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The molecular events leading to differentiation, development, and plasticity of lymphoid

cells have been subject of intense research due to their key roles in multiple pathologies,

such as lymphoproliferative disorders, tumor growth maintenance and chronic diseases.

The emergent roles of lymphoid cells and the use of high-throughput technologies have

led to an extensive accumulation of experimental data allowing the reconstruction of

gene regulatory networks (GRN) by integrating biochemical signals provided by the

microenvironment with transcriptional modules of lineage-specific genes. Computational

modeling of GRN has been useful for the identification of molecular switches involved

in lymphoid specification, prediction of microenvironment-dependent cell plasticity, and

analyses of signaling events occurring downstream the activation of antigen recognition

receptors. Among most common modeling strategies to analyze the dynamical behavior

of GRN, discrete dynamic models are widely used for their capacity to capture molecular

interactions when a limited knowledge of kinetic parameters is present. However, they

are less powerful when modeling complex systems sensitive to biochemical gradients.

To compensate it, discrete models may be transformed into regulatory networks

that includes state variables and parameters varying within a continuous range. This

approach is based on a system of differential equations dynamics with regulatory

interactions described by fuzzy logic propositions. Here, we discuss the applicability

of this method on modeling of development and plasticity processes of adaptive

lymphocytes, and its potential implications in the study of pathological landscapes

associated to chronic diseases.
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1. INTRODUCTION

The extensive accumulation of data from short and large-scale experiments involving a wide
spectrum of biological functions of B and T lymphocytes in both, normal and pathological
scenarios, has inspired an intensive research on molecular events leading to their early
development, plasticity and emergency differentiation. As a result, the construction of regulatory
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networks has become a resourceful tool for the systems-
level analyses of cell fate decisions through interconnection
of molecular elements, such as biochemical signals provided
by the microenvironment (e.g., cytokines, growth factors,
transmembrane ligands, antigens, etc.) and transcriptional
modules underlying the regulation of lineage-specific gene
expression. Getting insights into the dynamical behavior of
regulatory networks in biology requires simulation as continuous
or discrete models (1). Discrete modeling, represented by
Boolean and multi-valued network models, has been useful in
differentiation processes of adaptive B and T lymphocytes (2–
8), for molecular switching in cellular specification (9), for
the prediction of microenvironment-dependent cell plasticity
(6, 10), and for the analyses of signaling events occurring
downstream activation of antigen recognition receptors (11,
12). Moreover, Boolean algebra has been used in cytometry to
create combined gates for the identification and selection of
cellular subsets and lymphoid phenotyping (13). Nevertheless,
the utility of discrete models is limited as they cannot
predict outcomes from quantitative biological experiments when
working on phenomena sensitive to graded expression of
transcription factors or biochemical gradients. This is the case
of most diseases where lymphocytes are involved and non-
discrete fluctuations in the microenvironment may influence cell
differentiation and plasticity, affecting immune responses at the
progression of chronic pathologies, such as lymphoproliferative
disorders, tumor growth, diabetes, cardiovascular, and chronic
respiratory diseases, among others. Discrete models might be
then transformed into differential equations to allow a dynamical
analyses of regulatory networks, as transformed continuous
models, with potential implications in lymphoid cell- associated
pathologies (14–17).

Here we propose the fuzzy logic transformation of a
discrete model into a continuous model to compensate
their disadvantages and to simulate biological systems with
a well-known network architecture strongly influenced by
concentration-dependent cues (Table 1).

2. DISCRETE MODELING OF LYMPHOID
DIFFERENTIATION LANDSCAPE

2.1. Boolean Interpretation of Molecular
Data
To deeply understand the gene regulatory processes involved in
cellular development, C. H. Waddington introduced in 1957 the
metaphoric concept of epigenetic landscape (18). He proposed
a unique perspective of cellular development as a ball rolling
down within a landscape formed by peaks and valleys. Following
its trajectory, the ball may finally fall into a valley, representing
its final position that defines a steady-state -and a cellular fate-,
also known as attractor. Waddington’s epigenetic landscape was
formalized, among others, by S. A. Kauffman, who studied the
behavior of large networks of randomly interconnected binary
“genes” with a dichotomous (on-off) behavior, establishing the
principles of Booleanmodeling (19). The assumption of a discrete
transcriptional regulation was further investigated in Drosophila

embryogenesis, showing that the gradient of Bicoid morphogen
resulted from averaging binary states of transcriptional activity,
active or inactive, at individual nuclei level (20).

The general system’s behavior and the number of attractors
of a Boolean or multi-valued regulatory network depends on
topological characteristics, such as the number of components
and the degree of interconnectivity among them. It is now
recognized that biological networks are scale-free systems, which
means that the nodes have a high diversity of number of edges,
including few elements with many links and many elements
with few links (21, 22). Scale-freeness provides, among other
attributes: network robustness, better information spreading
performance, and the property that the number of attractors is
almost independent from the number of nodes (23, 24).

Mathematical modeling based on Boolean regulatory
networks (BRN) provides meaningful qualitative information
on the basic topology of relations that determine alternative
cell fates and may be used for the analysis of biological circuits
without requiring explicit values of the network parameters.
In this type of approach, the network nodes represent genes,
transcription factors, proteins mediating signaling cascades,
RNA, environmental factors, etc., and links representing positive
or negative regulation between pairs of nodes. The state variable
of each node takes a discrete value of 0 (inhibited, or inactive) or
1 (expressed or active) (1). The state of each node at time t + 1 is
specified by a dynamic mapping that depends on the state of its
regulators at a previous time t:

qk(t + 1) = Fk
(

q1(t), ..., qn(t)
)

(1)

where Fk is a discrete function representing a logical proposition,
also known as Boolean rules, constituted by elementary terms
related by the logical connectives: AND (∧), OR (∨), and
NOT (¬). Logical propositions satisfy Boolean’s axiomatics,
which complies associativity, commutativity, distributivity,
absorptivity, and identity. The discrete nature of the truth
values involved in Boolean logic propositions implies that this
approximation is not always enough to investigate the enormous
variability inherent to biological processes.

The dynamics induced by the Boolean mapping is completely
determined once a set of initial expression values of the network
components is specified. From a given initial set, the network
nodes iteratively update their value based on the Boolean transfer
rules until eventually reaching a steady-state determined by
condition qk(t + 1) = qk(t). This latter condition specifies
a fixed-point attractor. Then, the dynamics of a model is
evaluated by tracking the trajectories from all the possible initial
configurations in the states space toward the attractors. The
size of the states space of a model is given by �= 2n where n
is the number of nodes in the network. Alternatively, a cyclic
attractor associated to the condition qk(t + N) = qk(t) may also
arise after the simulation of some regulatory networks, where
the integer number N signals the period of the attractor. Cyclic
attractors are generally interpreted as oscillatory behaviors and
are sustained by at least one negative feedback circuit in the
network topology, which involves an odd number of inhibitory
interactions (25). This type of attractors can be directly associated
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TABLE 1 | Mathematical dynamic modeling subtypes: advantages and disadvantages.

Dynamic modeling Advantages Disadvantages Type of application

Discrete • Simulation of large-scale biological systems (e.g.,

hundreds of components).

• Simulation of biological systems with scarce

knowledge of kinetic parameters and mechanistic

details.

• Useful for qualitative dynamic descriptions of

system behaviors.

• Large quantities of qualitative information

available in published literature and

high-throughput experiments.

• Assumption of discretization for all components of the

system.

• Attractors are hardly comparable to experimental

information that contains graded expression or

activation of the system’s components.

