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ABSTRACT: Indocyanine green (ICG) has been used in various surgical
navigation systems and plays an important role in intraoperative imaging
diagnosis. However, the poor photostability and unsatisfactory tumor-targeting
ability have limited its broad application prospects. In the decades, the
construction of a nanodrug delivery system for tumor-targeting diagnosis and
therapy has become a research hotspot. Black phosphorus nanosheets (BPNS), as
a new kind of biodegradable nanomaterials, have the advantages of high loading
capacity, good biocompatibility, tumor targeting, and photothermal effect over
other two-dimensional (2D) reported nanomaterials. Herein, ICG-loaded
poly(ethylene glycol) (PEG)-modified BPNS (ICG@BPNS-PEG) nanocompo-
sites are constructed to improve the tumor-targeting capacity and guide
photothermal therapy through real-time fluorescence imaging. In this study,
ICG@BPNS-PEG nanocomposites with a suitable size (240 + 28 nm) have been
successfully constructed. The photostability of ICG@BPNS-PEG nanocomposites surpassed that of free ICG after four on—off
cycles of near laser irradiation (NIR). Moreover, ICG@BPNS-PEG nanocomposites have enhanced photothermal conversion ability.
The cellular uptake result through flow cytometry showed that ICG@BPNS-PEG nanocomposites could be swallowed easily owing
to the suitable size and passive cellular uptake. In addition, the cytotoxicity evaluation of MCF-7, 4T1 breast cancer cells, and healthy
RPE cells through the MTT assay demonstrated that ICG@BPNS-PEG nanocomposites have lower cytotoxicity and good cellular
compatibility without irradiation. However, the cytotoxicity and live/dead staining proved that ICG@BPNS-PEG nanocomposites
have satisfactory photothermal therapeutic effects when irradiated. In the 4T1-bearing mice model, the fluorescence imaging after
intravenous injection of nanocomposites showed that ICG@BPNS-PEG nanocomposites have superior passive tumor targeting
accumulation through the enhanced permeability and retention (EPR) effect compared with that of free ICG. Also, changes in tumor
volume showed a remarkable tumor growth inhibition effect compared with other groups. Moreover, the results of hematoxylin—
eosin (H&E) staining of major organs in 4T1-bearing mice also demonstrated that the nanocomposites have good biocompatibility.
Therefore, the constructed ICG@BPNS-PEG nanocomposites have substantial potential in breast cancer therapy.
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B INTRODUCTION human body and emitted NIR light of the wavelength of ~850
nm. At present, ICG has been used in a variety of fields such as
fluorescence imaging diagnosis.” It has mature clinical
applications in liver tumor removal, retinal angiography,
cardiovascular function, and breast cancer sentinel lymph
node exploration.”” In addition, it can efficiently absorb NIR
light and convert it into thermal energy for photothermal
therapy (PTT).* However, ICG is unstable and decomposes
rapidly upon exposure to air. Also, it is more easily decomposed
in the light environment and has a high metabolism, low cell

Breast cancer is the most common malignant tumor in women
worldwide and is one of the leading causes of women’s death in
cancers." Nowadays, the main clinical therapy methods include
surgery, radiotherapy, and chemotherapy.” However, incom-
plete resection of the surgical site, poor tumor-targeting
chemotherapeutics, and side effects of neoadjuvant chemo-
therapy (NAC) affect the efficacy of breast cancer treatment.’
Integrating diagnosis and therapy is a new treatment mode.
Fluorescence imaging diagnosis to guide treatment increases the
accurate therapeutic effect of tumors. Due to the biodiversity of

the material, the widespread application of this treatment mode Received: ~September 11, 2021
is optional. Accepted: November 24, 2021
Indocyanine green (ICG) is a near-infrared (NIR) fluorescent Published: December 15, 2021

dye approved by the U.S. Food and Drug Administration for
clinical application.” It could be excited by external light with a
wavelength of 750—810 nm after ICG was injected into the
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Figure 1. Illustration of preparation and fluorescence imaging of tumor locations of ICG@BPNS-PEG and fluorescence imaging-guided cancer

photothermal therapy.
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Figure 2. (A) DLS and TEM image of ICG@BPNS-PEG. (B) The corresponding diameter on 0 day to that on 7 days. (C) The corresponding change
in the hydrodynamic radius of various samples bearing air at room temperature in 1 week. (D) {-Potential of various samples. (E) UV—vis absorption
of various samples. (F) Loading capacity and loading efficiency with the ICG/BP feeding ratio.

