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The current obesity epidemic has caused a significant decline in the health of our donor
population. Organs from obese deceased donors are more prone to ischemia reperfusion
injury resulting from organ preservation. As a consequence, these donors are more likely
to be discarded under the assumption that nothing can be done to make them viable for
transplant. Our current methods of organ preservation—which remain relatively
unchanged over the last ~40 years—were originally adopted in the context of a much
healthier donor population. But methods that are suitable for healthier deceased donors
are likely not optimal for organs from obese donors. Naturally occurring models of acute
obesity and fasting in hibernating mammals demonstrate that obesity and resilience to
cold preservation-like conditions are not mutually exclusive. Moreover, recent advances in
our understanding of the metabolic dysfunction that underlies obesity suggest that it may
be possible to improve the resilience of organs from obese deceased donors. In this mini-
review, we explore how we might adapt our current practice of organ preservation to
better suit the current reality of our deceased donor population.
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INTRODUCTION

Since Joseph Murray and David Hume performed the first successful transplant of a deceased donor
organ in 1962, the rate of obesity in the U.S. has more than tripled from 12.8% to 42.4% (1, 2). In this
same time span, abdominal solid organ transplantation has gone from a highly experimental
technique to a reliable cure for end-stage organ failure; 1-year survival rates now exceed 90% for
liver and 95% for kidney (3, 4). However, in current practice, these high success rates are dependent
on selecting relatively healthy donor organs. Unfortunately, the continuing rise in obesity rates
within our donor pool (Figure 1) often forces patients to choose between two undesirable options:
accept the added risk that comes with an organ from a less healthy donor or risk dying on the
waitlist before a better offer comes.

For recipients who choose to accept an organ from an obese donor, the added risk of post-
transplant complications can be substantial (5, 6). In one study, livers from deceased donors with
BMI >35 had a 156% increased likelihood of early allograft dysfunction (6). A recent retrospective
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analysis of 14 years of registry data—from 2000-2014—revealed
significantly higher risk of death-censored graft failure in renal
transplants when receiving an organ from a mildly obese donor,
BMI 30-35, (HR = 1.10) or a very obese donor, BMI >35 (HR =
1.22) (5). This elevated risk was particularly pronounced in
deceased donor organs suggesting that donor obesity sensitizes
their organs to injury during cold-storage preservation. Given
these adverse outcomes, it is not surprising that organs from
obese donors are more likely to be discarded (7). However, the
practice of throwing away all less-than-ideal organs is not a
viable long-term strategy in our current era of pandemic obesity.

The current rationale for disproportionately discarding
organs from obese donors is that obesity renders these organs
more susceptible to ischemia reperfusion injury (IRI), thereby
increasing the risk of complications to an unacceptable degree.
This line of reasoning assumes that our current approaches to
organ preservation—which remain relatively unchanged since
they were initially developed ~40 years ago—are as optimal for
organs from obese donors as they are for young healthy donors.
In this Mini-Review, we propose an alternative perspective
effective preservation of organs from obese donors will require
new methods specifically tailored to the mechanisms of injury
present in these organs. In support of our perspective we present
protective adaptations in hibernating animals that allow these
obese animals to survive cold storage like conditions. We further
discuss how these adaptations relate to historic and
contemporary studies on the benefits of fasting in animals and
humans. We conclude by suggesting how these mechanistic
insights might be translated to restorative interventions within
the context of organ preservation.
THE MODERN WESTERN DIET AND ITS
IMPACT ON ABDOMINAL ORGAN
TRANSPLANT

Nearly 50% of all adults in the U.S. have a chronic disease related
to poor-quality diet (8). What constitutes a “healthy” diet should
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simply be based on scientific evidence. However, public
recommendations can be complicated by multiple factors
including politics, corporate interests, and complex scientific
evidence that is difficult to interpret (9). While there is no
common consensus on the best diet, there is agreement that
both the total calories and macronutrient breakdown make a
critical difference. Since 1970, Americans have increased their
daily food intake by ~300 calories (10). Macronutrient
breakdown has also changed substantially; our diets have
become increasingly carbohydrate-based with a reduced
percentage of calories from protein and fat. These changes to
our diet have been linked to the concomitant rise of obesity and
its associated pathologies (8).

