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Background: Evidence is increasingly emerging about multiple roles for the NAD(P)H quinone oxidoreductase 1 enzyme in
cancer. The C609T (rs1800566, Pro187Ser) null polymorphism of the NQO1 gene contributes significantly to the variation
in enzymatic activity across different populations. NQO1 C609T polymorphism was thoroughly investigated with respect to
cancer susceptibility. The results were inconsistent partly due to low sample sizes. The aim of the present work was to perform a
meta-analysis to assess association for all common cancer sites separately and in combination.

Methods: Our meta-analysis involved 92 studies including 21 178 cases and 25 157 controls. Statistical analysis involved individual
cancer sites and the combined cancer risk. Association was tested under different genetic models.

Results: We found a statistically significant association between the variant T allele and overall cancer risk in the worldwide
population (for the TT vs CC model, OR¼ 1.18 (1.07–1.31), P¼ 0.002, I2¼ 36%). Stratified analysis revealed that this association was
largely attributed to the Caucasian ethnicity (for the TT vs CC model, OR¼ 1.28 (1.12–1.46), P¼ 0.0002, I2¼ 1%). Stratification
by tumour site showed significant association for bladder cancer in the worldwide population (for the TT vs CC model, OR¼ 1.70
(1.17–2.46), P¼ 0.005, I2¼ 0%), and in the Asian population (for the TT vs CC model, 1.48 (1.14–1.93), P¼ 0.003, I2¼ 16%). Positive
association was also found for gastric cancer in the worldwide population under the dominant model (OR¼ 1.34 (1.09–1.65),
P¼ 0.006, I2¼ 15%).

Conclusion: Our results indicate that the C609T polymorphism of the NQO1 gene is an important genetic risk factor in cancer.

Cancer is a leading cause of death worldwide. It is estimated
that the burden of cancer will increase up to 22.2 million new
cases diagnosed annually worldwide by 2030, which represents
an increase by 75% compared with the statistics of 2008 (Bray
et al, 2012).

It is now recognised that sporadic cancer is a complex and
multifactorial disease involving the contribution and interaction of
several genetic and environmental factors. In the recent years,
polymorphisms in low-penetrance genes involved in anti-carcino-
genic biochemical pathways have been a subject of thorough
investigation in the context of identifying the genetic risk factors
for cancer development.

The NAD(P)H quinone oxidoreductase 1 enzyme (EC 1.6.5.2),
encoded by the NQO1 gene, which is mapping to chromosomal
location 16q22.1, was hypothesised to have a crucial role in the
protection against oxidative stress and was shown to be a multi-
functional antioxidant and an exceptionally versatile cytoprotector
(Dinkova-Kostova and Talalay, 2010). Furthermore, recent studies
indicated protective roles for NQO1 unrelated to its enzymatic activity
and involved in apoptosis, as it was found to act as a stabiliser for the
tumor suppressor protein p53 (Asher et al, 2002a). Figure 1
summarizes the multiple protective roles of NQO1 known so far.

Several polymorphisms were identified in the NQO1 gene.
However, by far the most commonly studied and the most
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biochemically influential polymorphism is the C609T polymor
phism (dbSNP: rs1800566) at exon 6 of the gene, which results in a
proline-to-serine amino-acid change at codon 187 of the protein.
The NQO1 C609T polymorphism was shown to have an
established and strong impact on enzymatic activity of the
expressed protein by extremely decreasing stability, as the variant
enzyme is rapidly ubiquitinated and degraded by the proteasome
(Siegel et al, 2001). Thus, it was found that homozygosity for
the variant T allele results in virtually complete elimination of
enzymatic activity (2–4% activity of the wild type), whereas
heterozygosity yields decreased enzymatic activity by threefold
compared with homozygosity for the wild-type allele
(Kuehl et al, 1995; Siegel et al, 2001).

A large number of studies reported the investigation of the role
of NQO1 C609T polymorphism in the susceptibility for developing
several types of cancer. However, the results were inconsistent
rather than conclusive, possibly due to the small sample size in the
majority of studies. Although a few number of meta-analyses were
performed in an attempt to overcome the problem of low statistical
power in individual studies, these meta-analyses considered
individual cancer sites separately (Yuan et al, 2011; Liu and
Zhang, 2011; Guo et al, 2012; Zhou et al, 2012). Recognised as a
global and versatile antioxidant and cytoprotector ubiquitously
expressed in all tissues, the gene for NQO1 is proposed to have
common roles among all histopathologically different types of
cancer arising in different sites or tissues. Therefore, it is
biologically plausible to study the effects of polymorphisms in
the NQO1 gene with respect to overall cancer risk. The aim of the
present study was to conduct a global meta-analysis to investigate
the role of NQO1 C609T polymorphism with respect to the overall
cancer risk, and perform new or updated site-specific meta-
analyses involving all common sites of cancer previously
investigated in relation to the NQO1 C609T polymorphism.

