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Abstract: It is difficult to obtain a nanotube from phosphorus with a 3sp2 electron configuration
by chemical synthesis. However, a physical fabrication approach, such as self-assembly, is worth
trying. In an experiment, when using a carbon nanotube (CNT) to trigger self-assembly of a black
phosphorus (BP) ribbon, the final configuration of the BP component may be sensitive to the initial
relative position of the CNT to the BP ribbon. For instance, using the same CNT with different initial
relative positions to the BP ribbon, the BP ribbon may finally become a nanotube, or a scroll, or just
wind upon the CNT, or escape from the CNT, etc. In this study, the sensitivity is investigated using
molecular dynamics simulations. Numerical results illustrate some essentials for potential fabrication
of a BP nanotube from ribbon.
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1. Introduction

A two-dimensional crystal is a planar crystal of nanometre thickness stacked by several single
atomic layers. Due to its unique electrical, optical, and magnetic properties, the two-dimensional
crystal, such as graphene [1], silicene [2], molybdenum disulphide [3], or black phosphorus (BP) [4–6],
has attracted extensive attention for wide applications. In a few-layered BP, van der Waals
(vdW) interactions exist between neighbouring layers [7,8]. Each internal phosphorus atom in the
single-layered BP is covalently bonded (3sp3) with three neighbouring phosphorus atoms. The electron
configurations of the atoms in BP induce excellent electric properties [9–12], e.g., direct band gap, high
electron mobility. For example, field-effect transistors based on BP crystals with high charge-carrier
mobility were verified in experiments [10].

Similar to carbon nanotubes (CNTs) being formed from curved graphene ribbon, a BP
nanotube [13–26] may also be obtained by curling a single-layer black phosphorus ribbon and bonding
the closing neighbour edges. One of the merits of the new phosphorus allotrope is that the tube has
fewer unsaturated atoms, which are essential to the thermal and chemical stabilities of the material [27].
Theoretically, the thermal and mechanical properties of the one-dimensional phosphorus nanotube
from a single-layered BP have been investigated recently [17–22,28,29]. For example, results [19]
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indicate that the thermal stability of a curved BP ribbon depends on the bending direction of the
ribbon. The BP ribbon curved along the zigzag direction is brittle because the P–P bonds can bear
small tensile strain. Buckling behaviour of the BP nanotube or with the protection from a CNT
under axial compression was tested [20,21]. Zhao et al. [30] studied the stability of a chiral BP
nanotube under uniaxial compression and compared the results with those of commensurate BP
nanotubes. Shi et al. [22] evaluated the stability of a BP nanotube covered by a carbon nanotube under
centrifugal force. Liu et al. [31,32] investigated the strength of stability of BP nanotubes with defects.
Rouhi et al. [33] studied the vibration property of armchair BP nanotubes using finite element models,
whose parameters were given by density functional theory.

However, before application, BP nanotubes should be fabricated or synthetized. One fact that the
P–P bond is slightly stronger than the vdW interaction between the neighbour phosphorus atoms in
different layers makes the chemical synthetizing method of BP nanotubes full of challenges. Hence,
the physical assembly approach could be worth trying. To obtain a BP nanotube, Cai et al. [23–25]
tested several approaches to produce a nanotube from a rectangular BP ribbon. They [23] found that
to form a perfect BP nanotube on a specified CNT, a rectangular BP ribbon with a perfect length
is required. Otherwise, a BP scroll will be obtained. The other method is to use a CNT bundle to
trigger the self-assembly of a rectangular BP ribbon into a nanotube by moving one or more carbon
nanotubes [24]. Fullerenes were also adopted to drive the self-assembly of a BP ribbon into a tube [25].
In their work, an ideal BP nanotube can be obtained at extremely low temperature. Using CNTs with
larger radii, an ideal BP nanotube can be formed at higher temperature. Sometimes, the self-assembly
process can be easily controlled at higher temperature [26].