The excess macronutrients in obese individuals leads to
increased oxidative stress and can cause a predisposition to
systemic inflammation and mitochondrial dysfunction (11–13).
Abundant adipose tissue increases oxidative stress and the
production of inflammatory cytokines (e.g. IL-6, TNF-alpha,
MCP-1, and resistin) while decreasing anti-inflammatory
mediators (e.g. adiponectin, Omentin, IL-10) (11, 14).
Additionally, oxidative stress can also cause an increase in
circulating free fatty acids and abnormal fat deposition in non-
adipose tissues. This can result in further mitochondrial
dysfunction and various forms of cell death such as lipotoxicity
(15). Both effects can prime organs for damage during cold
storage and reperfusion. For example, livers in cold storage from
obese rats are shown to have increased rates of sinusoidal
endothelial cell death compared to their lean counterparts (16).
Inflammation can also prime transplanted organs for rejection
by activating both the recipient immune system and the
endothelium of the graft leading to an increase in the
attachment and extravasation of T cells (17).

The metabolic and inflammatory dysfunction that occurs in
organs from obese individuals are potentially reversible through
lifestyle and diet changes. Many diets, such as the ketogenic diet
or intermittent fasting, are suspected to not only promote weight
loss but also repair the broken metabolic pathways caused by the
average American diet (18). As one example, obese children put
on a diet and lifestyle modification plan for three months had an
A B

FIGURE 1 | Trend showing the increasing rate of obese donors over time in both (A) brain death donors and (B) circulatory death donors.
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increase in adiponectin and a decrease in inflammatory factors
(C-reactive protein, IL-6) despite no significant weight loss (19).
These findings suggest that it is possible to reduce or even reverse
the underlying metabolic dysfunction and inflammation
associated with the oxidative stress of obesity.

It is not ethically permissible to alter the diet of an organ
donor with a prolonged intervention prior to organ retrieval. We
therefore are restricted to evaluating if it is possible to target
these pathologies during the preservation period that follows
organ recovery. Or to state the question more succinctly: Can we
better preserve obese organs to improve their resilience? To
address this question, it is instructive to investigate existing
examples from nature. Hibernating animals provide a unique
model of a species that have evolved mechanisms to allow their
organs to tolerate cold storage like conditions even when they are
in an obese state.
HIBERNATORS AS A ROAD MAP
FORWARD

Hibernating mammals demonstrate that obesity and resilience to
cold hypoxia are not mutually exclusive. Some hibernating
species (e.g., ground squirrels and marmots) are known to
double their body mass prior to hibernation; adipose tissue can
make up as much as 80% of body mass in these animals when
they enter hibernation (20). Although this weight gain occurs in
a shorter timeframe than most obese humans, their weight gain is
still associated with insulin resistance, hyperinsulinemia, elevated
triglyceride levels and buildup of fat stores (21). However, in
contrast to obese organ donors, many hibernating animals have
evolved physiologic adaptations that limit damage to their organs
during hibernation. These adaptations—which include
reductions in both immune activity and cell death—allow these
animals to withstand levels of hypoxia and hypothermia that can
be just as severe as cold-storage for deceased donor organs.

When animals, such as ground squirrels and bats, enter
hibernation their organs are subjected to hypoxia and
hypothermia. Nevertheless, they can withstand the IRI that
occurs as they wake. The primary cell type involved in tissue
destruction in IRI are neutrophils (22). It is therefore notable that
hibernation triggers a stark ~90% reduction in the number of
circulating leukocytes, with a significant decrease in mature
neutrophils (23, 24). While this leaves the animals more
susceptible to infection, It is believed that this trade-off ensures
their organs can better withstand the IRI that results from the
repeating cycles of torpor and arousal that occur during
hibernation (23). While the mechanisms that drive IRI are
complex and multi-factorial, it appears that preventing
neutrophil induced tissue destruction may play a pivotal role
in allowing hibernators to avoid organ damage despite their
obese state.

