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ABSTRACT Antimicrobial resistance is a global threat. As “proof-of-concept,” we
employed a system-based approach to identify patient, bacterial, and drug variables
contributing to mortality in patients with carbapenem-resistant Klebsiella pneumoniae
(CRKp) bloodstream infections exposed to colistin (COL) and ceftazidime-avibactam
(CAZ/AVI) as mono- or combination therapies. Patients (n = 49) and CRKp isolates
(n = 22) were part of the Consortium on Resistance Against Carbapenems in
Klebsiella and other Enterobacteriaceae (CRACKLE-1), a multicenter, observational,
prospective study of patients with carbapenem-resistant Enterobacterales (CRE) con-
ducted between 2011 and 2016. Pharmacodynamic activity of mono- and combina-
tion drug concentrations was evaluated over 24 h using in vitro static time-kill
assays. Bacterial growth and killing dynamics were estimated with a mechanism-
based model. Random Forest was used to rank variables important for predicting
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30-day mortality. Isolates exposed to COL1CAZ/AVI had enhanced early bacterial kill-
ing compared to CAZ/AVI alone and fewer incidences of regrowth compared to COL
and CAZ/AVI. The mean coefficient of determination (R2) for the observed versus pre-
dicted bacterial counts was 0.86 (range: 0.75 2 0.95). Bacterial subpopulation sus-
ceptibilities and drug mechanistic synergy were essential to describe bacterial killing
and growth dynamics. The combination of clinical (hypotension), bacterial (IncR plas-
mid, aadA2, and sul3) and drug (KC50) variables were most predictive of 30-day mor-
tality. This proof-of-concept study combined clinical, bacterial, and drug variables in
a unified model to evaluate clinical outcomes.

KEYWORDS ceftazidime-avibactam, colistin, Enterobacterales, pharmacodynamics,
machine learning

Bacterial resistance to antibiotics is outpacing antibiotic development. Resistant microorgan-
isms already cause ;2.8 million infections annually in the United States (1). Carbapenem-

resistant Enterobacterales (CRE) belong to the ESKAPE group of nosocomial pathogens that are
notorious for evading antibiotics (2). Drug selection is further complicated by limited knowl-
edge of the optimal therapeutic dose and duration to inhibit bacterial growth at sites of
infection (3). Subtherapeutic regimens select for more resistant bacteria, requiring the use
of higher drug concentrations (4). Illness severity among other variables also impacts drug
pharmacokinetic (PK) profiles and efficacy (5). Conventional drug selection approaches
overlook the complex patient-bacteria-drug environment. Thus, system-based approaches
incorporating drug PK/pharmacodynamic (PD) metrics with bacterial and patient character-
istics may better model infections and help optimize drug regimens.

Historically, aminoglycosides, polymyxins (colistin [COL] and polymyxin B), tigecy-
cline, and fosfomycin were commonly administered to treat CRE infections; however,
bacterial resistance rates limit their use (2). Adverse effect profiles, such as nephrotoxic-
ity and neurotoxicity, can also hamper dose escalation strategies for achieving thera-
peutic concentrations (6). Ceftazidime-avibactam (CAZ/AVI) is an extended-spectrum
cephalosporin and a novel non-b-lactam b-lactamase inhibitor (7). AVI inhibits Ambler
class A, C, and some D b-lactamases and can thereby restore the activity of CAZ (8).
Several clinical studies found that patients receiving regimens that included CAZ/AVI,
compared to other regimens (e.g., COL, carbapenem [CB], CB1 aminoglycoside, CB1COL)
for treatment of CRE infections, had improved or comparable clinical success (9–11).
Combination therapy (e.g., CAZ/AVI-COL, CAZ/AVI-aztreonam) has shown promise for
treating MDR infections (12–14), although evidence from randomized controlled trials
(RCT) remains limited. Testing newer combination regimens against clinical isolates is re-
stricted by cost, time, and ethical concerns. Also, stringent inclusion and exclusion criteria
for selecting participants can narrow the generalizability of clinical findings.