• The dynamic simulations occur in terms of

“computational” time-steps.

Simulation of GRNs (e.g.,

differentiation, normal-malignant

transition).

Conventional

continuous

• Useful for modeling biochemical reaction

systems.

• Output data is comparable to experimental

quantitative information (e.g., signaling pathways

activation or proportions of cellular populations).

• Model dynamics can be simulated and

interpreted in terms of real time units.

• Demands high mathematical knowledge for the proper

construction and simulation of an equation system.

• Requires sufficient kinetic and mechanistic details

(e.g., synthesis and degradation rates).

• Computationally heavy as more features and

components are incorporated.

• The resultant models and the hypothesis derived from

them, are tightly specific to the system from which the

kinetic parameters are derived

Biochemical reaction systems.

Continuous

fuzzy logic

• Do not require profound kinetic and mechanistic

knowledge, but allows the incorporation of

quantitative information to implement a hierarchy

of characteristic expression times among the

network components.

• The components of the system can have a

continuous range of values.

• Useful to simulate large biological systems

that include signaling or regulatory sub-networks

with scarce kinetic data available.

• The value taken by each component ranges between

1 and 0, which would relate it more to a degree of

activation or expression, more than to a real

concentration.

• As with Boolean modeling, the accuracy of fuzzy logic

models is limited by the availability of kinetic and

mechanistic information.

Graded signals linked to a GRN

(e.g., cytokines influencing

cellular fates) influencing gene

regulatory networks.

to biological events, for example, in models predicting cell
cycle oscillations (26–28) or, sometimes they can be interpreted
as intermediate or oscillatory activations in multi-valued and
Boolean differentiation models, as has been reported with T cell
attractors (7, 29). Each fixed-point and cyclic attractor is reached
from a number ω of different initial conditions. The parameter ω

denotes the size of the attraction basin which may be visualized
as a ratio of areas in the epigenetic landscape. Consequently, the
probability that a steady state is expressed is given by p = ω/�.

To briefly exemplify how a Boolean model is constructed we
used the information compilated by Bhattacharya et al. (30) of
the transcriptional core orchestrating the terminal differentiation
of B cells into antibody-secreting plasma cells upon antigenic
stimulation. The transcription factors to be considered were
Pax-5, Bcl-6, and Blimp-1. Construction of the gene regulatory
network and the Boolean transfer rules are based on evidence
showing the existence of a mutual repression by Bcl-6 and
Blimp-1, as do Blimp-1 and Pax-5, establishing a system with
two double-negative feedback loops. Pax-5 and Bcl-6 are two
transcriptional factors of high expression in B cells, down-
regulated by Blimp-1 after its AP-1 mediated activation. In
turn, AP-1 is phosphorylated downstream B cell stimulation
with lipopolysaccharides. Beside the direct inhibition of Blimp-
1, Bcl-6 can also act as a passive repressor through its binding
to AP-1, blocking its transcriptional activity (Figure 1A). Such

information is sufficient to predict two fixed-point attractors
interpretable as B-cell and plasma cell configurations. The
presence of at least one positive loop containing an even number
of inhibitory regulations is necessary for the generation of
multiple steady states (25). This type of models has been useful
to merge independently published data from different molecular
circuits involved in cellular specification, to probe how these
circuits orchestrates differentiation, and to generate new testable
hypothesis on missing interactions or cellular transitions.

2.2. Genetic Regulatory Networks
Underlying Lymphoid Specification
As of the discovery of HSCs by Ernest A. McCulloch and James
E. Till in the 1960s, the hematopoietic system has served as the
most recurrent biological model for the study of stem cell biology
and differentiation. For many years, the differentiation process
was represented as a hierarchical dichotomic model of strict
myeloid/lymphoid branching. However, multiple observations
mostly based on single cell experiments have challenged this
classical view and introduced cell differentiation as a process of
continuous transitions directed by two events running in parallel:
the gradual commitment through the acquisition of lineage-
specific features and the gradual lost of potential to generate cells
of a different lineage (31–36) (Figure 1B).
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FIGURE 1 | (A) Boolean modeling of the transcriptional core regulating naive B cell to plasma cell (PC) differentiation. Inhibitory and activation interactions are

represented in the network with truncated red lines and green arrows, respectively. (B) Epigenetic landscape of hematopoietic differentiation where valleys represent

stable cellular states, however other cellular phenotypes may be represented as transitory stages. HSC, hematopoietic stem cell; MPP, multipotent progenitor; CMP,

common myeloid progenitor; LMPP, lymphoid-primed multipotent progenitor; MEP, megakaryocyte/erythroid progenitor; MegP, unipotent megakaryocyte progenitor;

GMP, granulocyte/macrophage progenitor; CLP, common lymphoid progenitor; NK/ILC, natural killer/innate lymphoid cell; ALP, all-lymphoid progenitors; BLP, biased

lymphoid progenitors; ETP, early thymic progenitor; DN, double negative; DP, double-positive.

In the metaphorical Waddington’s view, the cell type
positioned in the “summit” of the hematopoietic epigenetic
landscape is the hematopoietic stem cell (HSCs) population,
which resides in specialized niches within the bone marrow.
Early specification begins upon “ball rolling” from the HSCs to
the multipotent progenitor (MPP) attractors, either committing
to myeloid or lymphoid lineages by differentiating into
common myeloid progenitors (CMPs) or lymphoid-primed
multipotent progenitors (LMPPs), respectively (37–39). As more
is deciphered on the transcriptional network underlying the
lymphoid differentiation, more is discovered about intermediate
steps and novel transitional cell subpopulations. It is now well-
known that LMPPs contain a mixture of myeloid and lymphoid-
restricted progenitors, including early lymphoid progenitors
(ELPs), giving rise to common lymphoid progenitors (CLPs),
endowed with the ability of generating all types of adaptive
and innate lymphocytes without noticeable myeloid potential,
and some categories of dendritic cells (DCs) (40–50). The
CLP population bisects into all-lymphoid progenitors (ALPs)

and B-cell-biased lymphoid progenitors (BLPs) (44) that
predominantly generate T and B lymphocyte precursors,
respectively. From the ALP pool, some circulating progenitors
reach the thymus and differentiate into early thymic progenitors
(ETPs), progress to CD4/CD8 double-negative 2 cells (DN2)
and DN3 cells. CD4/CD8 double-positive (DP) cells are then
produced before differentiation toward CD4 or CD8 single-
positive (SP) T effector cells (51). B cells reach also a partial
maturation in the bone marrow (BM), following a series of
sequential differentiation steps from prepro-B, pro-B, early pre-B
and pre-B stages, where the rearrangement of immunoglobulin
heavy-chain (IgH) genes takes place and results in the expression
of the pre-B-cell receptor (pre-BCR). Downstream the pre-
BCR activation and the signaling cascade deriving in a clonal
expansion and the subsequent cell cycle arrest, a second
wave of recombinases Rag1 and Rag2 expression induces
the rearrangement of the immunoglobulin light-chain (IgL),
marking the transition from pre-B-cell to immature B cells (44,
52, 53). Uponmigration to the secondary lymphoid organs, T and
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FIGURE 2 | Cellular attractors and transitions from the hematopoietic landscape reproduced through discrete modeling. Each color represents an independent article

of hematopoietic discrete modeling, black arrows represent the direction of hematopoiesis toward the myeloid and lymphoid lineage. White nodes represent predicted

phenotypes that have not been associated to experimental findings.