absorption rate, and so on.”'” Therefore, these characteristics
limit the effective application of ICG in biological diagnosis and
treatment.

In recent years, nanomaterials have been widely used in
biomedical fields.""™'* This idea finds its most significant
application in PTT, where functionalized nanomaterials have
been used to demonstrate selective tumor targeting accumu-
lation and drug delivery."*"® Black phosphorus (BP), a new kind
of two-dimensional nanomaterial, has become a research
hotspot. With the wide application of nanomaterials in the
field of biomedicine, BP, as a drug carrier in tumor diagnosis and
treatment has received extensive attention owing to the
enhanced permeability and retention (EPR) effects. It has
excellent properties in electronics, optics, and so on. Compared
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with other two-dimensional nanocarriers, black phosphorus
nanosheet (BPNS) has the advantages of an adjustable visible-
light absorption band, excellent photothermal conversion
efficiency, and nontoxic side effects of degradation products
on the body."” They have been widely used in tumor diagnosis
and treatment because of their highly effective drug loading
capacity. Compared with small molecular carriers such as
liposomes and polymer carriers, BPNS carriers have significant
advantages of biological safety, good drug loading, easy surface
modification, and so on. Owing to the limitations of surgical
therapy, chemotherapy, radiotherapy, or other methods in
tumor therapy, PTT has attracted increasing attention from
many researchers.'® PTT has emerged as a new tumor therapy
method. Under the irradiation of NIR light, the tumor location
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Figure 3. In vitro photothermal performances of PBS, ICG, BPNS, and ICG@BPNS-PEG. (A) Temperature variation curves of the ICG@BPNS-PEG
solution under different concentrations after treatment with 808 nm NIR laser (1.65 W/cm? 5 min). (B) Photothermal heating curves of PBS, ICG,
BPNS, and ICG@BPNS-PEG (1.65 W/cm?, § min). (C) Heating curve of suspension of the ICG@BPNS-PEG and ICG solution for four on—off
cycles with an 808 nm NIR laser (1.65 W/cm? § min). (D) NIR thermal images of PBS, BPNS, ICG, and ICG@BPNS-PEG solution with continuous

808 nm NIR laser irradiation (1.65 W/cm?, 5 min).

converts absorbed light energy into heat energy, using high
temperatures to kill cancer cells.'"”” Currently, various
nanomaterials have been used for PTT,*"** including graphene,
BP Mxenes.”> 2° At the same time, accurate diagnosis and
therapy of breast cancer is currently an important developmental
direction in clinical research.”” Therefore, the construction of a
nanodrug delivery/fluorescence system to achieve the integra-
tion of tumor-targeting imaging diagnosis and treatment has
become a research boom.

Herein, we constructed an ICG@BPNS-PEG nanosystem
that integrates real-time fluorescence imaging of tumor location
with PTT principles for breast cancer therapy. As shown in
Figure 1, fluorescence imaging agent ICG is integrated into
black phosphorus nanosheets via physical interaction and
modification of PEG enhances the stability in PBS and blood
as well as protects BP and ICG from oxidation. After intravenous
injection, the constructed nanosystem is accumulated and
uptaken, followed by fluorescence imaging-guided cancer
photothermal therapy. Our study results also show that
constructed ICG@BPNS-PEG has the advantages of stability,
tumor-targeting accumulation, and PTT of ICG.