Machine learning (ML) algorithms ‘learn’ patterns from large heterogeneous data
sets and have assisted with antibiotic selection and predicting factors involved with
disease progression (e.g., heart disease and diabetes) (15). ML can also provide initial
covariate selection for pharmacometric models (16–18). The union of these approaches
improves data-driven decision making and enables the timely evaluation of a greater
number of covariates. With increasing accessibility to electronic health care and
genomic data, ML has the potential to uncover novel predictive signatures and cross-
disciplinary interactions between variables (19). As “proof-of-concept,” here we applied
a systems-based ML approach, which combines clinical, bacterial, and mechanism-
based modeling variables in a unified model to predict mortality in patients with car-
bapenem-resistant K. pneumoniae (CRKp) bloodstream infections (BSI) treated with
either COL or CAZ/AVI alone, or as combination therapy.

RESULTS
Patient variables. A schematic of our systems-based approach is shown in Fig. 1.

Baseline patient characteristics are summarized in Table 1. Out of the total 966
CRACKLE-1 patients, 174 had a CRKp BSI and 49 met the inclusion criteria for this study.
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Most patients in the primary cohort were treated with COL monotherapy (59%) and ei-
ther acutely or chronically ill with a median Pitt bacteremia score of 4 (interquartile
range (IQR): 2, 4) and Charlson comorbidity index of 3 (IQR: 2, 5). About half the
patients (n = 15/29, 52%) treated with COL monotherapy died within 30 days of index
culture compared to only 9% (n = 1/11) of patients treated with CAZ/AVI. None of the
patients receiving combination therapy died (n = 0/9). Of the patients receiving combi-
nation therapy, five (56%) received COL first, one (11%) received CAZ/AVI first, and
three (33%) received COL and CAZ/AVI on the same day. Exposure to multiple antibiot-
ics was common among patients (Table S2). Baseline characteristics of the secondary
patient subcohort are summarized in Table S3.

Bacterial variables. Most CRKp were sequence type (ST) 258 (73%) followed by
ST11 (4%) and ST307 (4%) (Table 2, Fig. S2). Predominant capsular types by wzi
sequencing were 154 (43%) and 29 (35%), and the most frequent carbapenemases
were KPC-2 (47%), KPC-3 (50%), and OXA-232 (6%). Baseline characteristics for isolates
from the secondary patient subcohort were similar in distribution to those from the
primary cohort (Table S4). Most isolates in the secondary subcohort were susceptible
to both COL (median MIC: 0.25 mg/L, range: 0.25 to 32 mg/L) and CAZ/AVI (median
MIC: 1 mg/L, range: 0.25 to 4 mg/L).

Mechanism-based modeling. To characterize the PD of each drug against CRKp
from the secondary patient subcohort, a range of therapeutic and supratherapeutic con-
centrations of COL and/or CAZ/AVI was tested in static time-kill (SCTK) assays (Fig. S3-S7).
SCTK data were incorporated into a mechanism-based model to characterize bacterial kill-
ing and growth dynamics of CRKp (n = 22) treated with COL and/or CAZ/AVI (Fig. 2). A
unified model for all isolates with the same model parameters was necessary for subse-
quent incorporation into the ML models. The model simultaneously described the effects
of COL and CAZ/AVI and overall yielded good curve fits for most concentrations (Fig. S3-
S7). Time versus predicted plots show uniformly distributed predictions at each sample
time (Fig. S9). The mean R2 for the observed versus predicted viable counts was 0.86 (min-
max: 0.75 2 0.95), meaning the model was predictive of, at worst, $75% of the observed
data for each isolate. The median CAZ concentration needed to achieve 50% of maximal
killing (KC50) was 0.935 (range: 0.4922 2.06) mg/L (Table S5).