B lymphocytes are exposed to antigens and signals provided by a
number of immune cells in the microenvironment.

Even though differentiation transitions are now recognized
as continuous processes, commitment to stable phenotypes is
dependent on molecular switches that act as lineage-determining
steps, what has made the differentiation process a target
for its simulation through discrete models. More specifically,
hematopoietic differentiation has been approached with discrete
models at many levels (Figure 2), from the top of the epigenetic
landscape hill sloping down to the final stages of mature
cells production. The main type of information provided by
the construction and simulation of BRN is obtained after the
confirmation of the functional integration of the proposed
components. This generally occurs validating the attractors and
transitions with previous experimental observations. To compare
with experimental data, Booleanmodels are subjected to different
types of perturbations including permanent mutations (e.g.,
gene knock-out or overexpression), or temporal changes in the
nodes activation value which can be understood as triggering
cues for network state transitions. An example of this type of
evaluations is the case of the hematopoietic stem/progenitor
(HSPC) network model generated by Bonzanni. The HSPC
model contains ten genes expressed in the immature stem cell
population besides GATA1, which is expressed in the early
progenitor MPP (2). The dynamic simulation of the HSPC
network generated two single state attractors, one with an
erythroid cell profile, and one with a non-hematopoietic cell
profile with all genes turned-off, as well as a periodic attractor

composed of 32 interconnected states with oscillatory activation
values for four genes (Gata2, Zfpm1, Erg, and Eto2a) compatible
with single cell gene expression data from HSPCs (54). The
activation state of one or more genes in the states comprising
the HSPC complex attractor were modified to compute the
dynamic transitions and mapping the developmental route from
HSPC toward erythrocyte, granulocyte, monocyte, natural killer
(NK), B cell, CD4, or CD8 T cells profiles (55). This type of
evaluation provided information about the stability of the HSPC
attractor, the type of genes involved in the developmental route
considering those that trigger differentiation, and the suggestion
that there were missing interactions or components that avoid
differentiation reversal.

Furthermore, the myeloid/lymphoid branching has been
addressed through the assembly of a GRN integrating 23
nodes that, when computed using a logical multi-valued
formalism, produced four stable stages corresponding to CLPs,
B-lineage cells, granulocyte-monocyte progenitors (GMPs) and
macrophages (9). As previously discussed, even the network
assembling may constitute a useful mechanism to propose
novel interactions. This was the case with this model, by
envisioning three missing regulations: negative regulation of
C/EBP(α) transcription by Foxo1, E2A activation by Ikaros,
and Gfi1 positive regulation by Pax-5. Moreover, the model
was useful to explore molecular mechanisms of transient
induction of the transcription factor C/EBP that down-regulates
the transcriptional core of B cell specification and promotes
an irreversible trans-differentiation toward macrophages. The
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theoretical findings complemented the results of a previous
experimental report where B cells were transdifferentiated into
macrophages by the enforced expression of C/EBP and C/EBP,
but without a full understanding on the molecular steps leading
to the loss of early and late lymphoid markers and acquisition of
myeloid-specific genes (56). Predictions from these models and
their perturbations might be useful to unravel the pathobiology
of diseases where neoplastic cells concomitantly express myeloid
and lymphoid markers (57–61). Also, early branching models
may help to deepen the research on plasticity-related processes,
such as those suggested to be involved on leukemia lineage
switching and relapse (62, 63). It has become of particular
interest the integration of microenvironmental cues capable
of influencing and regulating transcriptional cores, particularly
to approach the two-way feedback between cells and their
surrounding microenvironment.

2.3. Microenvironmental Modulation of
Lymphoid Differentiation and Plasticity
The applicability of discrete models seems to be simplistic
but their scopes are expanding in parallel with the knowledge
on cellular heterogeneity and plasticity. Their flexibility for
the analysis of biological systems integrated with multiple
types of molecular events makes them a useful tool for
evaluation of different microenvironments that consider the
modulation of genetic and signaling networks. Molecules,
such as integrin, cytokine, or antigen receptors, might be
included in computational models as they are involved in
maintaining particular hematopoietic compartments, enhancing
proliferation, regulating apoptosis or migration, or guiding
differentiation to either one phenotype or another. As previously
mentioned, some of these processes become discrete cellular
decisions with a bi-modal behavior as a result of the
combined effect of their connectivity in molecular networks and
noise (64–66).

Early logical mathematical approaches for modeling
lymphocyte behavior upon antigen exposure preceded the
development of networks that connected intracellular events
regulating the cellular fates of hematopoietic progenitors
and lymphocytes (67, 68). However, as the different subtypes
of lymphocytes were discovered, efforts focused on the
reconstruction of the GRN underlying the emergence of mature
phenotypes in response to variable microenvironmental factors
under normal and pathological conditions. The first model of
lymphoid differentiation branching using a discrete perspective
resulted from the transformation of a previous continuous model
based on Hill functions describing the polarization of naive Th
cells (Th0) into Th1 or Th2 cells (69). The Boolean version
proposed by Mendoza (3) integrated 17 nodes and replaced
the transcription factor Gata-3 positive self-feedback loop in
Yates’ model (70) with a more refined functional feedback circuit
engaging Gata-3 and interleukin-4 (IL-4) (71). The activation of
this functional circuit characterizes the Th2 cell subtype (72, 73).
Besides recovering the Th0 polarization into Th1 and Th2, the
model was able to describe the transition between Th1 and Th2
attractors by the stimulation with IFN, IL-4, or the combination

of IL-12 and IL-18. Later on, the model was extended to include
novel transcription factors, cytokines, and signal transduction
molecules to describe additional fates to T regulatory (Treg)
and Th17 cells (29). More refined molecular data has resulted
in the reconstruction of larger versions and their simulations,
predicting a larger repertoire of Th cell subsets including Tfh,
Th9, Treg, iTreg, Th9, Th17, Th22, and T regulatory Foxp3
independent cells (6, 7, 74).

B and NK cells have been less studied by mathematical
modeling. During terminal B cell differentiation in the germinal
centers of secondary lymphoid organs, the exposure to particular
environmental factors, including the antigen-mediated activation
of the B-cell receptor (BCR), defines the transition of the naïve
B cell to a memory cell or an antibody-producing plasma cell.
This terminal differentiation of B cells has been simulated as a
Boolean model that recovered four cellular profiles: naive B cell
before and after arriving to the germinal center (GC), memory
cell (MC) and plasma cell (PC) (8). The B cell model reproduces
not only the expected cellular attractors, but also the transitions
with biological significance. Of note, it predicts four interactions
that have not been declared experimentally but are suggested
through indirect mechanisms: two self-feedback loops involved
in Pax5 and Bcl6 activation, the positive regulation of Bcl6 by
Pax5, and the inhibition of Pax5 by Irf4.