In the above study, all the CNTs and the BP ribbons have similar relative positions. However, in an
experiment, when using a CNT to trigger the self-assembly of a BP ribbon, the initially relative position
of the CNT has great influence on the self-assembly process, but is hard to control. The reason is that
the initially relative position between the CNT and the BP ribbon determines the attraction distribution
on the BP atoms and further influences the motion/deformation of the ribbon. To reveal the detailed
effect of the relative position on the self-assembly process of the BP ribbon, in this study, we put a
CNT nearby a parallelogram BP ribbon with different distances and different angles. Models and
methodology are introduced in Section 2. Numerical results are given in Section 3 with the discussion.
In Section 4, some conclusions are drawn for potential applications.

2. Numerical Results and Discussion

2.1. Winding of a BP Ribbon on a CNT with α = 0◦

Table 1 and Figure 1c indicate that when the CNT axis is parallel to the z-axis, i.e., α = 0◦, the BP
ribbon can form into an ideal nanotube only upon the CNT (8, 8) when Ly = 0 nm. On the CNTs (6, 6)
and (7, 7) used, the BP nanotubes formed from the ribbon have defects at the tube ends (Figure 1a,b).
If the CNT (10, 10) is adopted, the BP ribbon can only wind upon the CNT, but fails to form into a
nanotube. The reason is that the gap between the two oblique edges of the curly BP ribbon is too high
and attraction between them is too weak to let the two edges move closer to each other for bonding
(Figure 1d).
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Table 1. Final states of the BP with 4 types of CNTs at different initial positions along the y-direction
with α = 0◦ at 14 K. “Tube” means the BP ribbon forms into an ideal tube. “Defect” means the BP
nanotube has a defect. “Wind only” represents the ribbon just winds upon the CNT, but does not form
into a tube.

Position On (6, 6) On (7, 7) On (8, 8) On (10, 10)

Ly = 0 nm Defect Defect Tube Wind only
Ly = 3 nm Tube Tube Tube Wind only
Ly = 6 nm Tube Tube Tube Wind only
Ly = 9 nm Tube Tube Tube Wind onlyInt. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  3 of 15 

 

 
Figure 1. Snapshots of the system at 500 ps when α = 0°, Ly = 0 at 14 K. (a) On CNT (6, 6). (b) On CNT 
(7, 7). (c) On CNT (8, 8). (d) On CNT (10, 10). 
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When the CNT moves right, i.e., Ly > 0 nm, more atoms on the BP ribbon are closer to the CNT, 
and the final configurations of the four chiral BP nanotubes after assembly were different. The BP 
nanotube can be formed on both the CNTs (6, 6) and (7, 7) (inserts in Figure 2). However, the BP 
ribbon still cannot form into a tube on the CNT (10, 10). Hence, we conclude that the value of Ly is 
not the essential factor when the BP ribbon can only wind upon a CNT with a larger radius (Table 1). 

Figure 1. Snapshots of the system at 500 ps when α = 0◦, Ly = 0 at 14 K. (a) On CNT (6, 6). (b) On CNT
(7, 7). (c) On CNT (8, 8). (d) On CNT (10, 10).

When the CNT moves right, i.e., Ly > 0 nm, more atoms on the BP ribbon are closer to the CNT,
and the final configurations of the four chiral BP nanotubes after assembly were different. The BP
nanotube can be formed on both the CNTs (6, 6) and (7, 7) (inserts in Figure 2). However, the BP ribbon
still cannot form into a tube on the CNT (10, 10). Hence, we conclude that the value of Ly is not the
essential factor when the BP ribbon can only wind upon a CNT with a larger radius (Table 1).