Down regulation of cell death pathways—in particular
ferroptosis (an iron-dependent form of cell death)—has also
been shown to be a key adaptation of hibernating animals for
resilience to cold hypoxia. Renal cells of hibernating animals are
Frontiers in Immunology | www.frontiersin.org 3
less susceptible to ferroptosis when compared to the same cells
derived from human or rat tissues. However, when non-
hibernating cells were given ferrostatin, an inhibitor of
ferroptosis, cell survival was similar to the hibernating cell
lines (25). In the 1970s, when UW solution was first created,
our understanding of cell death was limited, but there are now
many described forms of regulated cell death (26). Some
regulated cell death modes are known to be immune-
stimulatory such as pyroptosis and immunogenic cell death
(26). Developing therapeutic methods to regulated cell death
pathways may be crucial to improving the resilience of organs
from obese donors.

The preceding examples demonstrate that hibernators adapt
to increase resilience prior to entering hibernation. The key
question then is what serves as the trigger for these
adaptations? Emerging evidence suggest that the switch from
the overfed state to a fasting state that occurs in parallel with the
beginning of hibernation facilitates this process (27). Hindle and
colleagues found that most of the differences in the liver
proteome that distinguished active vs hibernating animals was
similar to the signatures observed in fed versus fasted animals.
The switch to the fasted state that occurs with beginning of the
hibernation period is believed to prime these animals with the
capacity to withstand the stress of IRI and support the metabolic
reactivation during period of arousal (27). Fasting has also been
shown to make organs of non-hibernating animals more resilient
to cold ischemic injury (28).
FASTING AS A PATHWAY FORWARD

In animal models of stroke and myocardial infarction, fasting has
been shown to protect against damage associated with IRI (29,
30). The improvement in outcomes from these preliminary
studies led to the evaluation of whether other organ systems
could also gain new resilience against ischemia from fasting.
Mitchell et al. evaluated warm IRI in both kidney and liver in
fasted and fed mice (31). In kidney models, mice that were fasted
showed improved survival outcomes and decreased levels of
acute tubular necrosis, serum urea and serum creatine. Similar
results were observed in liver models where fasted mice had
lower levels of ALAT and hemorrhagic necrosis (31). The
benefits of fasting have also been demonstrated in animal
transplant models (28, 32, 33).

The benefits of fasting in transplant were incidentally
discovered by Southard and Belzer in 1993 (28). They initially
thought fasting would mimic conditions of donors with extended
ICU stays prior to donation and lead to adverse outcomes.
However, rats fasted for 4 days had markedly improved survival
compared to fed rats after both warm and cold ischemia insults
(28). After 60 minutes of warm ischemia none (0/8) of the rats that
received livers from fed donor survived, while 89% (8/9) of the rats
that received livers from fasted rats survived. After 44 hours of cold
ischemia, only 29% (2/7) of rats that received livers from fed rats
survived, while 83% (5/6) of rats that received livers from fasted
rats survived. These impressive survival benefits have been
March 2022 | Volume 13 | Article 830992
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confirmed in additional follow up studies (32, 33). While the
benefits of fasting have been shown in animal models, fasting is not
a feasible intervention in human organ donors. Therefore, if we
wish to modulate these pathways to improve preservation of
organs from obese donors, we need to understand what
pathways to modulate pharmacologically that will enable us to
target these pathways prior to or during cold storage.

Studies to understand the potential mechanisms for the
survival benefits of fasting have found similar mechanisms to
hibernators: reductions in both inflammation as well as cell
death. For example, fasted rats given intraperitoneal injections
of zymosan—a glucan that produces sterile inflammation—had
lower levels of TNF-a compared to fed controls (32). It is
postulated that the decreased production of inflammatory
factors from donors leads to a lesser immune response in
recipients and as a result, less injury. Sun et al. demonstrated
that fasting also decreases apoptosis in rat donor livers.
Apoptosis was the same at 24 hours of cold storage in both
fasted and fed rats, but after 6 hours of reperfusion there were
significantly more dead sinusoidal endothelial cells in the fed
group than in the fasted group (33). The difference in post
reperfusion cell death demonstrates that there may be underlying
metabolic changes that make fasted tissues more resilient to IRI.
This suggests that intervening on these pathways could provide
an avenue to improving obese donor organs’ resilience to the
stresses of cold storage. This is one of many strategies that may
work to improve the current practice of cold preservation.
IMPROVING CURRENT COLD STORAGE
TECHNIQUES