On the other hand, NK cell biology has been recently
approached by a Boolean model providing a CLP attractor that
transits toward pro-B, early T progenitor, or three different
subtypes of NK attractors, depending on the activation pattern
of IL-7, IL-15, and Delta ligand (75). NK cell subsets are
characterized by differential expression of the transcription
factors T-bet and Eomes. The NK attractor reached after CLP
is stimulated with IL-15 activates both transcription factors
and correlates with highly cytotoxic NKs both, in humans and
mice periphery. On the other hand, perturbation of the CLP
attractor with combined activation of IL-15/IL-7 or IL-15/Delta
ligand, leads to a T-bet- Eomes+ profile correlating with BM
NKs or T-bet+ Eomes− compatible with liver NKs (76). The
incorporation of more transcriptional regulators may lead to new
hypothesis about the branching step between NK cells and the
more recently described, innate lymphoid cells (ILCs). It has
been purposed that CLPs transition to NK lineage may have
an intermediate step of a common progenitor for NKs and
ILCs with a probable expression of transcription factors shared
by both lineages, such as Nfil3 and TOX (77). In contrast to
adaptive lymphocytes, the knowledge on transcriptional circuits
controlling ILC development remains limited, although their
role in the orchestration of immune responses has become
of particular interest. ILCs are enriched in mucosal tissues
and have been correlated with the progression of allergic,
gastrointestinal, and central nervous system inflammatory
diseases, like inflammatory bowel disease (IBD) and multiple
sclerosis (78, 79). Similar to T lymphocytes, ILCs show plasticity
under microenvironmental challenges modifying their cytokine
secretion patterns and in consequence, the response exerted by
other cells of the immune and adaptive branches (80).

The continuous integration of data, an inevitable process to
improve computational modeling of biological systems, leads
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to the generation of large and complicated networks. To
facilitate their analysis, large networks can be subjected to model
reduction, a process of iterative removal of particular nodes
and redirection of the logical rules that ideally, preserve the
reachability of the attractors while keeping the main dynamical
properties (29, 81, 82). Model reduction considers that, in a
number of cases, a central core of nodes drives the dynamics of
other dependent nodes. One of the simplest methodologies to
drive model reduction (16) consists in excluding from the steady-
state computation those nodes that follow linear downstream
pathways. For example, the consecutive rules q3(t + 1) =

q2(t) and q2(t + 1) = not q1(t) may be transformed into
q3 = q2 = not q1, so that the state of q1 automatically
determines q2 and q3. A more elaborate example would be
q5(t + 1) = q4(t) and

[

q4(t) or q3(t) or not q2(t)
]

which leads to
q5 = q4 and

[

q4 or q3 or not q2
]

; using the Boolean absorption
rule a and (a or b) = a, this expression is finally transformed
to q5 = q4. In this latter case, the steady state of q5 is merely
determined by q4, independently of the state of q3 and q2 which
appear in the original rule. Furthermore, model reduction is
a useful tool to identify regulatory cores or redundant signal
transduction pathways, reduce the states space and obtain
qualitative data comparable to experimental results (83–85). An
alternative to deal with networks whose size complicates the
exhaustive analysis of their state space, consists in the evaluation
of cellular transitions assessed with a computational technique
known as model checking (6). Model checkers are based on the
transformation of states space into graphic or symbolic structures
that facilitate verification of properties and trajectories, allowing
fate mapping of all possible cell transitions and emerging as
a potent predictive tool for cellular plasticity under multiple
microenvironmental contexts.

The role of the microenvironment in lymphoid differentiation
is successfully implemented in the reviewed models by
considering the hypothesis that cytokines are either absent
or present, and do not care about graded availability. Other
models integrate assumptions to simulate signal processing and
propagation using a discrete model, such as the models of the
downstream events occurring after the activation of the T-cell
receptor (TCR) (11, 12). Saez-Rodriguez et al., based a Boolean
model in a large network of 94 nodes and considered that some
signaling events occur in a different timescale, so that logical
rules were updated in a first and second wave depending on the
molecular nature of the event. From the attractors resulting after
the simulation, the authors made predictions about the signaling
cascade activated by the receptor engagement and confirmed
them experimentally. The implementation of two updating waves
is a way to recognize that the cellular events occur in different
timescales, for example biochemical reactions occurring in the
cytoplasm (e.g., molecular inhibition by phosphorylation) are
faster than the transcriptional modulations (e.g., transcription
factor translocating to the nucleus and binding to a gene
promoter that will be activated). Even though their utility, it
is necessary to recognize that Boolean models are sometimes
insufficient, particularly when there is enough data about the
continuous concentration of a biomolecule determinant for the
process that is being modeled.

The study of chronic diseases has strongly influenced the
understanding of how slight changes derive in the complete
perturbation of complex biological systems. If it were desired
to simulate the way in which the progressive accumulation
of pro-inflammatory factors in the intestinal tract perturb the
proportions of T cell populations, the use of Boolean models
would be of very limited use to investigate the transitory stages
between the healthy attractor and a pathological attractor, like in
IBD (78).

3. MODELING OF CONTINUOUS
VARIABLES TO STUDY LYMPHOCYTE
DIVERSITY

Modeling lymphoid cells production or activation may require
the integration of molecules involved in dosage-dependent
effects, as is the case of ligand-receptor affinities, cytokine
gradients and even some transcription factors like C/EBP and
PU.1 (9, 56). As suggested by the number of publications,
continuous mathematical models are the most recurrent tool
for the study of lymphocyte development and response and
are useful tools to evaluate population dynamics and receptor
repertoire (86–89).

However, most time parameters are fitted to experimental
data without a deep understanding of molecular mechanisms,
unless enough kinetic and biochemical information is available.
Some cellular processes involving dosage variations may still be
simulated with discrete approaches using multi-valued models or
probabilistic Boolean networks, but there exist other alternatives
to integrate discrete and continuous molecular events like
the construction of hybrid and fuzzy models. On one side,
hybrid models have been applied to simulate the activation
of Th and B lymphocytes by DCs, and their subsequent
departure from the lymph node. The cellular entities and the
replication steps were modeled in terms of discrete variables,
while the migration was simulated by means of differential
equations involving continuous variables and parameters (e.g.,
chemokines concentration and diffusion, cellular velocity) (90).
On the other side, Boolean models may be transformed to
continuous systems using fuzzy logic (5, 8, 15–17, 91, 92).
These approaches may be useful to use existing GRN of
lymphoid differentiation and activation to model complex
scenarios that involve intercellular communication among
immune cells, interaction of immune cells with normal or
pathologic tissue, and immune cell population transitions in
response to microenvironment remodeling.

3.1. Dosage Variations in Multi-Valued and
Probabilistic Models
The molecular pathways participating in TCR signaling have
been successfully modeled with a set of differential equations.
The first step for T lymhpocytes activation involves a process
known as ligand discrimination that differentiates between weak
and strong binding antigens. After TCR engages with peptides
processed and expressed on the surface of antigen-presenting
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cells, a well-regulated discrimination between self and non-
self antigens is triggered. The simulation of TCR activation
as a continuous model suggested that the MAPK cascade is
the responsible for this discriminatory engagement process.
A negative feedback loop that modulates the TCR response
until an ERK activation threshold is reached may take place,
resembling a bimodal behavior (93). The model was expanded
to answer the question of how stochastic variations of protein
expressions among a clonal population of CD8 T cells could affect
their responsiveness. Variations on the expression of CD8 and
two components of the MAPK signaling pathway, ERK-1 and
SHP-1, generate dispersion in responsiveness among individual
cells, but the co-regulation of CD8 and SHP-1 restrain the
phenotypic variability (94). It was later discovered that the ligand
discrimination process influences T cell differentiation to Treg
or Th phenotypes through the downstream modulation of PTEN
and Akt/mTOR signaling pathways (95, 96). To represent a
weak or strong ligand affinity, a multi-valued model was useful
allowing three possible activation levels of TCR and PI3K nodes
(off= 0, low= 1, and high= 2). The computational simulations
of the model corroborated that low TCR signal favors Treg
differentiation, while a stronger signal result in the induction
of Th profile (97). Additionally, varying the number of rounds
or time-steps for TCR activation, as an approach for ligand
binding lifetimes, showed that the Th phenotype is more rapidly
stabilized than a Treg profile, suggesting that the transition from
naïve to Treg cells is less direct than the Th differentiation.
The generation of Treg cells goes through intermediate stages
during which the secretion of IL-12 is promoted and activates
the PTEN signaling pathway that enables Foxp3 permanent
activation (97). Under high TCR signaling, Foxp3 is transiently
activated but further turned off bymTOR pathway, while the Akt-
dependent regulation of T cell fate choice is also dependent on the
differential phosphorylation of additional proteins (98). There
are ongoing studies focused on the blockage of TCR signaling by
some pathogens like Yersinia pseudotuberculosis (99).