Winding of BP ribbon on CNTs with α = ±30◦: The effect of correlation between the parameters,
i.e., Ly and α, for determining the positions of the CNTs is necessarily demonstrated. As listed in
Table 2, for the CNTs with rotational angle α = 30◦, they cannot capture the BP ribbon due to negligible
attraction when Ly ≤ 3 nm. In this condition, the ribbon escapes rather than winds upon the CNTs
(Figure 3). This is because the distance between the CNTs and the BP ribbon is too high and attraction
upon the BP ribbon is too weak. Without getting closer to the CNTs, the ribbon has no chance to be
curved and further forms into a tube. If Ly = 6 or 9 nm, the distance between the two components is
less than 1 nm (the cut-off of the L–J potential), and the BP ribbon can wind upon the CNTs to form the
BP nanotube.
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Figure 2. Historical curves of the variation of potential energy (VPE) of the BP during winding upon
the CNT (6, 6) with α = 0◦ at 14 K. (a) VPE curves of the BP with different values of Ly. Snapshots of
the final state of the BP ribbon are inserted. (b) Winding process of the BP ribbon on the CNT with
Ly = 0 nm.
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Table 2. Final states of the BP nearby different CNTs at different values of Ly, but the same α = 30◦.
“Escape” means the tube cannot capture the BP ribbon.

Position On (6, 6) On (7, 7) On (8, 8) On (10, 10)

Ly = 0 nm Escape Escape Escape Escape
Ly = 3 nm Escape Escape Escape Escape
Ly = 6 nm Tube Tube Tube Tube
Ly = 9 nm Tube Tube Tube Tube

If α < 0◦, e.g., −30◦, the CNTs can attract the BP ribbon effectively even when Ly = 0 nm.
The ribbon does not escape any more. It can form into a tube with or without a defect, or forms into a
scroll, or just winds upon a CNT with higher radius (Table 3). For example, at Ly = 6 nm, the distance
between the CNTs and the BP ribbon reaches the minimum among the four cases. Only in this case,
the ribbon becomes an ideal nanotube regardless of the CNTs’ radii. Therefore, the translation of CNT
along the y-direction influences the final configuration of BP because of different initial distributions
of attractive force on the BP ribbon (Figure 4).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 15 
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Figure 4. Resultant van der Waals force of the CNT (10, 10) on each column of phosphorus atoms in
the BP ribbon with α = −30◦. (a) Ly = 0 nm. (b) Ly = 9 nm.
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Table 3. Final states of the BP on different CNTs with α = −30◦, but different initial positions. “Scroll”
means the BP ribbon winds upon the CNT and forms into a scroll.

Position On (6, 6) On (7, 7) On (8, 8) On (10, 10)

Ly = 0 nm Tube Scroll Defect Tube
Ly = 3 nm Tube Tube Tube Wind only
Ly = 6 nm Tube Tube Tube Tube
Ly = 9 nm Tube Tube Defect Tube

In Table 3, the BP ribbon forms into a nanoscroll on the CNT (7, 7) when Ly = 0 nm. Figure 5 gives
the representative snapshots to indicate the assembly process (Movie S1 in Supplementary Materials).
It can be found that the ribbon first winds upon the CNT (7, 7) and then winds upon itself (snapshot at
1000 ps in Figure 5). The two oblique edges overlap rather than bond together well. According to the
rest of the VPE curves of the system with respect to the CNTs (7, 7) (Figure 6a) and (8, 8) (Figure 6b),
the system with Ly > 0 nm becomes stable after no more than 180 ps, the ribbon forms into a tube,
simultaneously. Hence, the state of the system after 200 ps does not change obviously. The sudden
drop in each VPE curve tells the history of bonding between the two oblique edges on the BP ribbon.

