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OBJECTIVES: COVID-19 is a heterogenous disease. Biomarker-based 
approaches may identify patients at risk for severe disease, who may be more 
likely to benefit from specific therapies. Our objective was to identify and validate 
a plasma protein signature for severe COVID-19.

DESIGN: Prospective observational cohort study.

SETTING: Two hospitals in the United States.

PATIENTS: One hundred sixty-seven hospitalized adults with COVID-19.

INTERVENTION: None.

MEASUREMENTS AND MAIN RESULTS: We measured 713 plasma  
proteins in 167 hospitalized patients with COVID-19 using a high-throughput 
platform. We classified patients as nonsevere versus severe COVID-19, defined 
as the need for high-flow nasal cannula, mechanical ventilation, extracorporeal 
membrane oxygenation, or death, at study entry and in 7-day intervals thereafter. 
We compared proteins measured at baseline between these two groups by  
logistic regression adjusting for age, sex, symptom duration, and comorbidities. 
We used lead proteins from dysregulated pathways as inputs for elastic net logistic 
regression to identify a parsimonious signature of severe disease and validated 
this signature in an external COVID-19 dataset. We tested whether the associ-
ation between corticosteroid use and mortality varied by protein signature. One 
hundred ninety-four proteins were associated with severe COVID-19 at the time 
of hospital admission. Pathway analysis identified multiple pathways associated 
with inflammatory response and tissue repair programs. Elastic net logistic regres-
sion yielded a 14-protein signature that discriminated 90-day mortality in an ex-
ternal cohort with an area under the receiver-operator characteristic curve of 0.92 
(95% CI, 0.88–0.95). Classifying patients based on the predicted risk from the 
signature identified a heterogeneous response to treatment with corticosteroids  
(p = 0.006).

CONCLUSIONS: Inpatients with COVID-19 express heterogeneous patterns 
of plasma proteins. We propose a 14-protein signature of disease severity that 
may have value in developing precision medicine approaches for COVID-19 
pneumonia.

KEY WORDS: acute hypoxic respiratory failure; adult; corticosteroids; COVID-19; 
plasma proteomics 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in 
COVID-19, the manifestations of which range from asymptotic carriage 
to the development of acute respiratory distress syndrome (ARDS) (1, 2). 

This clinical heterogeneity is mirrored by significant heterogeneity in the host 
immune response (3–6). Notably, whereas treatments targeting viral replica-
tion have been effective in early disease (7, 8), the treatments that have dem-
onstrated a mortality benefit once severe COVID-19 is established have been 
anti-inflammatory (9–11).
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Although immunomodulation has demonstrated a 
mortality benefit, it is not without risks, and the benefits 
in these trials appear limited to those with more severe 
disease. In the Randomized Evaluation of COVID-19 
Therapy (RECOVERY) trial, administration of dex-
amethasone was beneficial in patients with hypox-
emia, and there was a suggestion of harm in patients 
not receiving oxygen therapy (9). Disease severity may 
increase the number of patients who will have the out-
come of interest (prognostic enrichment) and thus im-
prove the power to detect a difference between groups. 
Alternatively, the presence of hypoxemia may serve as 
a proxy to identify patients with a more dysregulated 
immune response and thus identify patients more likely 
to respond to therapy (predictive enrichment) (12).

Working toward predictive enrichment, critical ill-
ness syndrome subphenotypes have been proposed 
based on unsupervised and supervised machine learn-
ing approaches using both clinical features and bio-
markers (13–15). In ARDS, subphenotypes identified 
by latent class analysis (LCA) applied to clinical and 
biomarker features have been reproduced in multiple 
cohorts and have been applied retrospectively to iden-
tify heterogeneous treatment effects (15–18). Applying 
LCA to a COVID-19 cohort again identified two sub-
phenotypes with a heterogeneous treatment effect for 

corticosteroid administration (19). Such work suggests 
that the use of biomarkers in feature sets may be used 
to identify groups of patients most likely to benefit 
from therapies and least likely to experience harm with 
a precision that exceeds clinical features alone.