B RESULTS AND DISCUSSION

The preparation method of BPNS was modified according to the
top-down method. By controlling the ultrasonic parameters, the
proper BPNS with ~200 + 15 nm were harvested and also
showed a narrow size distribution that the polydispersity
coeflicient of 0.245 as shown in Figures 2A and S1A. Meanwhile,
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the Raman spectroscopy and X-ray powder diffraction (XRD)
patterns of bulk BP and BPNS are presented in Figure S1B,C. As
shown in Figure S1B, for bulk BP, three Raman vibration modes
located at 360.4, 439.5, and 466.1 cm™* were attributed to the
Ay g Byy and Ag2 modes, respectively. Also, BPNS showed a
slight red-shift (around 2—3 cm™") compared with the bulk BP,
indicating that the bulk material has been successfully exfoliated
into few-layer BPNSs. Meanwhile, the (02 0), (02 1), (04 0),
and (0 6 0) lattice planes of BP appeared in Figure S1C, which
indicates that the host structure of BP crystal is not altered.
Especially, the appearance of the characteristic diffraction peak
at 35.4° corresponding to the (1 1 1) crystal plane confirms that
bulk BP is successfully exfoliated into few-layered nanosheets.
The above satisfactory results indicate that the few-layered
BPNS is successfully exfoliated.

Inspired by the electron-rich characteristics on the surface of
BPNS, the fluorescent diagnostic molecules indocyanine green
(ICG) in the clinical setting were anchored on the surface of
BPNS through hydrogen bonding and z—n conjugation.
However, some researchers found that the BPNS directly
peeled from the BP crystals are easily phagocytosed by the liver
and have difficulty reaching the tumor location, and they can be
quickly degraded.”®*” Therefore, the hydrophilic segments
PEG-NH, were integrated into the nanocomposites to improve
the stability of the binding components of BPNS and ICG in an
aqueous solution. The larger hydrodynamic radiuses reach up to
240 + 28 nm in Figure 2A, which is consistent with that of the
TEM image. Moreover, PEG coating also plays an essential role

https://doi.org/10.1021/acsomega.1c04909
ACS Omega 2021, 6, 35505—-35513


https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c04909/suppl_file/ao1c04909_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c04909/suppl_file/ao1c04909_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c04909/suppl_file/ao1c04909_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c04909/suppl_file/ao1c04909_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04909?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04909?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04909?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04909?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c04909?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega http://pubs.acs.org/journal/acsodf
Oh 0.5h 1h
g o - -
B8 §- 8-
1 -1 ~ -
0w £ 4 4 4
Z 3 J J
a © i
Qg 8] 8]
@ ~N o~ ~
o ] ; H _
Q . P2(0.00%) - If P3(60.90% J P4(99.79%)
- - j .
© LB L 000 S L L1 B UL N R U ©— ©—
10? 10° 10 10° 10° 10? 10° 10 10° 10 10? 10° 10 10° 108
Violet780-A Violet780-A Violet780-A
| w | ] }
8- | 8- 8-
- - -
O 1 \ 1 1
£ 4 4 J
e 2 ] \ ] i
o
a4 [ o] ]
o~ ~N | o~
T / \ P5(0.00%) 1 [ P6(29.54%) - P7(55.53%
| / \ q i - '
s . Fa
© LB L B L0 L2 AL © T T T o°—
10? 10° 10 10° 10¢ 10? 10° 10 10° 10 10? 10° 10 10° 108
Violet780-A Violet780-A Violet780-A

Figure 4. Fluorescence intensity in cells treated with ICG@BPNS-PEG and ICG. The blue section represents the fluorescence intensity of ICG.