When moving the oblique CNT (8, 8) from left to right (Ly = 0, 3, 6, 9 nm), the self-assembly
processes of the ribbon are illustrated by the snapshots of the BP during winding upon CNT between 0
and 150 ps, as shown in Figure 7. The BP ribbon starts to curve at different locations (Loc), where most
atoms are attracted by the CNT (e.g., Figure 4). For example, when the CNT is near the top left corner
of the BP ribbon (Ly = 0 nm), the BP begins to curve at this location due to the local strong attraction
from the CNT. When Ly = 9 nm, the BP nanotube has a defect after winding upon the CNT. Perfect BP
nanotubes are only formed on the CNT with Ly = 3 and 6 nm (Figure 7b,c).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  7 of 15 
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Figure 5. Snapshots in the winding process of BP ribbons with the CNT (7, 7) system with Ly = 0 nm, α
= −30◦. (a) Axial view. (b) Side view.
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2.2. Effect of α on Self-Assembly of the BP Ribbon

To illustrate the influence of CNT’s rotation angle α on the self-assembly of the BP ribbon, the
CNT (10, 10), which has a large radius, is first considered in simulations with the results listed in
Table 4. The ribbon’s behaviour depends on the initial conditions. For example, when Ly = 0 nm,
the BP ribbon escapes directly from the CNT if α > 3◦. When Ly = 3 nm (Table 4), the state of the BP
component as a different experience. For example, firstly, in the case of α = 0◦ and 3◦, the BP ribbon
just winds upon the CNT, but cannot form into a nanotube (Wind only). Secondly, for the cases of

α = 6◦ and 9◦, the state of the BP ribbon is between “Wind only” and “Tube”, i.e., “Wind only
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P–P. Thirdly, for the CNT with α between 12◦ and 18◦, it can trigger a successful self-assembly of the
ribbon into a nanotube. When the ribbon is attracted and starts to wind on the CNT, the P atoms on
the oblique edges move closer to each other and finally bond together (Figure 8a,b). Finally, when the
rotation angle is more than 30◦, the distance between BP and CNT becomes higher, and the BP ribbon
escapes due to the lack of attraction. The final configuration of the BP structure is sensitive to the value
of α due to the zigzag potential barriers on the oblique edges of the BP ribbon.

Table 4. Final states of the BP structures with CNT (10, 10) at different angle (α > 0◦) with the z-direction.

Angle of CNT Ly = 0 nm Ly = 3 nm Ly = 6 nm Ly = 9 nm

α = 0◦ Wind only Wind only Wind only Wind only
α = 3◦ Wind only Wind only Tube Wind only
α = 6◦ Escape Wind only<–>Tube Wind only<–>Tube Wind only<–>Tube
α = 9◦ Escape Wind only<–>Tube Wind only<–>Tube Tube
α = 12◦ Escape Tube Wind only<–>Tube Wind only
α = 15◦ Escape Tube Tube Tube
α = 18◦ Escape Tube Wind only Tube
α = 30◦ Escape Escape Tube Tube
α = 45◦ Escape Escape Escape Tube
α = 60◦ Escape Escape Escape Escape

Dividing the VPE of BP in the system with Ly = 3 nm and α = 12◦ into two parts, i.e., new P–P
bonds induced VPE, and the remaining part due to deformation together with the interaction between
the two components (Figure 8b), we find that the value of PNew starts decreasing at 162 ps and keeps
unchanged after 166 ps. During the bonding period, 23 new P–P bonds are generated between the two
helical edges of the ribbon. In the same period, the value of PDeform + PInter jumps up. This is mainly
caused by the deformation of the BP component from ribbon to tube.

As Ly becomes higher (e.g., 6 or 9 nm), the BP ribbon has difficulty “escaping” from the CNT
(Table 4). If it does not escape, the ribbon can become a nanotube at a higher value of α, or between
the “Wind only” and “Tube” at a lower value of α. However, the angle interval for forming a BP
nanotube is difficult to obtain because random vibration of atoms on the ribbon may lead to failure of
tube formation.