Many of these prior works have used established 
candidate biomarkers for inflammation such as in-
terleukin (IL)–6 and IL-8 (20). However, the secreted 
proteome in COVID-19 may differ from other forms 
of sepsis, and higher throughput protein arrays may 
identify more specific candidates. We sought to de-
velop a proteomic signature of severe COVID-19 that 
broadly surveyed both familiar and novel proteins. 
As was recently applied in the development of a pro-
teomic signature for progression of interstitial lung 
disease, we performed a high-dimensional sampling 
of the plasma proteome and used a combination of 
biological insight and machine learning to develop a 
parsimonious protein signature (21). We then exam-
ined whether the effect of corticosteroid administra-
tion on mortality varied with respect to subgroups 
derived from our protein signature. We propose 
this feature set for future work in endotype identi-
fication, as well as investigations into the differential 
molecular pathophysiology that may explain ARDS 
subphenotypes.

MATERIALS AND METHODS

Study Design and Participants

Our discovery cohort were patients admitted to one 
of two hospitals in our health system with a positive 
SARS-CoV-2 plolymerase chain reaction (PCR) test 
who provided informed consent within 3 days of ad-
mission between March 23, 2020, and July 27, 2020. 
We selected late July 2020 as our termination date be-
cause at that time COVID-19 admissions had signif-
icantly decreased in Philadelphia and samples were 
batched for analysis. As such, these subjects represent 
the first wave of what we now recognize as the Alpha 
variant of SARS-CoV-2. At enrollment, blood was col-
lected and processed for plasma. Clinical data were 
abstracted from the electronic health record. Each pa-
tient was classified as having severe or nonsevere di-
sease every 7 days, where severe disease was defined 
as illness that resulted in death, the receipt of high-
flow nasal cannula, noninvasive or invasive positive 
pressure ventilation, or extracorporeal membranous 

  KEY POINTS

Question: We sought to identify and validate a 
plasma protein signature of severe COVID-19 
using a high-throughput protein assay and to 
test whether proteomic high risk subjects exhib-
ited a differential response to corticosteroids.

Findings: Over 190 proteins were differentially 
expressed between severe and nonsevere hos-
pitalized subjects with COVID-19. We validated a 
14-protein signature with strong discrimination for 
90-day mortality in two populations, and the risk 
score demonstrated significant interaction with 
the mortality effect of corticosteroids.

Meaning: Our data suggest significant heter-
ogeneity in the COVID-19 plasma proteome 
that could be tested as an enrichment factor for  
anti-inflammatory treatments.
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oxygen, and nonsevere disease was defined as receiving 
no oxygen or low-flow oxygen (≤ 6 L/min) via nasal 
cannula. This label was adapted from the ordinal scale 
defined in early COVID-19 clinical trials (9) and was 
chosen because it is a clinically relevant separation that 
likely captures nonventilated ARDS (22) and identifies 
patients who need higher intensity multidisciplinary 
care. Additional phenotyping included for bacterial 
coinfection, which was deemed present if the subject 
had any positive bacteriologic culture or molecular 
assay from blood, respiratory secretions, urine, or stool 
in the 5-day window centered around the blood draw 
(days –2 to +2), and for duration of COVID-19 symp-
toms prior to the blood draw. Mortality was assessed 
at 90 days.

Human subjects or their surrogates provided in-
formed consent for the Molecular Epidemiology of 
SepsiS in the ICU Cohort, protocol 808542 approved 
initially June 2, 2008, and most recently March 
24, 2022. All procedures were followed in accord-
ance with the ethical standards of the University of 
Pennsylvania Institutional Review Board and with the 
Helsinki Declaration of 1975. Our validation cohort 
was recruited at the Massachusetts General Hospital 
as is described here (23) and was shared publicly by 
the investigators. We used the plasma Olink results 
from day 3 in the validation data, as this most closely 
approximated our samples.

Sample Processing and Proteomic Assay

Whole blood was spun within 2 hours of blood col-
lection (3,000 rpm, 15 min), and plasma was collected, 
aliquoted, and frozen at –80oC until assay. Plasma was 
not immunodepleted. We used the Olink Proximity 
Extension Assay to measure 713 unique proteins. In 
this assay, oligonucleotide-labeled monoclonal or 
polyclonal antibodies are used to bind each protein 
target in a pairwise manner upon which the paired 
oligonucleotides hybridize (24, 25). The unique hy-
bridization product is amplified by PCR, and multi-
plex detection occurs in a high throughput fluidic chip 
system. On each plate, a common interplate control 
of pooled “healthy” plasma acquired and processed 
at Olink facilities (24) was used for normalization 
resulting in a semiquantitative measurement for each 
protein on log2-transformed scale referred to as the 
normalized protein expression (NPX).

