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Neglected Tropical Diseases include a broad range of pathogens, hosts, and vectors,
which represent evolving complex systems. Leishmaniasis, caused by different
Leishmania species and transmitted to humans by sandflies, are among such diseases.
Leishmania and other Trypanosomatidae display some peculiar features, which make
them a complex system to study. Leishmaniasis chemotherapy is limited due to high
toxicity of available drugs, long-term treatment protocols, and occurrence of drug
resistant parasite strains. Systems biology studies the interactions and behavior of
complex biological processes and may improve knowledge of Leishmania drug
resistance. System-level studies to understand Leishmania biology have been
challenging mainly because of its unusual molecular features. Networks integrating the
biochemical and biological pathways involved in drug resistance have been reported in
literature. Antioxidant defense enzymes have been identified as potential drug targets
against leishmaniasis. These and other biomarkers might be studied from the perspective
of systems biology and systems parasitology opening new frontiers for drug development
and treatment of leishmaniasis and other diseases. Our main goals include: 1) Summarize
current advances in Leishmania research focused on chemotherapy and drug resistance.
2) Share our viewpoint on the application of systems biology to Leishmania studies.
3) Provide insights and directions for future investigation.
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INTRODUCTION

Leishmania is a complex biological system in itself. In the lack of an effective vaccine, human
treatment relies on chemotherapy since the early 1920’s. Drug resistance of parasite strains adds a
layer of complexity to this public health issue. Systems biology, which access interactions and
behavior of complex biological processes, may improve knowledge of Leishmania drug resistance.
Figure 1 shows the major components of Leishmania systems biology discussed in the present work.
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Here we present our perspective by providing a viewpoint on
some specific areas of investigation as well as current advances and
future directions. For this purpose, this article is organized into the
following topics: Leishmania and leishmaniasis; Leishmaniasis
treatment; Chemotherapy and antioxidant defense enzymes;
Systems biology: concepts and applications; Leishmania systems
biology; and Conclusions and future directions.
LEISHMANIA AND LEISHMANIASIS

Leishmaniasis are among such diseases currently affecting 12
million people worldwide and presenting an incidence of 0.7-1.0
million new cases annually from nearly 100 endemic countries
(WHO, 2021). Leishmaniasis are caused by over 21 different
species of unicellular protozoan parasites of the genus Leishmania
(Trypanosomatidae), which are transmitted to humans by
infected female phlebotomine sandflies (Phlebotominae).

Some peculiar features are described for Leishmania and other
Trypanosomatidae such as their kinetoplast, mitochondrial DNA
editing (Simpson and Shaw, 1989; Ibrahim et al., 2008),
glycosomes (Michels et al., 2006), polycistronic transcription
(Martıńez-Calvillo et al., 2003), trans-splicing (Boothroyd and
Cross, 1982; Liang et al., 2003), GPI-anchored proteins (Mensa-
Wilmot et al., 1999), and absence of promoter-mediated regulation
of nuclear genes (Stefano et al., 2017). Leishmania species present a
remarkable degree of conservation in gene content and
architecture (synteny) according to their evolutionary divergence
(Peacock, 2007; Lynn and McMaster, 2008; Real et al., 2013).
LEISHMANIASIS TREATMENT

There is no human vaccine available against Leishmania infection
and control is based mainly on chemotherapy using a few drugs
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
currently available. Leishmaniasis chemotherapy presents several
issues, such as high drug toxicity, long treatment protocols, and
the occurrence of drug resistant parasite strains.

It is important to highlight that drug resistance and
therapeutic failure are not synonymous. Therapeutic failure
encompasses factors related to the host (e.g. patient immune
system and genetic factors), infectious agent (e.g., drug
resistance, virulence, and pathogenic profiles of parasite species
or strains), drugs (e.g. pharmacodynamics/pharmacokinetics),
chemotherapeutic protocol, etc. (Ponte-Sucre et al., 2017).

Nevertheless, isolate’s drug resistance status is the first
indication for therapeutic choice. Leishmania drug resistance
threatens the prevention and treatment of infections. Literature
shows that the mechanism of drug resistance in Leishmania
involves different metabolic pathways including several molecular
markers. However, little is known about the biochemical
mechanisms underlying drug resistance in field isolates of this
parasite. System biology approaches are very important to elucidate
drug resistance mechanisms and identify new molecular markers
and targets for drug development against leishmaniasis.