as a guard to protect BPNS from oxidation degradation. As
shown in Figure 2B,C, the diameters of bare BPNS reduced as
the exposure time increased; after 1 week of oxidation, the
hydrodynamic radius reduced to nearly half of pristine materials.
Fortunately, the hydrodynamic radius of the PEG-coating BPNS
was merely reduced by 25 nm, owing to the protection of PEG
coating. Analogously, the TEM image of bare BPNS after 7 days
in Figure S3A indicates that bare BPNS was oxidated and many
bright dots appeared owing to oxidation, leading to thinner
layers. Moreover, the ratio of A, to Ay, in Figure S3B decreased
from 0.807 to 0.579, indicating that severe oxidation of bare
black phosphorus nanosheets occurred without the PEG layered
protection.””*" The high-resolution P 2p spectra of bare BPNS
also confirm that the oxidation of bare black phosphorus
nanosheets occurred without the PEG layered protection.
Inspired by the satisfactory results, the surface potentials of
relevant materials are also detected as shown in Figure 2D. The
potential of BP-PEG increased to —24.5 mV due to PEG
coating. In comparison, the surface potential of ICG@BPNS-
PEG increased to —16.2 mV after inducing ICG (Figure 2D).
This result may be attributed to the 7— interactions between
ICG and BPNS, which could effectively limit the electronic
activity, weakening the surface potential. The hydrodynamic
radius of ICG@BPNS-PEG was maintained for enhanced water
solubility and dispersion stability. In addition, the UV—vis
spectrum results also proved that ICG is successfully anchored
and the special absorption peak showed a slight blue-shift
compared with that of pure ICG as shown in Figure 2E, which is
attributed to the interaction between ICG and BPNS. So far,
ICG, as a kind of common diagnostic agent, has been applied for
angiography in the clinic. Although many studies have reported
that ICG could be used for deeper tumor location due to the
longer emission wavelength (reaching 820 nm), imaging signal
intensity and duration are closely related to the dose of
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diagnostic agents. Inspired by the electron-rich surface of BPNS,
the loading capacity of BPNS is meticulously studied through
designing various feeding ratios (i.e., ICG/BP ratios). As shown
in Figure 2F, the loading capacity of BPNS effectively increases
as the ICG/BP ratio increases, reaching up to 220%, mainly
benefiting from the electron-rich surface and high specific
surface area of BPNS, and the best loading efficiency reached
80% (Figure 2D). However, the loading efficiency began to
reduce when the loading ratio reached 25:16. This result might
be attributed to the limited surface area of BPNS, leading to the
denouement that the ICG could not be stably loaded. Moreover,
X-ray photoelectron spectroscopy (XPS) was also employed to
investigate the surface element variation of ICG@BPNS-PEG.
As shown in Figure S2A, the atomic percentages of nitrogen,
phosphorus, oxygen, and carbon were ~1.4, 33.8, 34.0, and
30.8%, respectively, which indicate the coexistence of ICG,
BPNS, and PEG. In the high-resolution P 2p spectra in Figure
S2B, the characteristic peak (i.e., P° 2p) represents the existence
of a BP frame. Moreover, the characteristic absorption peaks
attributed to the C—N bond can be found in the high-resolution
C 1s (Figure S2C) spectra, which is attributed to the existence of
the C—N bond in the molecular structure of ICG. The results
indicate the successful loading of ICG on the surface of BP
nanosheets as well as the existence of a PEG coating. In addition,
as shown in Figure S2D, the high-resolution O 1s spectra
showed typical peaks C—0O, O—P—0, and O—P=0, indicating
the existence of PEG and PO,. The occurrence of the weak peak
assigned to the PO, bond implies that BP is only slightly
oxidized. However, slight oxidation has no obvious influence on
physicochemical properties.