To deepen in the composition of the microenvironmental
patterns affecting the diversity of T lymphocytes, a probabilistic
Boolean control network (PBCN) was developed for simulation
of all possible microenvironments combining nine external
signals including TCR activation, TGF-β and IFNγ cytokines,
and six interleukines. In contrast with conventional Boolean
models, PBCNs contemplate activation probabilities as an
approach to input dosages, increasing the range of testable
microenvironments (74). Experimental research on T
lymphocytes diversity has led to the discovery of intermediate
phenotypes that co-express lineage-specific transcription factors
from more than one T cell subset, such as Th1-Th2 and
Th1-Th17 cells identified on bacterial and parasitic infection
(100–102). Through a sensitivity analysis of the PBCN the
minimummicroenvironment requirements have been identified,
on composition and dosage, for the description of each of the 10
T cell profiles. In addition, they have been used to predict the way
in which different input patterns influence the internal balance
determining the phenotype of canonical and complex cellular
profiles, such as cells with mixed phenotypes. With a continuous
model constructed to simulate iTreg-Th17 differentiation, Hong

and collaborators reported a double expressing phenotype with
either regulatory or dual (regulatory and proinflammatory)
functions in vivo. This mixed phenotype is suggested to be a
stable state reached from the transition of single-expressing
cells, iTreg and Th17. Th17 and iTreg cells are able to produce
TGF- which may either increase the percentage of both types
of cells, or induce the transition from single-expressing to
double-expressing cells. The iTreg-Th17 model was also used to
analyze how different concentrations of TGF- influence the rate
of co-existing cellular subtypes, making evident that priming
factors not only drive differentiation events, but also promote
cell heterogeneity (103).

The models presented in this section have different
limitations. Themulti-level and probabilistic models do not allow
the integration of temporal hierarchies in the events involved
in the biological system of interest, particularly important
when modeling more than one type of cellular processes. The
continuous model includes a limited number of components
depending on the availability of kinetic parameters or enough
information to establish assumptions. As an alternative, fuzzy
logic can merge large transcriptional regulatory networks
participating in cell differentiation and plasticity, with qualitative
knowledge about the kinetics of signaling pathways involved in
the transduction of microenvironmental variations, for example,
events proceeding relatively faster than others, or ligands binding
to receptor above other ligands.

3.2. Continuous Simulation of Discrete
Differentiation Networks
Extracellular signals and some intracellular components are
continuous variables and their adequate representation in
mathematical models may determine the simulation of lymphoid
cellular fates like differentiation, phenotypic transitions and
activation. The transformation of discrete models to a set of
differential equations is useful to identify additional attractors
and unstable states with biological relevance. In a comparison
between Boolean and continuous simulation of a B cell terminal
differentiation network, the continuous counterpart provided
three additional stable states with intermediate values of Bcl-
6 and/or Irf4; however, only one of them was comparable
with a previous reported phenotype that may correspond to
the centrocytes found during the germinal center selection (8,
104). This intermediate phenotype together with centroblasts,
are particularly important in the study of follicular lymphomas
characterized by an accumulation of cells unable to reach
terminal differentiation stages.

In comparison with Boolean models, the computational
simulation of continuous fuzzy models is simpler and
in consequence faster, thus allowing the integration of
independently developed BRN without caring a lot about the
number of resultant equations. An example is the T/B lymphoid
differentiation model of 81 equations representing cytokines and
transcription factors that lead to ten attractors with Th0, Th1,
Th2, Th17, Treg, cytotoxic T lymphocyte, DP T lymphocytes,
CD8 T naive, naive B cell, and PC profiles (105). The attractors
obtained by the continuous model show a higher compatibility
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with experimental data than previous discrete models. In this
case, all the attractors display intermediate values for Ikaros, Gfi1,
and PU1. For each of the three transcription factors there exists
strong evidence that associates this intermediate expression with
the delimitation toward lymphoid lineage during hematopoietic
differentiation (106–108). The intermediate modulation of PU1
and Ikaros was also reproduced with a different continuous
model of B-lymphocyte lineage commitment, evidencing
their participation in the transcriptional core that reproduces
the irreversible transition from LMPP to lineage restricted
progenitors expressing IL-7R (109).

An additional application of fuzzy logic models is
the simulation of virtual cultures where independent
GRNs, representing multiple cells, may interact with
a microenvironment expressing graded and dynamic
concentrations of cytokines. A virtual culture of T lymphocytes
was proposed by Mendoza to evaluate the evolution of 100
cells with an initial Th0 configuration after being stimulated
with IFN, I-4, TGF alone, or TGF in combination with IL-6.
The phenotype of each cell was determined by the activation
state of each of the 36 nodes integrating the internal Th
differentiation network, in turn, regulated by 11 cytokines
produced depending on each cellular profile (Th0, Treg, Th1,
Th2, and Th17). The produced cytokines involved endocrine
and paracrine signaling to evaluate the final balance of the
T lymphocyte subpopulations arising from different types of
stimulus (91). This particular implementation is computationally
expensive, but represents a more realistic approach to analyze
the interaction between heterogeneous populations of immune
cells susceptible to transit among phenotypes, including
dynamic secretion patterns that influence the composition of
the microenvironment.

3.3. From Discrete to Continuous Using
Fuzzy Logic
A more realistic approach must considerate that the expression
levels, concentrations, and parameters of biological systems
may take any value within a continuous range limited only
by functionality constraints. In this case, the discrete dynamic
mapping given by Equation (1) may be generalized by
introducing a set of ordinary differential equations (ODEs)
for the rate of change of the expression level of the network
components. For k-th node, this is written as

dqk

dt
= µ

[

wk(q1, ..., qn)
]

− αkqk. (2)

Here, µ[wk] is an input function that expresses a continuous
realization of the Boolean rule wk (see below), while αk is a
decay rate. In this scheme, the equilibrium states of the system
are defined by the steady-state condition dqk/dt = 0, which
leads to

qsk =
1

αk
µ

[

wk(q
s
1, ..., q

s
n)

]

, (3)

where the superindex s denotes the steady-state value. A
straightforward consequence of this is that the expression level of

node k is strongly dependent on its decay rate. In the case αk > 1,
a node will be under-expressed with respect to the value attained
for αk = 1; in particular, for αk ≫ 1, the expression of that node
will be completely inhibited: qs

k
→ 0. The converse also holds:

if αk < 1, a node will be relatively over-expressed [it must be
noticed that a decay rate αk < 1 may lead to a steady expression
value qk > 1. Although in fuzzy logic the values of the variables
are assumed to be constrained to the interval 0 ≤ qk ≤ 1,
values >1 are not excluded by the formalism, and it is a matter of
convenience the range in which the variables are defined (110)].
It follows that modifications of the characteristic decay rates of
network components may alter the steady expression patterns
arising from the nodes interactions. This may be interpreted as
a modulation of the metaphorical or Waddington’s epigenetic
landscape which eventually may lead to transitions between
attractors associated to different cell fates. This approach has
been formerly employed, for example, tomodel plastic phenotype
changes in T CD4+ lymphocytes (92).