Pentavalent Antimonials
Pentavalent antimonials (e.g. sodium stibogluconate and
meglumine antimoniate) have been used as the first-line
treatment in many countries (Croft et al., 2006). Their mode of
action is still not completely understood. It has been reported
that antimony inhibits macromolecule biosynthesis in
amastigotes, possibly via the inhibition of glycolysis and fatty
acid oxidation (Berman et al., 1987), changing the thiol redox
potential (Wyllie et al., 2004), DNA fragmentation, and
apoptosis (Sereno et al., 2001; Sudhandiran and Shaha, 2003).

Treatment failure with pentavalent antimony (SbV) has been
reported in Bihar (India), where more than 60% of patients with
visceral leishmaniasis (VL) are unresponsive to this drug
FIGURE 1 | Leishmania systems biology. Some components of a systems biology study aiming at identifying molecular targets for drug design and development.
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(Sundar, 2001). An epidemiological survey in this region
suggested that arsenic-contaminated groundwater may also be
associated with the treatment failure using SbV (Perry et al.,
2015). Different antimony-resistance mechanisms have been
described including decreased antimony cellular entry,
decreased drug reduction/activation, increased antimony efflux,
and sequestration of the metal-thiol conjugate into vesicular
membranes of Leishmania (Croft et al., 2006).

Some of these mechanisms were described in both
experimental and clinical resistance to SbV. Several ATP-
binding cassette (ABC) transporters have been involved in SbV

resistance. PGP/MRPA (ABCC3) was the first one described to
be responsible for clinical resistance to SbV in L. donovani (Mittal
et al., 2007; Mukherjee et al., 2007). Other mechanisms involved
in SbV resistance in L. donovani include decreased drug uptake
through inactivation of the aquaglyceroporin (AQP1)
transporter (Mandal et al., 2010). AQP1 mutations are
associated with a high level of antimony clinical resistance in
L. donovani (Potvin et al., 2020).

Comparative proteomic and phosphoproteomic analyses of
antimony trivalente (SbIII)-resistant (R) susceptible (S) L.
braziliensis lines identified several potential candidates for
biochemical or signaling networks associated with the
antimony resistance in this parasite (Matrangolo et al., 2013;
Moreira et al., 2015). Proteomic and genomic analyses of SbIII-
resistant L. infantum mutants identified MRPA as a biomarker
and suggested the involvement of chromosome number
variations, specific gene amplifications, and SNPs as important
features of antimony resistance (Brotherton et al., 2013). The
transcriptomic profile showed that many pathways upregulated
in L. infantum antimony-resistant lines are associated with
protein phosphorylation, microtubule-based movement, protein
ubiquitination, stress response, regulation of membrane lipid
distribution, proteins involved in RNA metabolism, and other
important metabolic pathways (Andrade et al., 2020). Together,
these results show that the mechanism of antimony-resistance in
Leishmania is complex and multifactorial, identifying several
candidate genes that may be further evaluated as molecular
targets for chemotherapy of leishmaniasis.

Several groups have used proteomic approaches for
understanding the mechanisms of clinical resistance to antimony
using SbV-resistant L. donovani isolates (Vergnes et al., 2007;
Kumar et al., 2010; Biyani et al., 2011). These studies showed
that the SbV-resistant L. donovani isolates have upregulated
proteins of different metabolic pathways including glycolysis,
gluconeogenesis, oxidative stress, and detoxification. Some of
them include: ABC transporter, HSP-83, HSP-70, GPI protein
transamidase, enolase, carboxypeptidase, among others.

Studies also demonstrated that the mechanism of antimony-
resistance differs among the Leishmania species analyzed. A
comparative proteomic analysis of SbIII-susceptible and
resistant lines of L. braziliensis (LbWTS and LbSbR) and
L. infantum (LiWTS and LiSbR) showed that 71.4% of protein
spots with differential abundance identified were different
between both species (Matrangolo et al., 2013). Only 28.6% of
protein spots were common between them. Western blotting
analysis confirmed the proteomic data results. For instance, the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
expression of pteridine reductase was higher in the LbSbR line
compared to its susceptible counterpart LbWTS. However, the
expression level of the PTR1 protein was similar between both L.
infantum lines (Matrangolo et al., 2013). Functional analysis
confirmed that pteridine reductase is associated with the
antimony-resistance phenotype in L. braziliensis, but not in L.
infantum (Moreira et al., 2016).