Proteomic Signature Identification and 
Validation

Our signature identification pipeline was divided into 
two distinct steps. We had significantly more features 
than subjects; to overcome this and limit the size of 
our potential candidate feature set, we first identified 
biological pathways associated with severe COVID-19 
disease at admission to the hospital. For each protein 
feature, we performed logistic regression to estimate its 
association with severe disease at admission adjusted 
for age, sex, race, cardiovascular comorbidity, and time 
from symptom start. These covariates were selected a 
priori based on the published literature demonstrating 
associations with COVID-19 outcome (1, 2, 26) and 
given potential relationships between proteins and 
these factors which could confound the severity rela-
tionship. Comorbidity was modeled as the presence 
of diabetes mellitus, hypertension, coronary artery di-
sease, or chronic renal insufficiency and was selected 
as they have been shown to be associated with severe 
disease and could be associated with the distribution 
of the protein features (26). We applied the Benjamini-
Hochberg procedure with a false discovery rate (FDR) 
of 5% and then applied Ingenuity Pathway Analysis to 
identify pathways that enrich in early severe disease 
(27). Proteins that were members of pathways which 
enriched with a p value of below 10E–4, to select the 
most parsimonious group that strongly associated with 
severity, were advanced to the next step.

We then applied elastic net logistic regression (ENLR) 
to this feature set using severe disease or death on day 
28 as the outcome variable (28). Hyperparameters were 
selected using 10-fold cross validation in the discovery 
cohort. Before the model fitting procedure, each fea-
ture was centered around its mean and scaled by its 
sd; when applied in the validation cohort, the center 
and scaling variables from the discovery cohort were 
applied. No imputation step was applied, and patients 
with missing features were excluded from the model 
fitting procedure.

Discrimination of the signature was assessed using 
the area under the receiver-operator characteristic 
curve (AUROC), and we report AUROC values in the 
discovery and validation cohorts. We quantified uncer-
tainty in our AUROC estimates using 95% CIs derived 
from a bootstrap procedure with 10,000 bootstrapped 
datasets. To further understand the proteins associated 
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with severe COVID-19, we performed univariate re-
gression of protein features on age greater than or 
equal to 60 and male sex applying the Benjamini-
Hochberg procedure with FDR less than 5% to declare 
significance.

Heterogeneity of Treatment Effect

To examine our signature’s potential use in the de-
velopment of subphenotypes for predictive enrich-
ment, we applied the signature to classify patients into 
low- and high-risk groups and evaluated for a heter-
ogeneous treatment effect for corticosteroid adminis-
tration on 90-day mortality in our cohort. We used the 
coefficients from the trained ENLR model to calculate 
the probability of severe disease or death on day 28 to 
classify patients low- or high-risk using the scikit-learn 
default cutoff of 0.5 (29).

Because our cohort was recruited before the publi-
cation of randomized trials demonstrating the benefit 
of corticosteroids, corticosteroid administration was 
at the discretion of physicians caring for the patients, 
driven largely by illness severity. We therefore mod-
eled the probability of receiving steroids as a function 
of severity of illness using the Acute Physiology and 
Chronic Health Evaluation (APACHE) III score (30), 
presence of cardiovascular comorbidity as described 
above, and presence or absence of severe COVID-
19 at admission. As a sensitivity analysis, we also fit 
propensity models that included age, sex, and race, 
although these features were not expected to signif-
icantly predict the probability of receiving steroids. 
We used this model to estimate inverse probability 
weights for treatment assignment. We then mod-
eled the outcome of 90-day mortality as a function 
of corticosteroid administration and risk group and 
included an interaction term between corticosteroid 
administration and risk group; subjects in this model 
were weighted by their inverse probability weight to 
estimate a marginal structural model (31). Covariate 
balance before and after weighting was checked 
graphically. Because weighted regression violates the 
assumption of heteroscedasticity, ses were estimated 
robustly using a sandwich estimator of variance, and 
these robust errors were used for null hypothesis test-
ing. To visualize this heterogeneity, we fit a second 
inverse probability weighted regression model using 
the probability output from the model as a contin-
uous feature in place of the calculated risk group and 

calculated the marginal risk of 90-day mortality across 
the predicted probability of severe disease at day 28 
stratified by corticosteroid administration; we then 
plotted these curves with respect to the protein-pre-
dicted probability of severe disease. As a comparison, 
we applied to the same modeling procedures to assess 
for an interaction with disease severity as estimated 
by APACHE III (modeled as both continuous and in 
tertiles) as well as the presence or absence of severe 
disease at admission to the hospital.