MATERIALS AND METHODS

Search strategy. The PubMed database was searched to identify
case–control association studies involving cancer and NQO1
C609T polymorphism. To ensure comprehensive searching, we
used only general keywords: ‘NQO1’ or ‘NADPH:quinone
oxidoreductase 1’ and ‘Cancer’ and ‘polymorphism’ without
applying search filters. Articles were retrieved on 17 January
2013. Article searching was repeated independently by searching
the Scopus database to compare with the PubMed search results
and identify articles not indexed in PubMed. All articles were
initially reviewed by abstract and title examination to select for
relevant articles, which were subjected to further screening.

Study selection and inclusion/exclusion criteria. Relevant
articles were subjected to the following predetermined inclusion
criteria: (1) studies investigating the NQO1 C609T polymorphism
with respect to disease susceptibility. (2) Studies with case–control

design. (3) Studies including full genotyping data (CC, CT, and TT
counts in the case and control groups). (4) Genotype distribution
of NQO1 C609T in the control group is in Hardy–Weinberg
equilibrium (HWE). (5) Studies involving adult cancer (childhood
leukaemia studies were excluded). (6) Studies involving primary
cancer (therapy-related cancer studies were excluded). (7) Studies
published in English.

Data extraction. The following information about the eligible
studies was extracted: first author name, year of publication,
country of study, ethnicity of studied subjects, tumour site, full
genotyping data for the case and control groups, and source
of control groups (hospital- or population-based controls). When
an article included several ethnic groups or cancer sites, each
comparison was treated as a separate study. In a few studies where
the racial descent of study subjects was not plainly stated, ethnicity
was inferred on the basis of the largest ethnic group inhabiting the
country of study.

Statistical analysis. We strictly followed published guidelines and
recommendations for quality assessment in meta-analyses of
genetic association studies (Stroup et al, 2000; Minelli et al,
2009). (1) We tested five different genetic models and avoided
assuming only one ‘wrong’ genetic model. (2) Between-study
heterogeneity and publication bias were thoroughly assessed.
(3) Concordance with HWE was comprehensively tested for all
studies. (4) Sensitivity analysis was performed to check for the
impact of individual studies or subgroups of studies. (5) Meta-
regression analysis was performed to identify any potential source
of heterogeneity. (6) The random effects model was utilised to
calculate odds ratios and 95% confidence intervals (CIs) whenever
moderate-to-high heterogeneity was found.

We tested all relevant studies for concordance of the genotypic
distribution of the NQO1 C609T polymorphism in the control
group with the HWE principle using the w2-test, and considered
P-valueso0.05 as statistically significant. Association between
the NQO1 C609T polymorphism and cancer risk was investigated
under different genetic models; namely, the dominant
(CC vs CTþTT), recessive (CCþCT vs TT), homozygous
codominant (TT vs CC), heterozygous codominant (CC vs CT)
and allele contrast model (C vs T). The strength of association was
assessed by calculating the odds ratios and 95% confidence
intervals and the Z-test was used to evaluate statistical significance
with P-valueso0.01 considered as statistically significant. Stratified
analysis by cancer site, ethnicity, and minor allele frequency (MAF)
in controls was conducted. Cancer sites with less than three studies
were all grouped under a category termed ‘other’ in the overall
population analysis. Studies involving mixed populations belon-
ging to different ethnic groups were assigned the ‘Mixed’ ethnicity
category.

Between-study heterogeneity was assessed using the Cochran’s
Q-test (Cochran, 1954) by calculating the Pheterogeneity value, and
was quantitated by calculating the I2 statistic. A random effects
model using the DerSimonian and Laird method was used to
calculate the OR and 95% CI for comparisons with moderate-
to-high heterogeneity (I2425%). Otherwise, a fixed-effects model
using the Mantel–Haenszel method was utilised (Petitti et al,
1994). Moreover, meta-regression analysis (Thompson and Sharp,
1999) was used to identify three possible sources of heterogeneity
including ethnicity, tumour site, and MAF.

Sensitivity analysis was performed by sequential omission
of individual studies (leave-one-out analysis) and tumour sites
for various genetic models in the Asian, Caucasian, and overall
population.

Publication bias was evaluated graphically using the Begg’s
funnel plot and statistically using the method of Egger’s linear
regression test (Egger et al, 1997).
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Figure 1. The multiple and general roles of NQO1 in the protection
against the development of cancer.
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Comprehensive Meta-Analysis (Version 2, Biostat, Englewood
NJ, USA) and OpenMetaAnalyst (http://www.cebm.brown.edu/
open_meta) were used for statistical analyses.

