marker gene expression. 
This process led to the resetting of a large 
proportion of developmentally defined 
and cancer-associated DNA methyla-
tion marks. G-iPSCs remained capable 
of commitment to neural lineages allow-
ing us to explore the consequences of the 
epigenomic resetting of cancer specific 
modifications in the context of appropri-
ate developmental lineage—something 
that has not been reported in iPSC studies 
of human cancers.

Following conversion of GiPSCs to a 
neural stem cell identity, only a minority 
of the DNA methylation changes were 
reacquired in these reprogrammed and 

redifferentiated cells. This strongly sug-
gests that the genetically driven cancer 
pathways do not immediately enforce the 
epigenetic disruptions associated with 
GBM. We found that the widespread 
resetting of DNA methylation alone had 
no detectable effect on the tumorigenicity 
of these cells (Fig. 1), and cells remained 
highly proliferative and infiltrative. Thus, 
widespread resetting of cancer-associated 
DNA methylation is not sufficient to sup-
press malignant cellular behavior. These 
results are consistent with the view that 
the critical functional roles of epigen-
etic alterations occur at an early stage of 
tumor development or initiation, prior to 
accumulation of oncogenic mutations—
or “genetic gatekeepers”—that promote 
tumor genetic evolution and potentially 
highly malignant cellular phenotypes.23

We also found that for some tumor 
suppressors (e.g., TES) the removal of 
methylation did not immediately result 
in reactivation of expression.4 This result 
is consistent with a view that the function 

Figure 1. iPSC reprogramming technology can be used to explore both cancer-specific and tissue-associated epigenetic mechanisms in human glio-
blastoma. During reprogramming, around half of the cancer-specific DnA methylation anomalies, including those on tumor suppressor genes and 
PRC2 target gene (red lollipop) are reset. irreversible genetic abnormalities are illustrated (green stars). Steering glioblastoma iPSCs along alternative 
lineages (mesodermal progenitor with glioma genome) suppresses the malignant behavior. Resetting DnA methylation anomalies alone (GnS–mDnA 
anomalies) in the neural stem cell lineage is not sufficient to restore normal cellular behavior.
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of DNA methylation is not as a primary 
switch controlling gene activation or 
repression and also suggests that the mech-
anism of tumor suppressor gene silencing 
is not dependent on DNA methylation 
changes. This is supported by the findings 
that agents such as 5-Azacytidine do not 
necessarily lead to transcriptional upregu-
lation of hypermethylated genes,41 and 
that epigenetically silenced genes accu-
mulate DNA methylation marks usually 
after they are already repressed as part of 
the normal tissue-specific patterns of gene 
expression.42,43

A caveat of cancer iPS reprogramming 
studies, including ours, is that not all can-
cer-associated epigenetic defects (as defined 
by comparing normal and tumor cell pop-
ulations) were reset. We found that around 
50% were not stably reset. Although these 
did not include common disease relevant 
loci (they may reflect the difficulties in 
defining what is “cancer specific” and 
inherent variability between indepen-
dent cultures), it is still possible that these 
include some critical functional epigenetic 
disruptions. Furthermore, for practical 
reasons only a limited number of different 
patient samples can be explored and there is 
inherent variability in the reprogramming 
process. For example, the majority of lines 
we tested failed reprogramming, which 
may either highlight the incompatibility of 
highly aneuploidy cancer cell lines with an 
iPSC state, or potentially some other road-
block to reprogramming that has disease 
relevance (e.g., mutations in the core epi-
genetic reprogramming machinery). Thus, 
the iPSC reprogramming approach may be 
better suited to study tumors that display 
low levels of structural genetic disruptions 
and mutations, and potentially have clear 
epigenetic disruptions associated with 
malignancy, such as pediatric GBM,44,45 
ependymomas,46 or Wilms Tumor.

Despite these limitations, iPSC pro-
gramming experiments provide insights 
into individual tumors. We can still con-
clude that for certain GBMs the removal 
of a large proportion of cancer specific 
DNA methylation defects, including some 
of the most frequently associated with 
human GBM, is not sufficient to override 
the genetically driven cancer pathways. 
Therefore, any new therapeutic strategy 

that seeks to reverse these errors is unlikely 
to have dramatic effects.

For any specific cell, lineage identity 
(i.e., patterns of gene expression) reflects 
those transcriptional and epigenetic events 
that were encountered through its develop-
mental history. Lineage identity is largely 
erased during reprogramming to pluripo-
tency, but can be re-established through 
in vitro differentiation of the iPSCs, as 
cells can be directed along different dif-
ferentiation paths. Despite the extensive 
genetic disruptions in GiPSCs we were 
able to observe differentiation along non-
neural lineages in the context of terato-
mas. For example, albeit infrequent, we 
did observe the presence of hair follicles, 
cartilage, muscle, and epithelial tissues. 
What are the consequences of forcing a 
human GBM cancer genome to operate 
in the context of a distinct lineage? Can 
lineage reprogramming suppress features 
of the malignant brain tumor cells? To 
explore this issue more rigorously we also 
directed GiPSCs in vitro along the meso-
dermal lineage—generating proliferative 
cartilage progenitors that were then trans-
planted in vivo. We found that these cells 
lost the ability to form malignant brain 
tumors. Reconfiguration of the network of 
“cell fate” transcription factors47 and con-
sequently the downstream developmental 
epigenetic mechanisms, could effectively 
silence cancer-promoting pathways that 
were essential for the cells to display 
uncontrolled proliferation and brain infil-
tration. This indicates that the glioblas-
toma genome can be suppressed through 
resetting of lineage-affiliated epigenetic 
programmes. Thus, the developmental, 
transcriptional and associated epigenetic 
mechanisms that define tissue types rep-
resent powerful routes to reconfigure the 
chromatin landscape, and these can be suf-
ficient to suppress the activity of the aber-
rant genetic pathways disrupted in GBM.

Future Perspectives

The aforementioned studies using 
iPSC technology to study human cancer 
highlight the utility of the approach. This 
provides new and accessible human cellu-
lar models that will enable further func-
tional studies of the relative contribution 

of genetics and epigenetics in tumor initia-
tion, progression and following therapeutic 
intervention. GBM is one of the few cancer 
types for which both malignant and nor-
mal tissue stem cell counterparts can be 
expanded continuously in identical and 
defined conditions. We were therefore well 
placed to apply iPSC techniques to GBM. 
Also, established protocols exist for the 
efficient differentiation of iPSCs to their 
original cell identity (neural stem cells), 
and for a xenograft transplantation to test 
their potency and malignancy (intracra-
nial transplants). For many human can-
cers, several of these criteria are not met 
and this potentially limits current appli-
cability of iPSC technology to explore the 
cancer epigenome. A major bottleneck 
associated with this technology is the 
time-consuming nature of reprogramming 
experiments and variability between clonal 
lines, which affect its efficiency, limiting 
the number of tumors that can be assessed 
and, consequently, the generalization of 
the results. As protocols for the expansion 
of tissue stem cells and their malignant 
counterparts are improved, more human 
tumor types will become amenable to such 
studies. Moreover, improved protocols and 
novel approaches to reprogramming may 
soon improve the currently poor efficiency 
and fidelity of reprogramming.48,49
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