Baseline population analysis profiles (Fig. S8) enabled demonstration of mutation
frequencies of less-susceptible and resistant subpopulations. Subpopulation synergy
alone (as described in the supplemental material) did not adequately describe the time

FIG 1 Schematic of the systems-based approach that combines variables derived from clinical data, bacterial
genetic analysis, and mechanism-based modeling into a machine learning model to predict variables impacting
30-day mortality in patients with CRKp BSI treated either individually or in combination with colistin and ceftazidime-
avibactam.
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course of bacterial load reduction and regrowth. Mechanistic synergy due to COL
enhancing target site concentrations of CAZ was essential to describe the viable count
profile time course. Model estimation of the synergy term, IMAX,OM (median [range]:
0.603 [20.264, 0.725]) demonstrates that COL1CAZ/AVI combination results in
increased sensitivity to CAZ/AVI as we see a reduction in KC50,CAZ with the addition of
COL, and thus the combination has a synergistic antibiotic effect (Table S5 and S6).
Most isolates (16/22, 73%) had a maximum fractional decrease of KC50,CAZ (i.e., IMAX,OM .0)
denoting a synergistic killing effect.

Machine learning model. Random Forest (RF) was used to combine clinical, bacte-
rial, and in vitro PD variables into a single model to rank the variables predicting 30-
day mortality. Overall, model accuracy for the validation data set for the primary RF
was 69.4%, and the top variables were carriage of sul3, mechanical ventilation, and hypo-
tension (Fig. 3A). Model accuracy for the validation data set for the secondary RF was 73.0%.

TABLE 1 Baseline clinical characteristics of primary cohort

Characteristic, n or median (% or IQR)

30-day mortality

All patients (n = 49)No (n = 33) Yes (n = 16)
Sex; female 16 (49) 9 (56) 25 (51)

Race
Caucasian 13 (39) 9 (56) 22 (45)
African American 16 (49) 7 (44) 23 (47)
Other 4 (12) 0 (0) 4 (8)

Ethnicity
Not Hispanic or Latino 31 (94) 15 (94) 46 (94)
Unknown 2 (6) 1 (6) 3 (6)

Age (yrs) 63 (50, 73) 68 (58, 76) 66 (51, 75)
Highest creatinine level (mg/dL)a 2.0 (1.0, 3.0) 2.0 (1.0, 3.3) 2.0 (1.0, 3.0)
Highest neutrophil count (1,000 cells/mL)a 10 (3.5, 17) 12 (11, 18) 12 (8.0, 17)
Lowest hemoglobin level (g/dL)a 9.0 (8.0, 10) 9.0 (8.0, 10) 9.0 (8.0, 10)
Highest peripheral white blood cell count (1,000 cells/mL)c 12 (6.0, 19) 18 (12, 28) 13 (9.0, 21)
Highest temp (°C)a 37.9 (37.0, 38.5) 37.5 (37.0, 38.3) 37.7 (37.0, 38.5)
Immunocompromised 8 (25) 3 (21) 11 (24)
Congestive heart failure 8 (24) 7 (47) 15 (31)
Peripheral vascular disease 3 (9) 3 (20) 6 (13)
Cerebrovascular disease 6 (18) 3 (20) 9 (19)
Diabetes mellitus 16 (49) 6 (40) 22 (46)
Malignancy within last 5 yrs 8 (24) 3 (20) 11 (23)
Chronic kidney disease 10 (30) 7 (47) 17 (36)
Cirrhosis 4 (12) 3 (20) 7 (15)
Renal failure 17 (52) 12 (75) 29 (59)
Pitt bacteremia score 2 (2, 4) 4 (4, 5) 4 (2, 4)
Charlson comorbidity index 3 (2, 5) 5 (3, 6) 3 (2, 5)
History of coronary artery disease/myocardial infarction 9 (27) 3 (20) 12 (25)
Hypotension 19 (58) 14 (88) 33 (67)
Surgery 8 (24) 5 (31) 13 (27)
Central venous line 21 (66) 15 (94) 36 (75)
Mechanical ventilation 13 (39) 13 (81) 26 (53)

Treatment
COL 14 (42) 15 (94) 29 (59)
CAZ/AVI 10 (30) 1 (6) 11 (22)
COL1CAZ/AVI 9 (27) 0 (0) 9 (18)

Time to CAZ/AVI treatment (days)b 3 (2, 4) 0 (0, 0) 3 (2, 4)
Time to COL treatment (days)b 3 (1, 3) 2 (0, 2) 2 (1, 3)
Time from admission to index culture (days) 0 (0, 4) 1 (0, 18) 0 (0,10)
aRecorded on date of index CRKp blood culture.
bTime to treatment indicates the number of days between index CRKp blood culture and receiving drug treatment.
cIQR, interquartile range; COL, colistin; CAZ/AVI, ceftazidime-avibactam.
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The top variables predicting mortality were IncR, KC50, and aadA2with a variable importance
of 5.3, 2.7, 2.4, respectively (Fig. 3B). CAZ/AVI MIC and COL MIC were ranked 7th and 14th,
respectively. The top bacterial variables were more common in patients who died within
30 days of the index culture (Table S7).