RESULTS

Characteristics of retrieved studies. Systematic screening was
performed to identify relevant and eligible studies (Figure 2).
PubMed search returned 251 articles (retrieved on 17 January
2013). Initial examination involving abstracts and titles lead to the
exclusion of 130 non-relevant articles. Of the remaining 121
relevant articles, 15 articles were found to lack complete
genotyping data, 8 articles were published in other languages than
English, 12 articles involved childhood leukaemia, and 5 articles
involved secondary cancer. As a result, 81 articles including 97
studies (comparisons) were found to be eligible (Table 1). Upon
testing for concordance with the HWE principle, five studies were
found to deviate from HWE and were excluded. Finally, a total of
76 articles involving 92 studies and 21 178 cases and 25 157
controls were included. Scopus searching did not return any
additional eligible studies not indexed in PubMed. About 80% of
studies involved either Caucasian or Asian populations. There were
50 studies on Caucasian populations, 24 on Asians, 6 studies on
Indians, 4 studies on Arabs, 2 studies on African Americans,
2 studies on Turks, and single studies on Persian, Hawaiian,
Hispanic, and mixed populations.

Quantitative synthesis. We observed significant variation of the T
allele frequency across different ethnicities in healthy controls
(Figure 3). Statistically significant association was found for the
total population when all studied cancer sites were combined, and
under all studied genetic models (Table 2), with the strongest
association found under the TT vs CC model (OR¼ 1.18
(1.07–1.31), P¼ 0.002). On stratification by ethnicity, we found
statistically significant associations for the Caucasian subgroup

under all genetic models with the strongest association found
under the TT vs CC model (OR¼ 1.28 (1.12–1.46), P¼ 0.0002).
Stratification by cancer site revealed statistically significant
associations for bladder cancer (for the TT vs CC model,
OR¼ 1.48 (1.14–1.93), P¼ 0.003), and gastric cancer (for the
dominant model, OR¼ 1.34 (1.09–1.65), P¼ 0.006) (Table 2).

We investigated the interaction between the two major ethnic
groups (Caucasian and Asian) and cancer site with respect to the
effects of NQO1 C609T on cancer susceptibility (Table 3).
Significant association was found for bladder cancer in Asians
(for the TT vs CC model, OR¼ 1.70 (1.17–2.46), P¼ 0.005).

Test of heterogeneity and meta-regression analysis. Hetero-
geneity tests for the total group involving combined cancer sites
showed statistically significant (Pheterogeneityo0.05) but quan-
titatively moderate heterogeneity with I2 valueso50% (Table 2).
However, when stratified by ethnicity, heterogeneity was found
statistically insignificant and quantitatively low for the Caucasian
subgoup (I2 valueso25%), except for the heterozygous codomi-
nant model (I2¼ 26%) (Table 2). Furthermore, the homozygous
codominant (TT vs CC) and the recessive (TT vs CTþCC) models
showed extremely low heterogeneity in Caucasians (I2¼ 1%)
indicating generally consistent findings among studies in these
populations. By contrast, tests for the Asian subgroup showed
statistically significant and quantitatively moderate-to-high
heterogeneity, which pointed to the Asian ethnicity as an
important source of heterogeneity. This was confirmed by
meta-analysis regression (Table 4), which identified the Asian
subgroup as a major source of heterogeneity relative to the
Caucasian subgroup (P¼ 0.03). This was also supported by general
examination of the forest plot (Figure 4) where it was evident that
the majority of Caucasian studies yielded consistently odds ratios
41 for the TT vs CC model (indicating increased risk for the TT
homozygous genotype), whereas Asian studies yielded more
scattered odds ratios. Additionally, when the MAF in controls
were grouped into ‘high’ (435%) or ‘low’ (o35%) categories, the
‘high’ MAF subgroup, which correlates with the Asian subgroup
(Figure 3), was found to be a significant source of heterogeneity
relative to the ‘low’ MAF subgroup (Po0.001). MAF was also
examined as a continuous variable and was confirmed to be a
major source of heterogeneity as indicated by the regression plot
(Figure 5) and P-value of o0.001 (Table 4).

Sensitivity analysis. Single studies or single tumour sites were
sequentially excluded from the meta-analysis to investigate the
relative weights of individual studies or data sets. The odds ratios
and P-values were not statistically altered indicating that the
meta-analysis was generally robust.

Publication bias. Publication bias was assessed for the two most
commonly investigated genetic models (homozygous codominant
and allele contrast models). The shapes of funnel plots did
not indicate any evidence of significant asymmetry (Figure 6). In
addition, the Egger’s test did not yield any evidence of publication
bias (t¼ 0.97, P¼ 0.33, for TT vs CC, and t¼ 0.28, P¼ 0.78 for
T vs C).