Then, the photothermal conversion performances of ICG@
BPNS-PEG are evaluated. As shown in Figure 3A, the increasing
temperature induced by the photothermal effect of ICG@
BPNS-PEG showed obvious concentration-dependent proper-
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Figure 5. Cell viability of incubation of cells with PBS, BPNS-PEG, ICG, and ICG@BPNS-PEG. (A) Cell viability of RPE, MCF-7, and 4T1 cells
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+NIR. Green and red colors represent live and dead cells, respectively. Scale bar: 50 ym.

ties. When the concentration of BPNS of 100 yg/mL was treated
with 1.65 W/cm? for 5 min, the temperature of ICG@BPNS-
PEG increased by 18.21 °C. The increasing temperature could
lead to acceptable cytotoxicity because most breast cancer cells
cannot bear the hyperthermal environment between 43 and 47
°C according to some reported literature.”>** Considering the
other composites of the constructed system, PBS, ICG, and
BPNS-PEG were compared with ICG@BPNS-PEG. Satisfac-
torily, the temperature of PBS, BPNS, and ICG only increased
by 0.61, 7.59, and 12.99 °C, respectively, when treated with the
same methods as shown in Figure 3B. The results showed that
ICG@BPNS-PEG has a better photothermal conversion
capacity than ICG and BPNS. Moreover, for visual representa-
tion, the photothermal images of PBS, BPNS, ICG, and ICG@
BPNS-PEG after S min of NIR irradiation are also shown in
Figure 3D. Moreover, a number of studies have demonstrated
ICG plays an essential role as a potential photothermal
therapeutic agent.”* However, once photothermal therapeutic
agents experience photobleaching, the photothermal conversion
capacity would become unsatisfactory. Therefore, the photo-
stability was evaluated as shown in Figure 3C. After continuous
laser irradiation for four on—off cycles, the temperature of
ICG@BPNS-PEG showed no significant change while free ICG
gradually decreased in Figure 3C. This result indicates that
ICG@BPNS-PEG has excellent photostability owing to the
better protection of the PEG coating. The above results indicate
that once the nanocomposites are ingested, the ICG@BPNS-
PEG nanocomposites, as an ideal photothermal therapeutic
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agent, could cause acute breast cancer cell apoptosis after
treatment with NIR.

Based on the satisfactory photothermal conversion capacity of
ICG@BPNS-PEG, quantitative cellular uptake behavior of ICG
and ICG@BPNS-PEG was evaluated through flow cytometry.
As shown in Figure 4, the ICG accumulation has an outstanding
time-dependent behavior whether it is free ICG or CG@BPNS-
PEG. After incubation for half an hour, ICG in the cell was
observed whether it is treated with the ICG or ICG@BPNS-
PEG, indicating the successful internalization of ICG. However,
the fluorescence intensity of ICG in 4T1 cells treated with
ICG@BPNS-PEG was twice that of free ICG after incubation
for 0.5 h. Surprisingly, all cells ingested ICG@BPNS-PEG after
incubation for 1 h, while only 50% of the total cells were taken in
after being treated with ICG for 1 h, indicating that nanoscale
BPNS could improve the binding to the tumor cells and enhance
the cellular uptake of ICG owing to its higher loading capability
and the EPR effect.>> >’ Also, the above results demonstrate the
excellent passive tumor-targeting ability of ICG@BPNS-PEG.

Through cellular uptake, ICG@BPNS-PEG could play its
therapeutic role. Therefore, to evaluate the photothermal
therapy-inducing cytotoxicity, ICG@BPNS-PEG, RPE, MCF-
7, and 4T1 cells were incubated with the medium containing
ICG@BPNS-PEG of different concentrations for 24 h. As
shown in Figure 5A, the results show that ICG@BPNS-PEG had
no significant cytotoxicity in all groups, indicating that ICG@
BPNS-PEG has lower biotoxicity. The results showed that
ICG@BPNS-PEG induced acute cell death than ICG and BPNS
treated with 808 nm irradiation whether it is MCF-7 or 4T 1 cells
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Figure 6. Fluorescence signal in the 4T 1-bearing mouse model after intravenous injection of ICG and ICG@BPNS-PEG. (a, b) Injection of ICG and
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Figure 7. In vivo effect of PTT of ICG and ICG@BPNS-PEG in the 4T1-bearing BABL/C nude mouse model. (A) Thermal imaging of mice 12 h after
injection with PBS, BPNS-PEG, and ICG@BPNS-PEG with NIR light for 300 s. (B) Body weight change in mice treated with PBS, ICG@BPNS-PEG,
NIR, BPNS-PEG+NIR, and ICG@BPNS-PEG+NIR. (C) The corresponding tumor volume growth curves of mice treated with PBS, ICG@BPNS-
PEG, NIR, BPNS-PEG+NIR, and ICG@BPNS-PEG+NIR (*P < 0.05). (D) H&E staining of tumor sections after PTT. Scale bar: 20 ym. (E)
Representative H&E staining images of major organs, including the heart, liver, spleen, lung, and kidney. Scale bar: 100 pm.