It appears fasting in both hibernating and non-hibernating
animals reduces inflammation and limits cell death during
Frontiers in Immunology | www.frontiersin.org 4
reperfusion injury. These are the exact vulnerabilities that
obesity appears to exacerbate. The stresses of cold storage can
potentially be mitigated by adding therapeutic these specific to
target these specific pathways in cold storage solutions or altering
the storage conditions themselves.

Ketone bodies, which are a naturally produced from
breakdown of fatty acids in a fasted state. They not only
function as a fuel source for cells, but also act as signaling
molecules (18). In particular, b-hydroxybutyrate, which is one
of three endogenously produced ketones, has been shown to be
protective against ischemia-reperfusion injury in a mouse model
in vivo and human cells in vitro (34). TUNEL positive cells were
decreased by inducing endogenous production of b-
hydroxybutyrate via fasting or by administration of exogenous
b-hydroxybutyrate. This effect is believed to be mediated through
anti-pyroptotic effects by inducing FOXO3, an up-stream
transcription factor for pyroptosis.

One strategy that may be of interest is intervention in the
peroxisome proliferator-activated receptor (PPAR) pathway.
Obesity is associated with the development of metabolic
syndrome which is a cluster of conditions including increased
fat around the waist, elevated cholesterol, elevated triglyceride
and increased risk of heart disease and type 2 diabetes. PPAR
agonists are medications which are currently used to treat
elevated triglycerides or blood glucose but have been shown to
be effective in managing metabolic syndrome (35). Interestingly,
PPARs are upregulated in fasting and play an important role in
metabolic regulation (36). Not only are PPARs directly involved
in metabolic syndrome and fasting but activation of PPARa has
been shown to play a critical role in decreasing apoptosis and
inflammation during renal IRI in a mouse model (37). Pre-
treatment of mice with a PPARa activator, docosahexaenoic
acid, significantly decreased the apoptotic and inflammatory
responses compared to untreated wild type mice while PPARa
knockout mice had increased apoptosis and inflammation (37).
FIGURE 2 | Potential pathway to restore organs from obese donors.
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Another important pathway to consider is the NLRP3
Inflammasome. The NLRP3 inflammasome is a multi-protein
complex consisting of NLRP3 (sensor), ASC (adaptor), and
Caspase-1 (effector). It is activated by a wide range of stimulus
and is associated with sterile inflammation in obesity (38). It then
causes the release of IL-1b, IL-18 and leads to pyroptotic cell
death (39). In particular, NLRP3 has been shown to be important
in ischemia reperfusion of the brain and heart in animal models
(40). Using a model of ex-vivo ischemia reperfusion
demonstrated that using INF4E, a NLRP3 inflammasome
inhibitor, reduced infarct size, lactate dehydrogenase release
and improved left ventricular pressure. Interestingly, fasting
decreases NLRP3 inflammasome in humans and is believed to
be due to SIRT3- mediated activation of superoxide dismutase 2
(41). By targeting the obesity-induced inflammation and its
consequences we could potentially target several pathways to
improve outcomes from obese donor organs.
CONCLUSIONS

Our understanding and applied practices of cold storage has
been based on ideal organs from a healthy population. However,
as obesity rates increase in the population, it is of paramount
Frontiers in Immunology | www.frontiersin.org 5
importance to understand the effects of cold storage on obese
organs (Figure 2). We can build on the previous work of Belzer,
Southard and others by incorporating different fields into
transplant science, such as hibernating animal models or the
nutritional science of fasting. This will allow us to expand our
understanding on the modes of failure during cold storage. We
can then implement new therapeutics and new technologies such
as machine perfusion to treat and rehabilitate these organs. This
has the potential to both improve outcomes and increase the
number of transplantable organs for patients on the waitlist.
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