DISCUSSION

Our meta-analysis included 92 studies and involved 21 178 cases
and 25 157 controls. Although all common cancer sites except for
bladder and stomach cancers showed no statistically significant
association, the combined analysis showed that the variant T allele
of NQO1 C609T polymorphism is strongly associated with overall
cancer risk in the total population. Stratification by ethnicity
revealed that association is significant for the Caucasian
populations, which comprised the largest part of available studies
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Figure 2. Flow chart demonstrating study selection steps.
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Table 1. Database of relevant studies in the meta-analysis

First authora/Year Cancer siteb Country Ethnicityc
Study
design

Cases/
controls

Case
(CC/CT/TT), T%

Control
(CC/CT/TT), T%

HW P-value
(control)

Singh et al (2011) Breast India Indian PB 200/200 (45/131/24), 0.45 (34/149/17), 0.46 0

Aston et al (2005) Breast USA Caucasian PB 564/1212 (369/177/18), 0.19 (824/347/41), 0.18 0.55

Hamajima et al (2002) Breast Japan Asian HB 237/640 (100/103/34), 0.36 (240/286/114), 0.40 0.17

Siegelmann-Danieli et al (2002) Breast USA Caucasian PB 346/235 (222/115/9), 0.19 (168/61/6), 0.16 0.87

Lajin et al (2013) Breast Syria Arab PB 122/139 (71/41/10), 0.25 (87/43/9), 0.22 0.25

Sarmanova et al (2004) Breast Czech Caucasian PB 238/310 (166/55/17), 0.19 (221/83/6), 0.15 0.58

Hong et al (2007) Breast USA Caucasian PB 496/495 (325/157/14), 0.19 (323/151/21), 0.19 0.53

Menzel et al (2004) Breast Austria Caucasian PB 218/424 (133/76/9), 0.22 (290/126/8), 0.17 0.18

Li et al (2005) Head and neck USA Caucasian HB 724/1226 (484/209/31), 0.19 (805/388/33), 0.19 0.09

Harth et al (2008) Head and neck Germany Caucasian HB 295/296 (199/84/12), 0.18 (197/87/12), 0.19 0.54

Soucek et al (2010) Head and neck Czech/Poland Caucasian HB 116/121 (92/21/3), 0.12 (83/35/3), 0.17 0.76

Begleiter et al (2005) Head and neck USA/Canada Caucasian HB 350/366 (245/94/11), 0.17 (249/106/11), 0.17 0.94

Benhamou et al (2001) Head and neck Finland Caucasian HB 250/172 (143/94/13), 0.24 (105/62/5), 0.21 0.24

Siraj et al (2008) Head and neck Saudi Arabia Arab PB 49/504 (30/18/1), 0.20 (295/177/32), 0.24 0.43

Park et al (2003) Bladder USA Caucasian HB 232/239 (142/82/8), 0.21 (163/66/10), 0.18 0.32

Schulz et al (1997) Bladder Germany Caucasian PB 99/260 (68/26/5), 0.18 (195/61/4), 0.13 0.76

Sanyal et al (2004) Bladder Sweden Caucasian PB 299/124 (206/85/8), 0.17 (83/34/7), 0.19 0.18

Terry et al (2005) Bladder USA Caucasian HB 235/214 (156/70/9), 0.19 (150/58/6), 0.16 0.89

Hung et al (2004) Bladder Italy Caucasian HB 201/214 (113/75/13), 0.25 (135/66/13), 0.21 0.21

Moore et al (2004) Bladder Argentina Hispanic PB 106/108 (62/35/9), 0.25 (61/40/7), 0.25 0.9

Pandith et al (2011) Bladder India Indian HB 104/120 (44/53/7), 0.32 (70/44/6), 0.23 0.79

Wang et al (2008) Bladder Taiwan Asian HB 300/300 (70/148/82), 0.52 (94/136/70), 0.46 0.13

Choi et al (2003) Bladder Korea Asian HB 177/170 (81/68/28), 0.35 (94/60/16), 0.27 0.17

Broberg et al (2005) Bladder Sweden Caucasian PB 61/156 (43/13/5), 0.19 (107/46/3), 0.17 0.44

Nishino et al (2008) Cervical Japan Asian HB 124/117 (76/26/22), 0.28 (69/29/19), 0.29 0

Niwa et al (2005) Cervical Japan Asian HB 131/320 (50/54/27), 0.41 (134/139/47), 0.36 0.27

Zhang et al (2003b) Gastric China Asian PB 124/165 (40/55/29), 0.46 (52/86/27), 0.42 0.39

Hamajima et al (2002) Gastric Japan Asian HB 143/640 (48/71/24), 0.42 (240/286/114), 0.40 0.08

Malik et al (2011) Gastric India Indian HB 107/195 (51/38/18), 0.35 (112/68/15), 0.25 0.31

Sarbia et al (2003) Gastric Germany Caucasian PB 320/252 (200/110/10), 0.20 (185/63/4), 0.14 0.6