(Figure SB,C). The quantitative results showed that over ~50% min in Figure 5B. In contrast, only 25% of MCEF-7 cells were
of MCEF-7 cells were killed after an 808 nm laser irradiation for S dead treated with free ICG or BPNS-PEG after an 808 nm laser
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irradiation. The cytotoxicity of 4T1 cells remained consistent
with that of MCF-7 cells. In addition, live and dead staining
results also showed that ICG@BPNS-PEG has a superior
photothermal effect in Figure 5D, which is consistent with the
results through the MTT assay. The above results of cytotoxicity
all indicate that ICG@BPNS-PEG nanocomposites are
potential for the photothermal therapy of the tumor-bearing
mouse model.

Inspired by the exciting results of in vitro cytotoxicity, the
passive tumor-targeting ability of ICG@BPNS-PEG nano-
composites through the 4T1 tumor-bearing mouse model was
further studied and demonstrated. As shown in Figure 6, the
fluorescence signal treated with ICG@BPNS-PEG appeared in
the tumor location at 0.5 h postinjection through blood
circulation, and then the fluorescence signal gradually enhanced
and reached a peak at 12 h postinjection. However, at 24 h
postinjection, the tumor area still showed an outstanding
fluorescence signal. This result indicates that ICG@BPNS-PEG
could efliciently accumulate in the tumor location via the EPR
effect after long blood circulation. Meanwhile, the tumor and
major organs were collected 12 h after injection. The tumor
tissue exhibits moderate fluorescence signal, which demon-
strates ICG@BPNS-PEG nanocomposites have the advantages
of good tumor accumulation and effective catabolism. However,
the stronger fluorescence in the liver was attributed to the
potential metabolism process. In contrast, the fluorescence
signal postinjection of free ICG just lasted 18 h and then
disappeared. In addition, no obvious tumor accumulation
appeared, and most of the fluorescence signal was concentrated
in the liver rather than in the tumor location. Also, the results
indicate that the small-molecule ICG is not an ideal agent for
intraoperative positioning imaging and not suitable to ensure
optical irradiation treatment time. Also, the ICG@BPNS-PEG
nanocomposite is an alternative for tumor theranostics.

Based on the above satisfactory in vitro photothermal effect
and in vivo fluorescence imaging, the photothermal therapeutic
effect was evaluated through the 4T1-bearing BALB/C nude
mouse model. The thermal images are performed at 12 h
postinjection of ICG@BPNS-PEG. The temperature of tumor
locations increases gradually with the increase of illumination
time and reaches 50 °C, which is slightly higher than that of
BPNS-PEG+NIR in Figure 7A. Also, this temperature is enough
to induce tumor regression. In comparison, the temperature just
increased to 40 °C and cannot lead to acute tumor inhibition
after illumination. The changes in tumor volume of all mice
during 14 days of NIR light are shown in Figure 7B. the tumor
volume of mice in the ICG@BPNS-PEG+NIR group was
263.77 mm?®, which was significantly smaller than that in the PBS
and BPNS-PEG +NIR groups. These results demonstrate that
ICG@BPNS-PEG has a superior photothermal therapeutic
effect. Meanwhile, the potential toxicity of ICG@BPNS-PEG
was studied. During the treatment, there was no decrease in the
body weight in Figure 7C, indicating little side effects and good
biocompatibility of the constructed nanocomposites. The H&E
staining results of the tumor tissue were also consistent with the
above results as shown in Figure 7D.