Amphotericin, Miltefosine, and
Paromomycin
Amphotericin has shown efficacy for the VL treatment
(Balasegaram et al., 2012). This is a polyene antibiotic that
targets ergosterol, the major parasite membrane sterol.
Liposomal amphotericin B shows lower toxicity compared to
amphotericin B deoxycholate; however, it has a high cost.
Amphotericin-resistant L. donovani lines selected in vitro
displayed changes in drug-binding affinity to the plasma
membrane as a result of a modified sterol composition
(Mbongo et al., 1998). Treatment failure with amphotericin B
has now been reported in India, where this drug has become the
first-line option in areas where refractoriness to antimony is
widespread (Purkait et al., 2012).

Miltefosine (hexadecylphosphocholine) is a phosphatidylcholine
analogue initially developed as an antineoplastic drug shown to be
very effective for the VL treatment in India (Sundar et al., 2002).
This is the first and only drug administered orally against
leishmaniasis. Miltefosine interferes in cell membrane
composition by inhibiting phospholipid metabolism
(Rakotomanga et al., 2007). The main mechanism of
experimental resistance observed is associated with a significant
reduction in miltefosine internalization (reduced uptake or
increased efflux). Mutations or deletions in the miltefosine
translocation process in L. donovani are associated with
miltefosine resistance in both in vitro and in vivo assays (Perez-
Victoria et al., 2006; Seifert et al., 2007). MT and/or Ros3 have also
been associated with miltefosine-resistant phenotype in clinical
isolates from leishmaniasis patients (Mondelaers et al., 2016;
Srivastava et al., 2017).

Paromomycin is an aminoglycoside antibiotic that changes in
the parasite protein synthesis, lipid metabolism, and
mitochondrial activity (Maarouf et al., 1995; Maarouf et al.,
1997). Clinical trials carried on in India indicated that
paromomycin was effective in the VL treatment (Sundar et al.,
2007). In contrast, a lower cure rate was not found in East Africa
(Hailu et al., 2010). Paromomycin-resistant parasites selected in
vitro showed a decreased drug accumulation (Bhandari et al.,
2014). Differences in paromomycin susceptibility have been
observed in different Leishmania species and clinical isolates
(Prajapati et al., 2012).
CHEMOTHERAPY AND ANTIOXIDANT
DEFENSE ENZYMES

Trypanosomatidae antioxidant defense has been indicated as a
potential target for chemotherapy based on their mechanism for
trypanothione-dependent detoxification of peroxides, which
April 2021 | Volume 11 | Article 653670
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differs from vertebrates. In this system, the thiol trypanothione
maintains the reduced intracellular environment by the action of
a trypanothione reductase (Turrens, 2004). Other enzymes
participate in the enzymatic cascade.

Superoxide dismutase removes the excess of superoxide
radicals by converting them to oxygen and hydrogen peroxide.
Besides, tryparedoxin peroxidase and ascorbate peroxidase
metabolize hydrogen peroxide into water molecules (Turrens,
2004). In order to investigate these enzymes in the antimony-
resistance phenotype, L. braziliensis and L. infantum mutant
lines overexpressing them were obtained (Andrade and Murta,
2014; Tessarollo et al., 2015; Moreira et al., 2018).

Results showed that the overexpression of iron superoxide
dismutase-A (Tessarollo et al., 2015), tryparedoxin peroxidase
(Andrade and Murta, 2014), or ascorbate peroxidase (Moreira
et al., 2018) are involved in the SbIII-resistance phenotype in L.
braziliensis. However, only iron superoxide dismutase-A plays a
key function in maintaining the antimony resistance in the L.
infantum line analyzed, while the other two enzymes are not
directly associated with such phenotype. These results
corroborate once again that the mechanism of antimony
resistance differs among the Leishmania species.