Liu et al (2013) Hepatocellular China Asian HB 476/526 (138/220/118), 0.48 (191/235/100), 0.41 0.07

Akkiz et al (2010) Hepatocellular Turkey Turk HB 167/167 (86/71/10), 0.27 (96/62/9), 0.24 0.81

Goode et al (2011) Ovarian USA Caucasian HB 928/1035 (579/319/30), 0.20 (695/308/32), 0.18 0.76

Olson et al (2004) Ovarian USA Caucasian PB 123/182 (82/33/8), 0.20 (120/55/7), 0.19 0.82

Harth et al (2000) Colorectal Germany Caucasian PB 323/205 (209/102/12), 0.20 (135/62/8), 0.19 0.79

Sameer et al (2010) Colorectal India Indian HB 86/160 (53/29/4), 0.22 (116/39/5), 0.15 0.45

Nisa et al (2010) Colorectal Japan Asian PB 684/777 (259/336/89), 0.38 (282/392/103), 0.38 0.07

Hamajima et al (2002) Colorectal Japan Asian HB 146/640 (61/68/17), 0.35 (240/286/114), 0.40 0.08

Sachse et al (2002) Colorectal UK Caucasian PB 490/593 (316/157/17), 0.19 (398/173/22), 0.18 0.56

Begleiter et al (2006) Colorectal Canada Caucasian PB 298/349 (201/79/18), 0.19 (239/102/8), 0.17 0.45

van der Logt et al (2006) Colorectal Netherlands Caucasian PB 369/415 (225/134/10), 0.21 (292/112/11), 0.16 0.95

Hlavata et al (2010) Colorectal Czech Caucasian PB 495/495 (346/134/15), 0.17 (344/138/13), 0.17 0.85

von Rahden et al (2005) Oesophageal Germany Caucasian HB 140/260 (91/42/7), 0.20 (185/65/10), 0.16 0.17

Sarbia et al (2003) Oesophageal Germany Caucasian PB 61/252 (30/29/2), 0.27 (185/63/4), 0.14 0.6

Marjani et al (2010) Oesophageal Iran Persian HB 93/50 (51/35/7), 0.26 (22/24/4), 0.32 0.47

di Martino et al (2007) Oesophageal UK Caucasian HB 141/93 (96/43/2), 0.17 (55/33/5), 0.23 0.99

Zhang et al (2003a) Oesophageal Germany Caucasian PB 257/252 (183/56/18), 0.18 (185/63/4), 0.14 0.6

Zhang et al (2003a,b) Oesophageal China Asian PB 193/141 (51/92/50), 0.50 (48/70/23), 0.41 0.77

Umar et al (2012) Oesophageal India Indian HB 200/200 (92/93/15), 0.31 (93/86/21), 0.32 0.87

Malik et al (2012) Oesophageal India Indian HB 135/195 (68/43/24), 0.34 (112/68/15), 0.25 0.31

Hamajima et al (2002) Oesophageal Japan Asian HB 102/640 (37/52/13), 0.38 (240/286/114), 0.40 0.08

Sorensen et al (2005) Lung Denmark Caucasian PB 254/267 (162/83/9), 0.20 (176/80/11), 0.19 0.62

Yang et al (2007) Lung Korea Asian HB 314/347 (110/158/46), 0.4 (120/166/61), 0.41 0.78

Cote et al (2009) Lung USA Caucasian PB 387/405 (271/97/19), 0.17 (271/119/15), 0.18 0.67

Lin et al (2000) Lung China Asian HB 95/136 (12/63/20), 0.54 (41/73/22), 0.43 0.27

Lewis et al (2001) Lung UK Caucasian HB 82/145 (56/24/2), 0.17 (111/32/2), 0.12 0.86

Xu et al (2001) Lung USA Caucasian HB 780/1096 (513/246/21), 0.18 (715/341/40), 0.19 0.93
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on the subject, but not for the Asian ethnicity, which was another
largely represented ethnicity in the available studies. Furthermore,
although heterogeneity for the total group was only moderate, as
shown by I2 values in Table 2, we identified the Asian ethnicity
studies as the major source of heterogeneity observed. The high
MAF (435%), which strongly correlates with the Asian
ethnicity, as can be seen in Figure 3, was also a major source of
heterogeneity.