The translation of the interactive Boolean rules to the
continuous domain may be accomplished by considering an
approach based on fuzzy logic. Fuzzy logic is a theory aimed
to provide formal foundation to approximate reasoning with
applications in physical, biomedical, and behavioral sciences. It is
characterized by a graded approach (110–112), so that the degree
to which an object exhibits a given property is specified by a
membership (or characteristic) function µ[wk], with truth values
ranging from total falsity, µ[wk] = 0, to totally true, µ[wk] =

1. For example, the property of “being a good person” implies
that there is a set of persons that share certain characteristics
with no definite boundary. Fuzzy logic satisfies an axiomatic
similar to the implied in Boolean logic, except for the identity
principle, meaning that the principle of no-contradiction does
not hold. Thus, although seemingly paradoxical, a proposition
w and its negation 1 − w may be simultaneously true. For
example, the assertion “he was not a good, but not bad guy”
has a meaning in language theory. In biological systems, fuzzy
propositions may describe cases in which a cell displays an
intermediate expression pattern that does not necessarily belong
to a specific phenotype. That is the case of individuals with
food allergies, in which Treg cells produce IL-4, which is a
characteristic usually ascribed to Th2 cells. Similarly, diseases like
rheumatoid arthritis or colorectal cancer are associated to the
expression of IL-17+Foxp3+ Treg cells or RORγ t + Foxp3+ Treg
cells, respectively. The absence of no-contradiction is formally
expressed by the equation w = 1 − w, with solution w = 1/2.
It follows that the value w ≡ wthr = 1/2 may be interpreted as a
threshold between falsity and truth.

Similar to the Boolean approach, in the continuous regime the
network regulatory interactions are characterized by fuzzy logic
propositions denoted here as wk[q1(t), ..., qn(t)]. They are either
inferred from experimental observations or suggested by inner
consistency requirements. In fact, a translation scheme from the
discrete to the continuous scenario may be straightforwardly
implemented translation by replacing the Boolean connectives
AND, OR, and NOT, for its fuzzy counterparts. In fact, the
definition of fuzzy connectives is not unique, and a number of
different alternatives not entirely equivalent, have been proposed.
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In the following table we present Zadeh’s original proposal (111)
and a probabilistic-like scheme (110):

Boolean Zadeh ’Probabilistic’
q AND p min [q, p] q · p
q OR p max [q, p] q+ p− q · p
NOT p 1− p 1− p

Both schemes satisfy the modified Boolean axiomatics
discussed above. However, the probabilistic-like scheme
leads to continuously differentiable expressions if q and p are
differentiable. This is a desirable condition when dealing with
ODEs systems. Furthermore, it shows the same properties as
joint probabilistic distributions for independent variables, so
that probabilistic statements may be directly translated into
fuzzy propositions.

An example of translation from the Boolean to the fuzzy
framework is

W[p, q, r] =
(

q ∨ p
)

∧ ¬ r → w[p, q, r]

=
(

q+ p− q · p
)

· (1− r) .

Continuous logical propositions can be used to construct an
explicit expression of the characteristic function µ[wk]. In the
discrete Boolean approach, this function would be equivalent to
a step 2 function:

µ[wk] → 2[wk − 1/2] =

{

0 if wk < 1/2;

1 if wk > 1/2.

In the continuous approach this behavior may be approximated
by a characteristic function with a sigmoid structure that
gradually changes from a null to a unit value. Many functions
share this property. An expression employed in a number
of applications of fuzzy logic in systems biology is the
logistic function:

µ[wk] =
1

1+ exp
[

−β
(

wk(q1, ..., qn)− wthr

)] (4)

Here, wthr is a threshold value such that if wk > wthr , then
wk tends to be true (or expressed). Usually wthr = 1/2. The
parameter β is a saturation rate that measures the pace of the
transit from an unexpressed to an expressed state, as displayed
in Figure 3. We observe in the figure that this pace is gradual
for small β , and steep for large β . In the case β ≫ 1, µ[wk] →

2 [wk − wthr]. This latter result, together with the steady-state
condition given by Equation(2), implies that in the case is another
manifestation of the robustness of the qualitative predictions
generated by the fuzzy approach. A related result is that in the
limit β ≫ 1 and αk = 1 for every network interaction, then
the steady-state condition given by Equation (7), guarantees that
the set of fixed-point attractors resulting in the Boolean and
fuzzy approaches coincide by construction. On the contrary, the
corresponding sets of periodic attractors usually differ.

It may be argued that the predictions obtained in the fuzzy
formalism may depend on the specific form of the characteristic

function µ[wk]. In fact, there are multiple expressions employed
for example, in engineering applications and control theory, such
as triangular, trapezoidal, or Gaussian functions (113). However,
the logistic structure of µ[wk] considered in this review may be
derived, rather than postulated, by introducing the concept of
Shannon’s information entropy (work in preparation). This is
related with the number of independent ways in which a logical
proposition may acquire partial values of truth for fixed values
of the parameters β and wthr . In other words, the more general
expression involving the least number of assumptions concerning
a graded approach to truthiness of a fuzzy proposition is the
logistic distribution. Interestingly, the mathematical formalism
associated to fuzzy regulatory networks including the description
of logical rules with a logistic structure is formally equivalent to
that employed in the computation of neural circuits in the theory
of neural networks (114).

Another useful (and equivalent) representation of the
characteristic function may be derived by considering that
the expression levels of biological variables, such as the
concentrations or the affinities of a given molecule, may show
variations involving several orders of magnitude. In that case, it
may be convenient to introduce in the description the logarithms
of the corresponding quantities. This is easily performed by
means of the change of variable wk = ln xk and substituting this
into Equation (8), leading to the well-known expression for the
Hill function:

µ̃[xk] =
x
β

k

x
β

thr
+ x

β

k

, (5)

where the parameter xthr represents the value at which µ̃[xk]
acquires half its maximum value. The Hill function and its
negation 1 − µ̃[xk] display both a sigmoid shape and have been
widely employed in the modeling of biochemical, physiological,
and pharmacological processes. A paradigmatic example is the
set of non-linear differential equations

dxk

dt
=

akx
β

k

x
β

thr
+ x

β

k

−
bkx

γ

thr

x
γ

thr
+ x

γ

k

, (6)

describing, for example, the simultaneous binding (unbinding)of
β (γ ) ligands to (from) a single receptor. This latter
representation has been employed in the construction of a GRN
that characterizes fate decisions and reprogramming signaling
pathways of pancreatic cells (115). Although this latter model
was not built within the fuzzy logic approach, we observe
that in this and numerous instances a formal equivalence may
be established by a convenient re-scaling of the variables and
parameters involved in the description.