DISCUSSION

Early detection of treatment failure would provide opportunities to optimize drug
regimens and reduce health care costs. In general, incorporating population-based
and high-dimensional data with the knowledge gained from PK/PD models is challeng-
ing. Here, we used ML to incorporate patient, bacterial, and in vitro drug PD variables
into a unified model to identify variables predicting 30-day mortality in patients with a
CRKp BSI treated with COL and/or CAZ/AVI.

Overall, patients treated with COL, compared to CAZ/AVI or COL1CAZ/AVI, had higher
rates of 30-day mortality. COL1CAZ/AVI combination had similar early bacterial killing as
COL monotherapy while limiting regrowth. No patients receiving COL1CAZ/AVI died
within 30 days, though the sample size is small. Extent of early bacterial killing is over-
looked when using point-based measures to determine drug activity. However, initiation
of effective antimicrobial administration within the first hour of documented hypotension
was associated with increased survival in septic shock, whereas each hour of delay
decreased survival by an average of 7.6% (20). Thus, we utilized a mechanism-based model
to characterize bacterial killing and growth in response to a range of clinically achievable
drug exposures and to rank the predicted value of MBM variables relative to baseline MIC
values. Heteroresistance, where a predominantly susceptible population includes a subpo-
pulation of less susceptible bacteria, is common among CRE (21). Bacterial killing and

TABLE 2 Baseline bacterial characteristics of the primary cohort

Characteristic, n (%)e

30-day mortality

All patients
(n = 49)

No
(n = 33)

Yes
(n = 16)

Sequence Type
258 24 (73) 12 (75) 36 (73)
11 0 0 2 (13) 2 (4)
307 2 (6) 0 2 (4)
Othera 7 (21) 2 (13) 9 (18)

wzi capsule type
154 13 (39) 8 (50) 21 (43)
29 12 (36) 5 (31) 17 (35)
173 2 (6) 0 2 (4)
27 0 2 (13) 2 (4)
Other 6 (18) 1 (6) 7 (14)

Carbapenemaseb

blaKPC-2 15 (45) 8 (50) 23 (47)
blaKPC-3 16 (50) 8 (50) 24 (50)
blaOXA-232 2 (6) 1 (6) 3 (6)

ESBL
blaSHV-12 15 (45) 10 (63) 25 (51)
blaCTX-Mc 8 (24) 2 (13) 10 (20)

Antimicrobial nonsusceptibilityd

COL 2/31 (6) 1/15 (7) 3/46 (7)
CAZ/AVI 0/20 0/12 0/32

aIncludes ST16(1), ST231(1), ST2891(1), ST3631(1), ST37(1), ST418(1), ST45(1), ST76(1), ST985(1).
bIsolates could carry multiple genes encoding b-lactamases.
cIncludes blaCTX-M-14 (1) and blaCTX-M-15 (9).
dIncludes only those isolates tested for susceptibilities.
eESBL, extended-spectrum b-lactamase; COL, colistin; CAZ/AVI, ceftazidime-avibactam.
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growth dynamics were best modeled when including antibiotic synergy and bacterial sub-
populations of heterogeneous susceptibility.

Combination therapies may delay emergence of resistance, compared to mono-
therapies, due to in part a broader spectrum of activity and synergism (14). COL desta-
bilizes outer membrane permeability, which may enhance entry of other antimicrobials
into the intracellular space and induce mechanistic synergy (13). Synergistic activity of
COL-containing combinations, including COL1CAZ/AVI, against CRKp has been observed in
vitro (13). We observed a synergistic killing effect for CAZ/AVI1COL to most CRKp isolates.
In contrast, Shields et al. identified synergy at 24 h in only ;19% of CRKp isolates (n = 16)
treated with COL1CAZ/AVI based on a different definition for synergy (22). Bacterial genetic
diversity or differences in drug preparation and administration may explain the variability
in drug responses. Further investigation to understand the sources of variability in therapies
against MDR bacteria is warranted.