The C609T is one of very few known and common single-
nucleotide polymorphisms that completely eliminate enzymatic
activity, and its biological impact in vivo is undoubted. The NQO1

enzyme has been increasingly attracting attention in cancer and
more roles unrelated to its classical metabolic functions (Figure 7)
are being constantly discovered (Figure 1). First, the NQO1
enzyme has the classical role of catalysing the obligatory two-
electron reduction of a broad range of exogenous and endogenous
quinones to their respective hydroquinones, preventing the one-
electron reduction of these compounds into semiquinones and a
variety of reactive oxygen species (Iyanagi and Yamazaki, 1970;
Bianchet et al, 2004). Second, NQO1 was shown to have an
additional antioxidant effect by directly and independently
scavenging superoxides (Siegel et al, 2004), a function that is

Table 1. ( Continued )

First authora/Year Cancer siteb Country Ethnicityc
Study
design

Cases/
controls

Case
(CC/CT/TT), T%

Control
(CC/CT/TT), T%

HW P-value
(control)

Xu et al (2001) Lung USA Mixed HB 34/78 (18/14/2), 0.26 (20/41/17), 0.48 0.64

Yin et al (2001) Lung China Asian HB 84/84 (28/39/17), 0.43 (26/41/17), 0.45 0.91

Lin et al (2003) Lung Taiwan Asian HB 198/332 (57/141/0), 0.36 (95/237/0), 0.36 0

Hamajima et al (2002) Lung Japan Asian HB 192/640 (87/71/34), 0.36 (240/286/114), 0.40 0.26

Benhamou et al (2001) Lung Finland Caucasian HB 150/172 (85/55/10), 0.25 (105/62/5), 0.21 0.24

Alexandrie et al (2004) Lung Sweden Caucasian PB 524/530 (345/168/11), 0.18 (368/153/9), 0.16 0.12

Cote et al (2009) Lung USA African-
American

PB 113/121 (77/32/4), 0.18 (79/36/6), 0.20 0.48

Guo et al 2012 Lung China Asian HB 681/597 (187/326/168), 0.49 (172/281/144), 0.48 0.17

Saldivar et al (2005) Lung USA Caucasian PB 683/683 (454/205/24), 0.19 (480/186/17), 0.16 0.84

Saldivar et al (2005) Lung USA African-
American

PB 36/36 (15/17/4), 0.35 (15/14/7), 0.39 0.28

Saldivar et al (2005) Lung USA Caucasian PB 107/107 (67/33/7), 0.22 (69/35/3), 0.19 0.56

Chen et al 1999 Lung USA Asian PB 109/167 (54/48/7), 0.28 (64/78/25), 0.38 0.88

Chen et al 1999 Lung USA Caucasian PB 135/171 (81/49/5), 0.22 (105/62/4), 0.20 0.14

Chen et al 1999 Lung USA Hawaiian PB 83/102 (61/18/4), 0.16 (60/39/3), 0.22 0.26

Lan et al (2004) Lung China Asian PB 119/109 (37/57/25), 0.45 (32/54/23), 0.46 0.98

Chan et al (2005) Lung China Asian HB 75/162 (25/37/13), 0.42 (45/83/34), 0.47 0.71

Sunaga et al 2002 Lung Japan Asian HB 198/152 (83/93/22), 0.35 (52/77/23), 0.40 0.53

Gra et al (2008) Leukemia Russia Caucasian PB 83/177 (52/28/3), 0.20 (119/52/6), 0.18 0.91

Hishida et al (2005) Leukaemia Japan Asian HB 51/476 (13/31/7), 0.44 (200/201/75), 0.37 0.04

Begleiter et al (2009) Leukaemia Canada Caucasian HB 323/299 (219/93/11), 0.18 (196/96/7), 0.18 0.23

Ouerhani et al (2013) Leukaemia Tunisia Arab PB 100/106 (46/45/9), 0.32 (66/32/8), 0.23 0.15

Voso et al (2007) Leukaemia Italy Caucasian PB 157/155 (101/48/8), 0.20 (108/40/7), 0.17 0.2

Seedhouse et al (2002) Leukaemia UK Caucasian PB 134/175 (95/30/9), 0.18 (110/53/12), 0.22 0.12

Kang et al (2008) Multiple myeloma Korea Asian PB 114/163 (37/70/7), 0.37 (50/80/33), 0.45 0.92

Lincz et al (2007) Multiple myeloma Australia Caucasian PB 100/201 (60/36/4), 0.22 (142/56/3), 0.15 0.34

Maggini et al (2008) Multiple myeloma Italy Caucasian PB 245/124 (149/82/14), 0.22 (77/40/7), 0.22 0.55

Schulz et al (1997) Renal cell carcinoma Germany Caucasian PB 131/260 (84/44/3), 0.19 (195/61/4), 0.13 0.76

Longuemaux et al (1999) Renal cell carcinoma France Caucasian HB 173/210 (102/60/11), 0.24 (136/66/8), 0.20 1

Hamajima et al (2002) Lymphoma Japan Asian HB 108/640 (40/51/17), 0.39 (240/286/114), 0.40 0.08

Gra et al (2008) Lymphoma Russia Caucasian PB 76/177 (54/20/2), 0.16 (119/52/6), 0.18 0.91