Software, Code, and Data Availability

Analyses were carried out in a combination of Python 
3.8 (Python Software Foundation) and R 4.0 (R 
Foundation). A description of the packages used in 
each environment and all code is hosted publicly on 
Github (https://github.com/MESSI-Group/COVID-
PDSS). An anonymized version of the dataset is made 
available on the github above.

RESULTS

Details of our discovery cohort are reported in 
Table 1. Follow-up for 90-day mortality was available 
in 164 patients (98.2%). Ninety-one patients (54%) 
were classified as having severe disease on presenta-
tion. Although patients with severe disease had sig-
nificantly higher APACHE III scores (mean score 64.8 
vs 33.6; p < 0.001) and 90-day mortality (26 expired 
vs 5; p = 0.001), they did not differ significantly with 
respect to demographics or burden of comorbidity 
(Table 1).

Of the 167 patients enrolled, 161 had all 713 pro-
teins measured; the six remaining had missing values 
for a small subset of their features. For each protein, all 
subjects were included in the enrichment analysis, ex-
cept where a subject did not have a measurement and 
was excluded and therefore the majority of regressions 
included all patients with at most six patients excluded. 
We identified 145 proteins with significantly increased 
expression in severe COVID-19 and 49 proteins with 
significantly decreased expression after correcting for 
multiple comparisons (Fig. 1; and eTable 1, http://
links.lww.com/CCX/B90). Ingenuity pathway analysis 
applied to these 194 proteins identified 62 pathways of 
which 24 were statistically significant after adjustment 
for multiple comparisons (eTable 2, http://links.lww.
com/CCX/B90).

https://github.com/MESSI-Group/COVID-PDSS
https://github.com/MESSI-Group/COVID-PDSS
http://links.lww.com/CCX/B90
http://links.lww.com/CCX/B90
http://links.lww.com/CCX/B90
http://links.lww.com/CCX/B90
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There were 75 proteins shared across these latter 
pathways; we focused on the 31 unique proteins shared 
across pathways whose p value was below 1E–4. There 
was substantial correlation among these features sug-
gesting that a more parsimonious model could be de-
rived that retained similar information (eFig. 1, http://
links.lww.com/CCX/B90). Two patients were missing 
one of these protein features and were excluded from 
this portion of the analysis. ENLR with 10-fold cross-
validation yielded a model with 14 protein features 
(Table  2). Concordant with their model coefficients, 
tenascin C (TNC), C-C motif chemokine 7 (CCL7), IL 
1 receptor like 1 (IL1RL1), matrix metalloproteinase 
(MMP) 7, transforming growth factor alpha (TGFA), 
IL-17C, programmed death ligand 1 (PD-L1, also 
known as cluster of differentiation (CD274) CD274), 

galectin-9 (LGALS9), and osteopontin (SPP1) were 
enriched in patients with more severe disease, and 
IL-12 beta (IL-12B), tumor necrosis factor superfamily 
11 (TNFSF11), apolipoprotein M (APOM), MMP9, 
and lymphotoxin alpha (LTA) were enriched in patients 
with less severe disease (eFigs. 2 and 3, http://links.
lww.com/CCX/B90). This 14-protein model achieved 
an AUROC of 0.88 (0.83–0.93) in our discovery cohort 
and an AUROC of 0.92 (0.87–0.95) in our external val-
idation cohort. Applying a 5% FDR, no proteins were 
significantly associated with male sex and five proteins 
were associated with age greater than or equal to 60 
(eTable 3, http://links.lww.com/CCX/B90).