A strength of this study is the number of isolates included in the mechanism-based
model, which are often limited to a few isolates. A unified mechanism-based model repre-
senting all isolates was employed to compare isolates against each other in the ML approach.
Thus, the therapeutic response may be oversimplified (i.e., model misspecification) or too com-
plex (i.e., overfitting) for some parameters in some isolates. Adding another subpopulation

FIG 2 Schematic of the mechanism-based bacterial life cycle model depicting the shift in ceftazidime (CAZ)
(red) KC50 through colistin (COL) (blue) disruption of the outer bacterial membrane for the COL-susceptible/
CAZ-resistant subpopulation. Transit compartments, not depicted in this figure, were also included in the
model to represent the inhibition of cell wall synthesis during bacterial replication caused by CAZ inhibition of
penicillin-binding proteins.

FIG 3 Top 10 variables identified by Random Forest in the (A) primary cohort (n = 49) and (B)
secondary subcohort (n = 22) that are predictive of 30-day mortality from index CRKp blood culture.
Variables are ranked by the average relative importance with error shown as the 95% CI. Dot color
indicates the data source for each variable (clinical [red squares], bacterial genetic [blue circles], drug
[green triangles]). The primary model includes only clinical and bacterial genetic variables, while the
secondary model includes clinical, bacterial genetic, and drug variables.

Systems-Based Approach for Treatment of BSI CRKp Antimicrobial Agents and Chemotherapy

October 2022 Volume 66 Issue 10 10.1128/aac.00591-22 6

https://journals.asm.org/journal/aac
https://doi.org/10.1128/aac.00591-22


to describe intermediate resistance to COL (CRK022, CRK0091, and CRK0094) or CAZ (CRK0091)
resulted in improved model fits, but COL monotherapy was not always captured at all doses
effectively (CRK0098, CRK0078, and CRK0030). Two isolates had initial subpopulation sizes
described with values that may be considered negligible (CRK0022 and CRK0392: LogMF_RR

,210). Increased sampling in future studies may better resolve the model. However, the
mechanism-based model was able to describe most isolates reasonably well. We plan to
expand this work by simulating clinically relevant humanized PK exposures and the resulting
PD response for patients in a ML model.

The ML model identified the IncR plasmid as the highest ranked predictor. IncR is asso-
ciated with carriage of several antibiotic-resistance genes (23). Isolates with this plasmid
may be more resistant to treatment and/or the replicon serves as a surrogate marker for
other, untested gene(s) on the plasmid. KC50, the CAZ/AVI concentration necessary to
achieve half-maximal killing, was also identified as a top predictor of mortality. This param-
eter indicates how sensitive the bacterial isolate is to CAZ/AVI, and is a more granular
descriptor of the bacteria-drug relationship than MIC or the area under the bacterial
growth curve. Thus, KC50 is both a drug- and isolate-related parameter.

Limitations of this study include that SCTK assays are limited in recapitulating in
vivo drug PK. However, apart from a small proportion of supratherapeutic concentra-
tions that were included to assist with improved model performance and parameter
estimates, the range of concentrations used in the SCTK assay are clinically achievable
and mimic steady-state concentrations previously documented in patients (24–27).
Also, patients were often empirically treated with additional antimicrobials and data
on dosing regimens and the achieved drug exposure were not available. Thus, the clin-
ical outcomes may have been impacted in part by a range of drug exposures at the tar-
get site of infection. The small sample size, especially regarding patients treated with
combination therapy, also limited our statistical and ML analysis. A small sample size
for RF can contribute to biased performance estimates and poor pattern recognition
(28). Thus, a nested CV approach was employed for the primary RF to incorporate fea-
ture selection and hyperparameter optimization in efforts to limit overoptimistic pre-
dictions during training (28). Variables identified via ML are not definitive markers for
clinical management or treatment decisions but rather potential candidates for follow-
up in in silico and in vitro studies.