Kim et al (2009) Lymphoma Korea Asian HB 713/1689 (234/362/117), 0.42 (585/850/254), 0.40 0.054

Al-Dayel et al (2008) Lymphoma Saudi Arabia Arab PB 150/504 (94/37/19), 0.25 (295/177/32), 0.24 0.43

Bartsch et al (1998) Pancreatic USA/Europe Caucasian HB 81/76 (53/21/7), 0.22 (46/24/6), 0.24 0.27

Mohelnikova-Duchonova et al (2011) Pancreatic Czech Caucasian HB 235/265 (164/64/7), 0.17 (187/71/7), 0.16 0.93

Hamajima et al (2002) Prostate Japan Asian HB 56/640 (17/30/9), 0.43 (240/286/114), 0.40 0.08

Mandal et al (2012) Prostate India Indian HB 195/250 (105/67/23), 0.29 (164/72/14), 0.20 0.11

Steinbrecher et al (2010) Prostate Germany Caucasian PB 248/492 (163/80/5), 0.18 (333/133/26), 0.19 0.01

Ergen et al (2007) Prostate Turkey Turk HB 45/59 (23/17/5), 0.30 (23/26/10), 0.39 0.57

Stoehr et al (2012) Prostate Germany Caucasian HB 119/232 (76/37/6), 0.21 (166/60/6), 0.16 0.84

Steiner et al (1999) Prostate Germany Caucasian PB 54/100 (37/15/2), 0.18 (67/31/2), 0.18 0.46

Abbreviations: HB¼hospital-based, PB¼population-based.
aReference are provided in the list of references. Five studies not in HW (Po0.05) were excluded from the meta-analysis.
bThe head and neck cancer category includes oral, laryngeal, pharyngeal and thyroid cancers.
cThe ethnicity ‘Asian’ was used to refer to populations inhabiting eastern Asia.
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shared with superoxide dismutase. Third, the NQO1 was found to
maintain the integrity of microtubule cytoskeleton (Wignall et al,
2004), although the exact mechanism by which NQO1 functions in

this respect is yet to be established. Fourth, the NQO1 enzyme was
recently found to act as a stabiliser for several tumour suppressor
proteins (p53, p73, and p33), and this stabilisation was shown to be
especially prominent under conditions of oxidative stress
(Asher et al, 2002a,b). As the C609T polymorphism principally
affects the susceptibility of the enzyme to degradation in vivo, it
affects all aspects of NQO1 function indistinguishably. The overall
results of our meta-analysis showed that the variant T allele,
which eliminates enzymatic activity, is a susceptibility allele
that is compatible with the multiple NQO1 functions described
above.

The largest role of NQO1 in cancer susceptibility is attributable
to the interaction of the enzyme with environmental exposure. The
high MAF of the C609T polymorphism of this ‘environmental’
enzyme in the Asian population (435%) compared with the
Caucasian population (o20%) suggests that the environmental
exposure is widely different among the two populations. In other
words, it can be inferred from the difference in MAF, on the basis
of natural selection principles, that the rare allele carriers in the
Asian populations are not as in disfavour as their counterparts in
Caucasian populations. The variation in allele frequency of this
polymorphism therefore highlights major environmental differ-
ences among the two populations and may in turn partly explain
why a significant association was found in Caucasians but not in
Asians. Another possible explanation is the widely different genetic
structure between the two populations, as the overall effects of
NQO1 C609T polymorphism on cancer susceptibility might be
overshadowed or compensated by variants in other metabolic
genes (Hengstler et al, 1998; Persson et al, 1999; Zheng et al, 2011).
We avoided stratification for other ethnicities due to the very
limited number of available studies.

Although most individual studies on Caucasian populations
statistically failed to establish an association, it can be seen from
the forest plot (Figure 4) that the results of the overwhelming
majority of individual studies in Caucasians consistently indicated
that the rare allele was a susceptibility factor, as shown by odds
ratios 41 for the majority of studies. The lack of statistical
association despite the consistency in results among these studies
might be due to the low MAF in these populations, as it is difficult
from a statistical point of view to establish mild-to-moderate
associations with low-frequency alleles because this requires
extremely elevated sample sizes. Our meta-analysis may have
overcome this problem of low statistical power by combining
studies involving all common cancer sites. Combining all common
cancer sites seems biologically plausible given the fact that the
metabolic (Figure 7) and non-metabolic effects of this enzyme
apply in all common cancer sites.