In addition, we also confirmed that ICG@BPNS-PEG has no
obvious in vivo biotoxicity. As shown in Figure 7D, the result of
H&E staining of the heart, liver, spleen, lung, and kidney in the
ICG@BPNS-PEG+NIR group showed no obvious damage
when compared with the PBS and BPNS-PEG groups. These
results indicate that ICG@BPNS-PEG has the advantage of
good biocompatibility.
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B CONCLUSIONS

In summary, the constructed ICG@BPNS-PEG nanodrug
delivery system can enhance the tumor accumulation and
long-term retention of ICG in the tumor location. Simulta-
neously, the PTT of ICG@BPNS-PEG can also effectively
inhibit tumor growth. Therefore, the ICG@BPNS-PEG nano-
composite has broad application prospects in the field of breast
cancer theranostics. Moreover, the ICG@BPNS-PEG fluores-
cence imaging-guided surgery can help determine the surgical
margin of breast cancer, especially the identification and removal
of sentinel lymph nodes, which makes surgical resection more
accurate and minimizes tumor residue. Integrating ICG into
biocompatible black phosphorus nanosheets provides a safe and
reliable strategy for breast cancer theranostics. Furthermore,
future clinical studies are promising for loading various FDA-
approved chemotherapy drugs and accelerating their clinical
transformation.

B MATERIALS AND METHODS

First, BP was synthesized from red phosphorous (RP) using a
previously reported method, with modifications.”® The prepared
BP suspension was centrifuged to obtain suitable nanolayers of
BPNSs. Then, BPNSs and ICG with various mass ratios were
mixed to evaluate the ICG loading capacity and the ICG loading
efficiency. To improve the stability of ICG@BPNS, we modified
it with PEG-NH,.

ICG loading capacity and ICG loading efficiency were
calculated by eqs 1 and 2, respectively

the amount of loaded ICG

ICG loading capacity =
g capacity the amount of BPNS (1)
ICG loading efficiency = the amount of loaded ICG
he primary amount of ICG  (2)

Second, we evaluated the cytotoxicity and cell uptake rate in
vitro by co-culturing the ICG and ICG@BPNS with RPE, MCF-
7,and 4T1 cells. To compare the PTT effects of ICG and ICG@
BPNS-PEG, we used the MTT kit and FDA/PI co-staining to
evaluate the cell viability.

Finally, ICG and ICG@BPNS-PEG were injected into mice
via tail vein, and we collected the distribution of fluorescence in
vivo at different times to evaluate the tumor targeting of ICG@
BPNS-PEG. Meanwhile, the tumor sites were treated with an
808 nm NIR light at the time of maximum fluorescence
enrichment. The body weight and tumor volume of mice were
recorded after 14 days of illumination. The volume (V) of the
tumor was calculated as follows: V = D X d?/2, where D and d
represent the longest and shortest diameters of the tumor,
respectively. After 14 days, hearts, livers, spleens, kidneys, lungs,
and tumors were collected to be stained with HE to observe
changes in each group.

B ASSOCIATED CONTENT

@ Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.1c04909.

Extensive descriptions of experimental sections including
preparation of few-layered BP: ICG loading behavior of
BP; cytotoxicity assay, cellular uptake assays and PTT of
nanocomposites; in vivo fluorescence imaging and PTT;
and the additional graphs of experiments: Figure S1. TEM
image of bare BP nanosheets; Raman spectroscopy; XRD
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spectroscopy of bulk black phosphorus (BP) and BPNS-
PEG; Figure S2. XPS survey spectra of ICG@BPNS-PEG
NCs; high-resolution P 2p spectra; high-resolution C 1s
XPS spectra; high-resolution O 1s XPS spectra of ICG@
BPNS-PEG NCs. Figure S3. TEM image of bare BP
nanosheets after 7 days; Raman spectroscopy of various
materials after 7 days; high-resolution P 2p spectra of bare
BPNS after 7 days (PDF)
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