What would happen to the BP component if α < 0◦? As α is negative, more atoms on the BP
ribbon are closer to the CNT. If the CNT with Ly = 0 nm can drive the self-assembly of the BP ribbon,
so it does at Ly > 0 nm. Hence, the self-assembly process of the ribbon on the CNTs with Ly = 0 nm is
considered, and the results are listed in Table 5. The table indicates that the formation of a BP nanotube
depends both on the value of α and the radius of CNT. For instance, the BP ribbon on the CNT (6, 6)
could form into an ideal nanotube when α ≤ −9◦; otherwise, the BP tube has a defect. On the CNT
(7, 7), α ≤ −15◦ should be satisfied to form into a tube or a scroll. At a smaller angle of the CNT, the
BP ribbon can easily form into a nanotube on the CNT (8, 8), but has difficulty at a larger angle of
α. For example, the BP ribbon may become a nanotube with a defect or a scroll. If the CNT (10, 10)
is used, the ribbon has difficulty becoming a nanotube. In most cases, the ribbon just winds upon
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the CNT. At a higher angle, the ribbon may form into a scroll or even half of the ribbon wind upon
the tube; the remaining part does not curve (“1/2 scroll” in Figure 9, Movie S3 in the Supplementary
Materials).
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Figure 8. Historical curves of the potential energy of the system and snapshots of the BP on the CNT
(10, 10) when Ly = 3 nm. (a) VPE of the system with different α. (b) Combination of VPE with α = 12◦.

Table 5. Final states of the BP component on CNTs when α < 0◦ and Ly = 0 nm.

Angle of CNT On (6, 6) On (7, 7) On (8, 8) On (10, 10)

α = 0◦ Defect Defect Tube Wind only
α = −3◦ Defect Defect Tube Tube
α = −6◦ Defect Defect Tube Wind only
α = −9◦ Tube Defect Tube Wind only
α = −12◦ Tube Defect Tube Wind only
α = −15◦ Tube Tube Tube Wind only
α = −18◦ Defect Tube Tube Wind only
α = −30◦ Tube Scroll Defect Tube
α = −45◦ Tube Tube Scroll 1/2 Scroll
α = −60◦ Tube Tube Defect Tube
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3. Models and Methods

3.1. Models

The model shown in Figure 10 contains a CNT and a parallelogram black phosphorus nanoribbon.
The relative position of the CNT is determined by the value of Ly and α. The average C–C bond length
is found to be 0.142 nm. Lattice parameters l14 = 0.2244 nm, l12 = l13 = l45 = l46 = 0.2224 nm; angles β =
102.09◦, ϕ = 96.36◦, L0 = 0.44 nm, and W0 = 0.33 nm. x-distance σC–P = ~0.34 nm. The length of the BP
ribbon along the y-direction is L = 28L0 = ~12.8 nm. The axial length of CNT is 8.682 nm. The ends of
the CNTs are hydrogenated in order to improve the stability of the edge carbon atoms on CNTs and to
avoid bonding interaction between the CNT and the BP ribbon. Within 0.5 nm of each hydrogenated
end of CNT, the atoms are fixed in simulation. In the model, different CNTs with different relative
positions will be considered. Details of the parameters of models are listed in Table 6. To illustrate the
relative position effect on the self-assembly process, we set up different initial positions for the carbon
nanotube. The angle with the z-direction (α) and position along the y-direction of the CNT (Ly) are
two factors considered in the simulation as shown in Figure 10, i.e.,

Factor 1: α = 0◦, ±3◦, ±6◦, ±9◦, ±12◦, ±15◦, ±18◦, ±30◦, ±45◦, ±60◦;
Factor 2: Ly = 0, 3, 6, and 9 nm.

Table 6. Parameters in different models.