While evidence about the multiple protective roles of the NQO1
enzyme in cancer has been continuously emerging, it should be
noted that NQO1 may have adverse effects in some cases. For
example, it was found that the NQO1 may bioactivate procarcino-
genic coumpounds such as certain nitroaromatic compounds and
heterocyclic amines, present in tobacco smoke and certain
processed foods (Benson, 1993; Chen et al, 1995; Ross et al,
2000). Determination of the nature of environmental exposure
becomes more important in this context, as the variant T allele that
eliminates enzymatic activity would be expected to exert protective
effects under such conditions. Indeed, few studies reported
protective effects for the TT homozygous genotype in Asian
populations for lung cancer (Chen et al, 1999; Sunaga et al, 2002),
and the nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-buta-
none (NNK), which was found to induce lung adenocarcinoma in
rodents (Ohgaki et al, 1985; Hoffmann et al, 1996; Hecht, 1999),
and is bioactivated by NQO1, was shown to exist in variable
amounts in cigarettes of different brands/geographical origins
(Gray et al, 2000). This may contribute to the heterogeneity of the
effects of NQO1 C609T polymorphism in lung cancer.

Table 4. Meta-regression analysis identifying potential sources of
heterogeneity under the homozygous codominant model (TT vs CC)

n Coefficient
Lower
bound

Upper
bound P

Site

Head and neck 6 Ref — — —
Breast 7 � 0.08 � 0.64 0.48 0.78
Bladder 10 0.19 � 0.36 0.74 0.50
Gastric 4 0.25 � 0.38 0.88 0.43
Colorectal 8 � 0.14 � 0.69 0.40 0.60
Oesophageal 9 0.12 � 0.44 0.69 0.68
Lung 22 � 0.23 � 0.72 0.25 0.35
Leukaemia 5 0.005 � 0.68 0.69 0.99
Multiple myeloma 3 � 0.49 � 1.31 0.32 0.24
Lymphoma 4 � 0.02 � 0.62 0.58 0.95
Prostate 5 0.22 � 0.46 0.90 0.52
Other 9 0.16 � 0.38 0.70 0.57

Ethnicity

Caucasian 50 Ref — — —
Asian 24 � 0.25 � 0.47 � 0.03 0.03
Other 18 0.015 � 0.30 0.32 0.93

MAF (con)

� 1.563 � 2.436 � 0.689 o0.001

Low (o35%) 66 Ref — — —

High (435%) 26 � 0.35 � 0.55 � 0.15 o0.001

Abbreviations: MAF, minor allele frequency.
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Figure 3. The mean and range of the MAF of NQO1 C609T in controls
in different ethnic groups.
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The duality of NQO1 function in detoxifying and bioactivating
carcinogens, the manifestation of which is obviously governed by
specific environmental patterns, can explain the high heterogeneity

observed in Asian populations in the present meta-analysis. The
high environmental heterogeneity for the Asian subgroup may in
turn explain the observed overall lack of association observed in
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Figure 4. Forest plot of studies included in our meta-analysis under the homozygous codominant model (CC vs TT). The plot shows the odds
ratios, 95% confidence intervals, I2 values and PHeterogeneity values. Calculations are based on the random model.
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our meta-analysis for this ethnicity. Our meta-analysis did not
include studying the interaction between specific environmental
factors and NQO1 C609T polymorphism due to the lack of data in
the published reports. More information about environmental
exposure patterns in the Asian populations is important to resolve
the source of heterogeneity observed in the present meta-analysis
and assess the true effects of this polymorphism in these
populations.

Although our results support firm conclusions about the
association between the NQO1 C609T polymorphism and total
cancer risk and especially in the Caucasian subgroup, where very
low heterogeneity and high consistency among studies were found,
three major points are worth consideration in the present
meta-analysis. First, the calculated odds ratios in the present
meta-analysis were necessarily crude unadjusted odds ratios, as
information about potential confounders, especially environmental
exposure patterns, were rarely found in the individual studies.
Second, our lack of association results with respect to certain
individual cancer sites should be approached with caution because
of the small sample sizes available in the published studies. Finally,
the statistical problems of multiple testing in such comprehensive
meta-analyses involving a very large number of statistical tests
should be considered. Examination of Tables 2 and 3 shows that
the total number of statistical tests performed was 165. However,
we attempted to approach this issue rationally by only correcting
for the number of genetic models tested through dividing the
conventional cut-off P-value of 0.05 by the number of genetic
models tested (five models). Hence, a cut-off P-value of 0.01 was
considered. We did not correct for the number of cancer sites
investigated, as we believe each cancer site should be tested
independently, similarly to conducting individual meta-analyses
involving single cancer sites. Although there has been some debate
about the topic of correcting for multiple testing, we agree about
the notion that exaggeration in correcting for multiple testing is as
likely to harm scientific evidence as the lack of it, as it may negate
true positive associations (Perneger, 1998; Krawczak et al, 2001).

CONCLUSION

The present comprehensive meta-analysis suggests the NQO1
C609T polymorphism as an important genetic factor in the overall
risk for developing cancer, especially in Caucasian populations.
More case–control association studies are needed to support this
finding in individual cancer sites and in various ethnic groups.
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