Applying the default risk threshold of 0.5 to the 
model’s output probability to classify patients identified 
a high-risk subgroup whose membership significantly 

TABLE 1. 
Discovery Cohort Characteristics

Baseline Characteristics 
Total Population  

(N = 167) 
Nonsevere  

(N = 76) 
Severe  
(N = 91) 

Age, yr, mean ± sd 58.9 ± 14.6 57.1 ± 15.6 60.4 ± 13.6

Female sex, n (%) 76 (45.5) 36 (47.4) 40 (44.0)

Race, self-reported, n (%)

  Black 112 (67.1) 56 (73.7) 56 (61.5)

  White 46 (27.5) 18 (23.7) 23 (30.8)

  Asian 7 (4.2) 2 (2.6) 5 (5.5)

  Other or more than one 2 (1.2) 0 (0) 2 (2.2)

Duration of COVID symptom days, median  
(interquartile range)

9 (6–14) 10 (7–15) 9 (6–14)

Bacterial coinfection, n (%) 16 (10) 6 (8) 10 (11)

Cardiovascular comorbidity, n (%) 126 (75.4) 59 (77.6) 67 (73.6)

Corticosteroids prior to blood draw, n (%) 60 (36.4) 9 (12.2) 51 (56.0)

World Health Organization Ordinal Scale at enrollment, n (%)

  3 (hospitalized, no O2) 33 (19.8) 33 (43.4)  

  4 (hospitalized, O2 ≤ 6 L nasal cannula) 43 (25.7) 43 (56.5)  

  5 (hospitalized, O2 by high flow or noninvasive O2) 42 (25.1)  42 (46.2)

  6 (hospitalized, mechanical ventilation) 49 (29.3)  49 (53.8)

Acute Physiology and Chronic Health Evaluation III 
score, mean ± sd

50.6 ± 30.8 33.6 ± 17.6 64.8 ± 32.4

Vasoactive medications, n (%) 50 (40.7) 3 (6.0) 47 (64.4)

Mortality at 90 d, n (%) 31 (18.6) 5 (6.6) 26 (28.6)

Bacterial coinfection was determined by positive blood, respiratory, urine, or stool culture or molecular test in the 5-d window from 2 
d prior to blood draw until 2 d following blood draw, with blood draw considered day 0. Cardiovascular comorbidity was defined as the 
presence of any of the following chronic conditions: diabetes mellitus, hypertension, coronary artery disease, or chronic renal insuffi-
ciency.

http://links.lww.com/CCX/B90
http://links.lww.com/CCX/B90
http://links.lww.com/CCX/B90
http://links.lww.com/CCX/B90
http://links.lww.com/CCX/B90
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interacted with corticosteroid administration (p = 
0.006). Neither APACHE III (p = 0.33 modeled as con-
tinuous, p = 0.97 modeled as tertiles) nor severe disease 
on presentation (p = 0.55) significantly interacted with 
corticosteroid administration. These results were ro-
bust to sensitivity analyses including demographic fea-
tures as additional potential confounders (protein risk 
group interaction p = 0.005). Modeling the interaction 
using the probability of severe disease as a continuous 
variable did not identify a statistically significant inter-
action with corticosteroid administration (p = 0.173). 
However, plotting the marginal risk of mortality as a 
function of the protein signature derived risk stratified 
by corticosteroid administration provided insight into 
the identified interaction when using the model to clas-
sify patients (Fig. 2). This plot suggested that steroids 
are associated with increased mortality at the lowest 
end of the risk spectrum and trend toward a benefit as 
the risk of severe disease as predicted by protein signa-
ture increases, albeit the analysis is underpowered to 
demonstrate a statistically significant benefit even in 
the highest risk patients.

DISCUSSION

We performed a high-dimensional sampling of the 
proteome in 167 patients with COVID-19 and used 
pathway analysis and regularized logistic regres-
sion to identify a parsimonious protein signature 
which strongly discriminates severe disease in both 
our discovery cohort and an external validation co-
hort. Our protein signature may also identify het-
erogeneity in the effect of corticosteroid treatment 
on 90-day mortality in patients with COVID-19. 
Although multiple high-quality plasma proteomic 
studies have been reported in COVID-19 (23, 24, 
32), we believe ours is notable for using a high di-
mensional platform while identifying a parsimo-
nious protein signature capable of predicting severe 
disease and death when applied to hospitalized 
inpatients. Our validation in an external, geograph-
ically distinct hospitalized population, our repre-
sentation of African American subjects, and our 
enrichment for critical illness are unique strengths 
of our study.