3.4. Self-Organization and Time Ordering
To describe the transitions between distinct steady states, in
conjunction with fuzzy logic elements, general concepts of theory
of non-equilibrium phase transitions and self-organization are
highly relevant to consider. The adaptation of that theory to
the fuzzy logic modeling scheme allows a sound description
of the transitions between the different disease stages. In the
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FIGURE 3 | Fuzzy networks. (A) Characteristic distribution µ
[

wk −wthr
]

for a threshold value wthr = 1/2 of the logical proposition wk , and different values of the

saturation parameter β. In the case β ≫ 1, the characteristic distribution becomes a step-like distribution. (B) Fuzzy modeling of the transcriptional core regulating B

cell to plasma cell (PC) differentiation using three different saturation values (β = 8, 15, 60), wthr = 1/2 and the decay rate for each component α = 1. For the initial

state of network all nodes were considered inactive, except AP-1, the promoter of the PC differentiation. When β = 60, a full B cell attractor is reached with no final

expression of AP-1 or Blimp-1.

description the transitions between steady states it is important
to contemplate that differentiation from a multipotent stem or
progenitor state to a mature cell is an essentially irreversible
process, and that the associated changes in gene expression
patterns exhibit time-directionality. Whereas, in equilibrium
systems time-irreversibility is a direct reflection of the second
law of thermodynamics, the cell’s gene regulatory network
represents a system far from thermodynamic equilibrium.
These problems have been contemplated by the theory of
cooperative phenomena, non-equilibrium phase transition and
self-organization (116). Accordingly, cooperative phenomena
arise from non-linear interactions of a large number of
elementary subsystems (represented here by the fuzzy logic
rules), leading to the emergence of organized patterns or phases.
The theory relies upon two main concepts, the existence of
ordering and control parameters. The order parameters are
those variables that mainly drive the system organization, while
the control parameters are variables whose value determines
which of the possible organizations is actually realized. In the
case of thermodynamic systems, an order parameter would be
the density, which defines an aggregation state, such as liquid,

solid, or gas. These states may somehow “compete,” in the
sense that one or other may prevail depending on the value of
an external control parameter, such as the temperature of the
system, for fixed values of pressure and volume. In the context
of fuzzy GRNs, the order parameters are the activation patterns
that specify the different cell phenotypes, determined in turn,
by the activation state of central nodes or functional moduli
of the GRN, while the control parameters are those involved
either in the logic rules, or those characterizing the decay rates
{αk}. This latter set is of prime importance. Given that αk =

1/τk, where τk is a characteristic expression time, the set {αk}

implicates a hierarchy for the temporal expression of the GRN
components. By assuming that an ordering α1 > α2 > ... can
be constructed, this procedure induces an associated ordering
τ1 < τ2 < .... As in the thermodynamic example, the phenotypic
landscape (or state space) may be explored by varying each of
the control parameters αk, while maintaining fixed the rest. As a
consequence, transitions between different ordered phases may
be induced by modifications of the control parameters. This is
similar to the description of chemical reactions in the reaction
coordinate space, where the substrate and product states are
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separated by an activation energy barrier; when an enzyme is
added the activation barrier is lowered, and the chemical reaction
ensues. In Waddington’s landscape context, this mechanism may
be interpreted as alterations of the peaks separating the valleys,
allowing the exploration of the landscape and transit between
valleys. This kind of description has been employed in the
modeling of the long-term progression of type-2 diabetes based
on a GRN for pancreatic beta cells. In this case, the organization
patterns correspond to states identified with health, metabolic
syndrome, or manifest diabetes. The alteration of decay rates of
key cellular components involved in inflammatory andmetabolic
pathways lead the transitions between different disease stages.

An important consequence of establishing a time ordering, is
that the system dynamics may discriminate among “slow” and
“rapid” variables and it may be shown that the main dynamics
is driven by “slow” variables, while the “rapid” variables adapt
almost instantaneously to the environment defined by the “slow”
ones. It turns out that the relaxation times of the order parameters
are usually much longer than those of irrelevant variables and
thus work like control parameters of the system. Irrelevant
variables decay rapidly to a steady state, so that they may be
effectively eliminated from the overall dynamics. In this view,
the order parameters define the general features of the system,
including the final expression patterns associated to a set of initial
conditions, while less relevant variables adapt their values to the
instructions dictated by the order parameters. This property may
be relevant in the study of multifactorial diseases, since it could
help in the identification of variables that constitute a target for
the development of therapies.

Another element that may be relevant in the study of
transitions between steady states is the consideration of extrinsic
and intrinsic noise, i.e., the existence of random interactions
inherent to every biological system. Depending on its intensity,
the existence of noise may drastically alter the predictions yielded
by the deterministic formalism considered before, especially at
bifurcation points of the landscape, where noise may accelerate
a transition rate between neighbor attractors. In the chemical
reaction analogy, this is equivalent to adding heat to the process.
The action of noise may be incorporated in the fuzzy logic
approach by assuming that this is characterized by a stochastic
variable ξ (t), with zero mean

〈

ξ (t)
〉

= 0, and statistical dispersion
given by

〈

ξ (t) ξ (t′)
〉

= DG(t − t′). Here, D is a diffusion
coefficient, and G(t − t′) is a function that characterizes the
duration of the self-correlation of the variable ξ . The case in
which G is a Dirac delta, i.e., a sharply peaked distribution only
for t = t′, and null elsewhere, corresponds to a white noise with
no-memory effects.

The fuzzy stochastic dynamics (16) can be described by a
Langevin equation (116, 117):

dqk

dt
= µ

[

wk(q1, ..., qn)
]

− αkqk + ξk(t), (7)

with steady states given by the mean value
〈

qs
k

〉

=
〈

µ
[

ws
k

]〉

/αk.
In the same way as in the deterministic approach, the parameters
αk control the relative heights of peaks and valleys in the mean
epigenetic landscape. In the case of small noise (D ≪ 1) the

time-dependent solutions are composed by the mean path
〈

qs
k
(t)

〉

plus random fluctuations around this path, similarly as dust
particles driven by a gentle breeze. The Langevin formalism
was implemented by Zhou et al. (115) by means of a GRN
addressed to study the processes of differentiation and cell fate
reprogramming in pancreatic cells. They show that it is possible
to recapitulate the observed attractors of the exocrine and β , δ, α
endocrine cells and to predict which gene perturbation can result
in a desired lineage reprogramming.

A related approach rests upon a probabilistic or quasi-potential
landscape (118, 119). In this case, it is not the ensemble of
stochastic trajectories qk(t), but their probability distribution
P[qk(t)] what constitutes the central concept. One may envisage
an epigenetic landscape in which the maximal expression
probabilities lie over the deepest (or wider) attraction basins,
while the minimal probabilities lie over the hills’ tops. Thus, the
probabilistic landscape corresponds to an inverted realization of
the epigenetic landscape. It can be shown that the probability
distribution P[qk(t)] satisfies the Fokker-Planck (FP) diffusion
equation (116, 117), and that the information contained in
this formalism is equivalent to that inherent to the Langevin
approach. It has been proposed by Wang et al. that the genetic
circuitry connections in the quasi-potential landscape imposes
the arrow of time in stem cell differentiation, so that the generic
asymmetry of barrier heights indicates that the transition from
the uncommitted multipotent state to differentiated states is
inherently unidirectional.

4. LYMPHOCYTE INVOLVEMENT IN
CHRONIC DISEASES: CELLULAR
DIVERSITY AND PATHOLOGICAL
FEEDBACKS

The logical framework has also been applied to the simulation
of signaling pathways involved in lymphoid related-diseases,
like acute lymphoblastic and T cell large granular lymphocyte
(T-LGL) leukemia. In the first case, it was predicted that a
proinflammatory microenvironment may induce instability in
twomolecular axes responsible for the retention of hematopoietic
progenitor cells within regulatory bone marrow niches (120).
In the second case, the model helped to decipher some of the
molecular mechanisms that promote survival in T-LGL leukemia
cells (121). Both models integrated microenvironmental factors
with signaling pathways participating in cellular fate decisions,
and in both cases the role of the pro-inflammatory NFkB pathway
emerged as important player in the pathogenesis.