It may not be feasible to perform bacterial genomic sequencing and determine the
KC50 in a timely fashion during an infection. However, applying a broader application
of this approach in size and isolate diversity could help identify predictors of interest
for follow-up studies. For example, bacterial genes associated with treatment failure
may be good candidates for developing rapid genetic screening tools to guide dosing
regimens to ensure treatment efficacy. Likewise, mechanism-based models can assist
the development of human population PK models with the potential to optimize indi-
vidualized drug therapy (29–34). Thus, ML algorithms show promise as hypothesis-gen-
erating tools for personalized medicine and as systems-based platforms generalizable
to other treatments.

MATERIALS ANDMETHODS
Isolates, antibiotics, and media are described in the supplemental material.
Patient cohort. The Consortium on Resistance Against Carbapenems in Klebsiella and other

Enterobacteriaceae (CRACKLE-1) was a multicenter, observational, prospective study of patients with CRE
admitted to US hospitals from December 2011 to June 2016 (35). Descriptions of inclusion criteria and
clinical measurements are in the supplemental material. We analyzed a primary cohort of 49 patients
with a CRKp BSI treated #10 days from index blood cultures with either mono- or combination CAZ/AVI
and COL. Combination therapy was defined as administration of CAZ/AVI and COL either on the same
day or at any time sequentially within 48 h. A secondary subcohort of 22 patients was selected from the
primary cohort based on isolate availability for in vitro evaluation of PD activity of COL and CAZ/AVI at
the time of the study. The secondary subcohort size was constrained to 22 isolates as this was a reasona-
ble number of isolates (i.e., 506 treatment arms [i.e., exposures to different concentrations] in total across
the 22 isolates) for static time-kill studies (SCTK) and to describe with a common mechanism-based
model structure. The study was approved by institutional review boards at all sites.
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Static time-kill studies (SCTK). The PD of COL and CAZ/AVI as mono- and combination therapies was
evaluated against CRKp isolates from the secondary subcohort over 24 h, as previously described ([36] and sup-
plemental material). COL (0.5 to 16 mg/L) and CAZ/AVI concentrations (16/4 to 128/32 mg/L) were evaluated
as monotherapies. A 4 � 3 matrix of COL (0.5, 1, 2, and 4 mg/L) in combination with CAZ/AVI (16/4, 32/8, and
64/16 mg/L) was also evaluated. Concentration ranges included clinically achievable and supratherapeutic
unbound plasma concentrations to evaluate the potential benefit of intensive dosing (7, 24–27). Samples were
obtained at 0, 1, 2, 4, 6, 8, and 24 h for bacterial quantification with the limit of quantification at 20 CFU/mL.
Early bacterial killing was defined as the average decrease in log10 CFU/mL at 1 h. Bacterial regrowth was
defined as an increase in CFU/mL from 8 to 24 h as this was the time interval that best captured any increase
in bacterial load in isolates exposed to high drug concentrations.

Mechanism-based model development. A mechanism-based model was developed to quantify
the time course of CRKp killing and regrowth for COL and CAZ/AVI alone and in combination using SCTK
data. The total inoculum consisted of four subpopulations to describe each isolate based on COL and
CAZ susceptibility and being in either a growth or replicating life cycle (37, 38). Subpopulations were
determined by model discrimination using diagnostic plots, biological feasibility of parameter estimates,
and objective function values. Mechanistic synergy was described as the disruption of the bacterial outer
membrane by COL resulting in increased penetration and action of CAZ on penicillin-binding proteins
(PBPs) (39). Additional details are provided in the supplemental material.

Random Forest (RF) algorithm. RF with nested cross-validation (nCV) was used to rank by impor-
tance the patient, bacterial, and drug variables for predicting 30-day mortality (Fig. S1). First, a RF was
performed incorporating only the patient and bacterial variables for patients within the primary cohort.
The top 10 important variables were combined with mechanism-based model and MIC variables into a
second RF model for patients within the secondary subcohort. RF variables are listed in Table S1 with
additional details in the supplemental material.
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