Drug repositioning is an effective strategy to find new
applications for existing drugs (Andrade-Neto et al., 2018; Silva
et al., 2021). Thus, drugs and/or compounds that interact with
different proteins involved in important metabolic pathways in
Leishmania were searched. The ascorbate peroxidase sequence of
Leishmania was used to seek possible drugs against this enzyme.
This search returned the antibacterial agent Isoniazid, a synthetic
derivative of isonicotinic acid used in tuberculosis treatment.

Results demonstrated that overexpression of ascorbate
peroxidase confers resistance to Isoniazid (Moreira et al.,
2018). Surprisingly, Isoniazid raised the antileishmanial effect
of SbIII, mainly against L. braziliensis clones overexpressing
ascorbate peroxidase. Such drug combination might be a good
strategy to be considered in leishmaniasis chemotherapy.
SYSTEMS BIOLOGY: CONCEPTS
AND APPLICATIONS

The origin of systems biology is still under debate among scientists,
with some claiming that it was first applied by Norbert Wiener and
Erwin Schrödinger or Claude Bernard around 90 and 150 years
ago, respectively (cf. Saks et al., 2009). Despite different viewpoints,
some agree that systems biology was first coined in the 1960s,
when theoretical biologists began creating computer-run
mathematical models of biological systems (Noble, 1960).

In our view, systems biology is the study of the interactions
and behavior of complex biological processes based on their
molecular constituents. The applied analytical approach focuses
on the quantitative measurement of biological processes,
mathematical modeling, and reconstruction with the aim of
bringing to light the transfer of information resulting from the
integration of biological data (Kirschner, 2005, Noble and
Bernard, 2008, Breitling, 2010).
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Systems biology is interdisciplinary and includes a wide range
of data from in vivo, in vitro, in situ, and in silico studies. Ideally,
in silico studies would be integrated and validated by other data
sources especially when applicable outcomes are aimed (Butcher
et al., 2004; Dunn et al., 2010; Bora and Jha, 2019).

Currently, mathematical models have been extensively used
to understand biological processes in life sciences, including but
not restricted to the analysis of genomics, proteomics,
metabolomics, and epigenomics of a broad range of taxa (Zhao
and Li, 2017; Cheng and Leung, 2018; Djordjevic et al., 2019).

Considering the complex parasite biology, the study criteria
are crucial for choosing the dataset to be analyzed, taking into
account the number of samples, amount of noise, experimental
design, etc. Together, these criteria interfere in the network
construction and downstream analyzes. The statistical network
inference method, type of interaction structure (scale-free,
random, and small-world), and error measurement (global and
local) are also relevant.

Because of the complexity of biological systems, it is
important to understand the interactions among genotype,
phenotype, and environment. Systems biology addresses such
aspects by applying quantitative measurement, mathematical
modeling, and interdisciplinary studies including ecology and
evolutionary biology (Kirschner, 2005; Medina, 2005).

By using a system biology approach, a large number of non-
linear molecular interactions can be explored, such as post-
transcriptional or post-translational modifications, metabolic
effects, and protein recruitment dynamics in different cellular
compartments. The idea is to go beyond the simplistic model of
gene role determination and its phenotypic effect (Likić
et al., 2010).
LEISHMANIA SYSTEMS BIOLOGY

Efforts of drug repositioning and development of new drugs
require systems biology approaches to understand the genetic
basis of diseases including leishmaniasis. An essential aspect of
systems biology in drug discovery is the identification of
potential drug targets considering the presence of multiple
genes and proteins involved (Kunkel, 2006; Chavali et al.,
2008; Sharma et al., 2017). In parasites, this might be
understood from signaling pathways in which essential
proteins participate (Sharma et al., 2017). In addition to derive
novel biological hypotheses about molecular interactions
involved in drug resistance, such networks may provide
information to support functional prediction of genes and
proteins. Currently, a huge number of protein coding genes
from sequencing projects are annotated with hypothetical,
predicted, or unknown functions.