Model CNT (n, m) Diameter of CNT (nm) Length of CNT (nm) Number of Atoms
Carbon Phosphorus Hydrogen

1 (6, 6) 0.804 8.679 840 904 24
2 (7, 7) 0.941 8.681 980 904 28
3 (8, 8) 1.081 8.682 1120 904 32
4 (10, 10) 1.356 8.682 1400 904 40
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3.2. Methods

3.2.1. Methodology

In this work, molecular dynamics simulations are fulfilled via the open source code LAMMPS
to show the response of the BP ribbon nearby a CNT [34]. In a simulation, empirical potentials
are used to estimate the interactions among atoms. For instance, AIREBO potential is adopted to
calculate the interaction between carbon and/or hydrogen atoms in the CNT. The strength of covalent
bonds between neighbour phosphorus atoms in the BP ribbon is evaluated using the Stillinger–Weber
potential [35], whose parameters were provided by Jiang [36]. The nonbonding interaction between
two atoms is described using the Lennard–Jones (L–J) potential [37], i.e.,

ΠLJ
ij = 4εij[

(
σij/rij

)12 −
(
σij/rij

)6
] (1)

where ΠLJ
ij is the potential energy between atom i and atom j, εij is the depth of the potential well, σij

the distance between atoms i and j when the interaction potential between particles is zero, and rij is
the spatial distance between atom i and atom j. Parameters in the L–J potential for carbon, hydrogen,
and phosphorus atoms are listed in Table 7.

Table 7. The L–J potential parameters among carbon, hydrogen, and phosphorus atoms.

Atom i Atom j σij (nm) εij (meV)

P C 0.34225 6.878
P P 0.34380 15.940
C C 0.34000 2.844
C H 0.30250 2.065
H H 0.26500 1.499

The variation of potential energy (VPE) of the system is calculated and can be used to describe
the variation of the system configuration. The value of VPE can be obtained by subtracting the initial
potential energy of the component from the current potential energy, i.e.,

VPE(t) = Psystem(t)− PCNT(t0)− PBP(t0) = PInter
C−P + Pnew

P−P + PDeform
CNT + PDeform

BP (2)
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where Psystem(t) is the total potential of the system at time t; PCNT(t0) and PBP(t0) are the potential
energies of the CNT and BP structures at t0, respectively. PInter

C−P is the potential energy of vdW
interactions between carbon and phosphorus atoms; Pnew

P−P is the potential energy due to generating
new P–P bonds (each bond results in ~0.66 eV of decreasing potential energy); PDeform

CNT and PDeform
BP are

the potential energy induced by geometric deformation of the CNT and BP ribbon, respectively.

3.2.2. Flowchart of an MD Simulation

Figure 11 shows the flowchart of MD calculation. Briefly, first, build a parallelogram BP ribbon
and CNT with a specified initial relative position; second, reshape the system by minimization of
the potential energy of the system; third, fix both ends of the CNT; fourth, put the system under a
canonical (NVT) ensemble with the Nosé–Hoover thermostat to control temperature [38,39]; fifth, run
1,000,000 steps and record relevant data; the time step for the integral is set at 0.001 ps; finally, stop
for post-processing.
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4. Conclusions

When using a CNT to trigger self-assembly of a BP ribbon, the initial relative positions of CNTs to
the BP ribbon influence the final configuration of the BP structure. The final state of the BP component
after self-assembly depends on the radius of the CNT, the initial location, and the rotational angle of
the CNT. According to the molecular dynamics results and discussion, some conclusions can be drawn
for potential fabrication of a BP nanotube by the self-assembly approach, i.e.,

(1) Using a CNT with α = −30◦ and Ly = 0 nm, the BP ribbon can form into a tube, scroll, or just
winds up the CNT. The final configuration depends on the diameter of the CNT.

(2) When putting the BP ribbon nearby the same CNT with the given value of Ly, the final
configuration of the BP structure depends on the value of α due to zigzag potential barriers on the
oblique edges of the BP ribbon.

(3) When α > 0◦, the BP ribbon can form into a tube on the CNT with a larger diameter when the
ribbon starts winding upon the CNT from its lower-right corner.

(4) When α < 0◦, the BP ribbon can easily form into a tube on a slimmer CNT with Ly = 0.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/12/
4085/s1.
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