Few mathematical models have managed to simulate
the dynamic communication between lymphocytes and
microenvironment, considering that the feedback loops between
both systems are key to modulate immune responses, although
the in vivo regulation of both systems is more complex
due to influence of neighbor tissues and endocrine signals.
The perturbation or inadequate coupling of the regulatory
interactions among systems have been suggested to trigger
inflammation in multiple chronic diseases. For many years
the study of pro-inflammatory conditions was focused on the
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identification of cytokines as biomarkers or target for adjuvant
therapies. With the advances on immunotherapy, the study
of immune cells as active participants in chronic diseases
development and progression has become of great importance
because they represent therapeutic targets with less co-lateral
effects than conventional therapies.

Recently, it has been probed that epigenetic landscape
approach is useful for the in silico analysis of health to pathogenic
progression (122), such as the epithelial-mesenchymal transition
and the induction to migratory phenotype induced after chronic
pro-inflammatory conditions, offering a tool to delve deeper
into transition stages important for early diagnosis (123–126).
Computational modeling of epithelial-mesenchymal transition
induced by pro-inflammatory cues has suggested an intermediate
stage with a senescent profile (125). The process of epithelial
malignant transformation is promoted, among other factors, by
TGFβ secreted by CD8 and Treg cells, and TNFα produced
by macrophages and pro-inflammatory T cells (127, 128).
Importantly, CD8 T lymphocytes have been purposed as players
in the promotion of aggressive features in breast cancer

tumorigenesis (129); but using CD8 T cells as therapeutic targets
implicates affecting one of the most important defenses toward
infections, so research about the regulatory networks underlying
T cell polarization in dynamic feedback with epithelial cells open
new opportunities for the development of more precise therapies
by simulating multiple or all the possible perturbations in an
integral network as also suggested for breast cancer therapy (130).

The same approach is applicable for the study of emergent
attractors from many other networks associated to chronic
diseases, for example, type 2 diabetes described in terms
of beta-pancreatic cell (115) and T lymphocyte interacting
networks, based on evidence of the participation of different T
subpopulations as inductors of local and systemic inflammation
(131). A first approach targeting CD4 T cell plasticity in
metabolic diseases showed that hyperinsulinemia, a condition
associated with metabolic syndrome and early stages of type 2
diabetes, inhibits the generation of T regulatory Foxp3 cells and
stabilizes the Th17 attractor (10). Besides type 2 diabetes, the
increase of Th17 subpopulation and decrease of T regulatory
cells have been linked with the destruction of beta-pancreatic

FIGURE 4 | Fuzzy models to study signaling pathways activation. (A) NFkB network where IKK is stimulated by microenvironmental TNFα. IKK phosphorylates IkBa

unrepressing the dimer p65_RelA to allow its translocation to the nucleus. In the nucleus p65_RelA promotes the transcription of IkBA closing a negative feedback

loop of the NFkB pathway. (B) The Boolean simulation of the network generates three attractors, two of them are cyclic attractors with TNFα activation. Here, green =

1, red = 0. (C) Activation value of the node in the NFkB network obtained by fuzzy logic simulation. In this case, β = 3, and α varies depending on the type of

biochemical event in which each node is involved. Node tIkBa represents a transcriptional event, with decay rate α = 0.2. (D) Figure taken from (138) showing the

nuclear to the cytoplasmic GFP intensity (NCI) of three single GFP-p65 cells stimulated with a constant flow of 10 ng/ml of TNFα.
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cells in the pathogenesis of type 1 diabetes, an increased risk
of breast cancer recurrence in diabetic patients and increased
susceptibility to develop colitis (132–134). The modulation of
the Th17 subpopulation as a promising treatment of colitis was
predicted by computational simulations of a continuous model.
With in silico perturbations of the GRN underlying CD4 T
cell differentiation it was predicted that the increase of PPARγ

in Th17 cells derives in its transition toward an iTreg profile
characterized by the upregulation of Foxp3. The in vivo effect
of transplanting PPARγ null Th0 lymphocytes was an increased
severity and earlier development of colitis in mice. In contrast,
pharmacological activation of PPARγ resulted in the induced
shift from Th17 to iTreg phenotype that favored colonic tissue
reconstitution (135).

The use of integral models of regulatory networks can
be also applied to chronic infections. Existing models of
infectious diseases and their interconnection with lymphoid
regulatory networks are very limited. Even though, one group
has reconstructed a logical network to study the intracellular
pathways in CD4 T cells affected by the viral proteins during
HIV infection. By considering a model composed by 16 viral
and 121 CD4 T cell nodes, they predicted new viral-human
molecular interactions and obtained conclusions on the signaling
flow affecting cellular fate decisions (136).

All chronic processes mentioned above involve multiple
developmental stages where different changes in the
microenvironment and the cellular composition take place,
depending one on the other through feedback loops. With
discrete models we can clearly map the stable stages and the
transition between them in the presence or absence of particular
nodes, while in conventional continuous models it is quite
complicated to include as much as transcription regulators are
required to simulate cellular transitions of more than one type
of cell. So, the transformation of genetic Boolean models using
fuzzy logic, is a promising approach to integrate differentiation
networks of lymphoid cells and cells from other tissues to
construct more accurate models for the study of chronic diseases,
as it becomes important the consideration of temporal evolution
and graded changes in molecular compositions. Additionally,
less frequent inflammatory cells participating in chronic diseases
can be included, like in chronic allergic lung disease, where the
progressive accumulation of B cells in the lung promotes Th2
responses by the antigen presentation process (137).

Moreover, intermittent or persistent rapid perturbations in
chronic and complex diseases, but not during steady states,
provoke small and sometimes, cumulative variations within
the cells or their environment, including modifications in
cytokines secretion patterns, cellular populations proportions,
miRNAs expression, etc., that mostly become visible until there
is an abrupt transition of the whole system. Of note, fuzzy

logic continuous models permit an easy simulation of such
periodical and transient signals that are transduced by cell
signaling pathways.

The utility of fuzzy models may apply to a small network
composed by some of the main components of the NFkB
signaling pathway that behave as a damped oscillator during
activation with TNFa (Figure 4). The Boolean simulation of
the NFkB network generates two different cyclic attractors
when TNFa is activated. However, when simulating the network
as a fuzzy logic and varying the parameter of the “slow”
reaction corresponding to the genetic transcription of IkBa,
damped oscillations as observed in Zambrano et al., are recorded
(138). Without introducing any specific kinetic information
of receptor affinity, phosphorylation kinetics or translocation
velocity, the fuzzy model shows the transition from an initially
perturbed system toward a stable state with a controlled or
regulated NFkB activation. As suggested by Zambrano et al.,
these approaches may aid to understand normal cell responses
but also their behavior in diseases like cancer, where NFkB
activity is usually disregulated and out of control, driving to
multiple biological consequences including hyperproliferation,
cell survival or migration.

5. CONCLUSIONS

Lymphocytes are active participants of many biological processes
involved in homeostasis and can evolve concomitantly to
tissues transiting through a pathogenic transformation, due to
their responsiveness to a large diversity of biochemical signals
and their plasticity. In silico experimentation with regulatory
networks has shown the potential to identify the underlying
mechanisms of feedback loops that participate in the promotion
of disease progression or in the establishment of chronic
inflammation. Additionally, the adaptation of existing models
for the study of lymphocytes diversity in pathogenic contexts
using powerful tools like fuzzy logics represents an approach to
visualize the global effect of potential immunotherapeutics.
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