The so-called omics technologies have been the driving force
behind systems biology (Silva et al., 2012; Moreira et al., 2015).
These technologies include genomics, transcriptomics,
proteomics, and among others applied to the study of a broad
range of taxa including Leishmania (Figure 1). This
multidirectional and interdisciplinary integration will certainly
provide experimental outcomes with impact in public health.
April 2021 | Volume 11 | Article 653670
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The divide-and-conquer approach, in which a big problem is
recursively breaking down into sub-problems of the same or
related type simple enough to be solved, is a robust strategy to be
implemented. Among the numerous fields (sub-problems) in
which systems biology would play a crucial role, we highlight the
issue of drug resistance in Leishmania treatment (Ponte-Sucre
et al., 2017).

The inference of gene regulatory networks is just a “blueprint”
in the discovery of new interactions among biological entities of
the drug resistance in Leishmania and other taxa. Here we
provide an overview of some components of a systems biology
study aiming at identifying molecular targets for drug design and
development in Leishmania (Figure 1).

The genome-scale metabolic model of L. donovani supported
functional annotation for hypothetical or erroneously annotated
genes by comparing results with experimental data (Rezende
et al., 2012; Sharma et al., 2017). In addition to annotation,
authors have predicted molecular networks for Leishmania and
other Trypanosomatidae (Rezende et al., 2012; Vasconcelos
et al., 2018).

System biology studies of pathway modeling may be able to
identify pathways associated with mechanisms of drug resistance
in Leishmania (Brito et al., 2017; Ponte-Sucre et al., 2017).
Results of in vitro approaches for the identification of genes or
proteins associated with drug resistance should be integrated
with in silico studies and used for validation of the omics
strategies (Kunkel, 2006). Combined drug and vaccine therapy
can successfully treat leishmaniasis patients, but there are still
several side effects and a high cost involved (Ghorbani and
Farhoudi, 2017).

In the case of the pentavalent antimonials, a network
integrating biochemical and biological pathways is reported
(Ponte-Sucre et al., 2017). For instance, the ABC transport
pathway is involved in drug efflux and therefore with drug
resistance (Coelho and Cotrim, 2013). Aquaglyceroporin
overexpression or deletion is also associated with resistance
(Marquis et al., 2005). Gamma-glutamylcysteine synthetase
may protect against oxidative stress and SbV (Mukherjee et al.,
2009). Reduction of SbV to SbIII is involved in drug activity and
internalization as well as glycolysis inhibition of fatty acid
oxidation (Berman et al., 1987; Roychoudhury and Ali, 2008).
Trypanothione and glutathione regulate the intracellular thiol
redox balance and participate in the chemical and oxidative
stress defense (Croft et al., 2006; Singh, 2006; Maltezou, 2010).
Tryparedoxin peroxidase from a complex redox cascade and its
overexpression is linked to resistance (Wyllie et al., 2008;
Andrade and Murta, 2014). Zinc finger domains are associated
with drug resistance due to the ability of SbIII to compete with
ZnII and the modulation of the pharmacological action of
antimonials (Frézard et al., 2012).

One possible approach is the integration of public available
RNAseq data depicting the resistance phenomena in gene
regulatory networks (Andrade et al., 2020). Such approach has
demonstrated how genes interact with each other and how
changes in their expression levels may result, for example, in
different immunological responses promoting distinct disease
outcomes including leishmaniasis (Mol et al., 2018).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
The resulting association among specific transcriptional states
of all genes involved in drug resistance will represent a key tool for
the study and modeling of this complex biological process.
Altogether, these studies have the potential to lead the
identification of better drug targets and markers for pathogenesis.
CONCLUSIONS AND FUTURE
DIRECTIONS

Computational modeling of the molecular components of drug
resistance in Leishmania through the biophysicochemical
monitoring of genes and proteins involved in the processes is
important. Integrating metabolic and signaling pathways is
crucial to reveal the correlations among molecular functions
and physiological processes shedding light on a broad
understanding of the drug resistance phenomena.

We believe that in a near future, neither the understanding of
Trypanosomatidae biology nor their drug resistance phenomena
will be conceivable without studying molecular networks. In this
context, protein-protein interactions and gene regulatory
networks represent a practical embodiment of systems biology.

Biomarkers involved in drug resistance might be studied into
more details from the systems biology perspective. Altogether,
these studies could contribute to a better understanding of
parasite biology and drug resistance mechanisms. Moreover,
this approach will improve the knowledge of systems
parasitology and open new frontiers in the identification of
new molecular targets for drug development and treatment of
leishmaniasis and other diseases.
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