Figure 1. Volcano plot for all proteins comparing nonsevere versus severe COVID-19 at admission in the discovery population. The 
proteins composing our final proteomic signature, including differential expression by false discovery rate, membership in a differentially 
expressed pathway, and selection by elastic net logistic regression model, are labeled on the plot. APOM = apolipoprotein M,  
CCL7 = C-C motif chemokine 7, CD274 = cluster of differentiation 274, IL1RL1 - interleukin-1 receptor like 1, IL12B = interleukin 
12B, IL17C = interleukin 17C, LGALS9 = galectin-9, LTA = lymphotoxin alpha, MMP7 = matrix metalloproteinase 7, MMP9 = matrix 
metalloproteinase 9, NPX = normalized protein expression, SPP1 = osteopontin, TGFA = transforming growth factor alpha,  
TNC = tenascin C, TNFSF11 = tumor necrosis factor superfamily 11.
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The proteins identified are implicated in a variety 
of biological processes including proinflammatory 
immune activation (IL1RL1, IL-17C, CCL7, IL-12B), 
dampening of the immune response (CD274 [PD-L1], 
LTA, TNFSF11, LGALS9), extracellular remodeling and 
fibrosis (TNC, MMP7, MMP9, TGFA, SPP1), and endo-
thelial barrier integrity (APOM). Many of these proteins 
have been implicated in sepsis and ARDS due to SARS-
CoV-2 or other etiologic agents (32–40). Although this 
study was not designed to identify causal relations, these 
proteins and their associated pathways represent biolog-
ically credible targets that warrant further evaluation.

In particular, our analysis suggested a strong as-
sociation between COVID-19 severity and the IL-33 
receptor protein IL1RL1, which is also known as 
suppression of tumorigenesis-2 (ST2). The IL-33/
IL1RL1 axis has been implicated in myocardial infarc-
tion, heart failure, community acquired pneumonia, 
asthma, and ARDS (41–44). It has more recently been 
demonstrated as a biomarker associated with persis-
tent ventilator dependence, and our findings replicate 

others identifying ST2 as a prognostic biomarker in 
COVID-19 (45). It exists in a membrane-bound form 
and as a soluble splice variant (sST2) with the former 
facilitating IL-33 signal transduction and the latter act-
ing as a potential dummy receptor that dampens IL-33 
signaling. Although the cellular source of sST2/IL1RL1 
during COVID-19 is not known, sST2 is released by 
type II pneumocytes in response to strain and by reg-
ulatory T cells in response to stimulation by IL-33 
(33, 44). The varied roles of IL-33 include promoting 
T helper 2 (Th2) cell differentiation and expanding 
regulatory T-cell expression; thus, the relative balance 
of IL-33, membrane expression of ST2 across various 
cell types, and secretion of sST2 may represent a cru-
cial axis linking epithelial damage to the tuning of the 
adaptive immune response (46), particularly in light of 
data linking T-cell activation to severe COVID-19 (3).

It is also noteworthy that markers associated with 
repair and fibrosis were implicated despite how early in 
the disease process the plasma samples were collected. 
MMP7, MMP9, TNC, and SPP1 have all been impli-
cated as biomarkers in fibrotic interstitial lung disease 
(47–49). For example, SPP1 can be used in a three-
protein index to discriminate idiopathic pulmonary 
fibrosis (IPF) from other interstitial pneumonias and 
is elevated in hepatic, retroperitoneal, and myocardial 
fibrosis (49); recent mechanistic work in mice suggests 
a causal role in driving pulmonary fibrosis (50). TNC 
emerged as a plasma marker elevated in IPF that is 
also overexpressed at the transcript and protein level 
in human alveolar epithelial-like cells with telomere 
dysfunction (51). Although these potential markers of 
fibrosis might be nonspecific indicators of extracellular 
matrix injury, the accelerated fibrosis that appears to 
complicate severe COVID at a high rate (52) might re-
late to novel profibrotic programs being activated (53). 
High plasma MMP7 was correlated with a decline in 
forced vital capacity and diffusion capacity of carbon 
monoxide among subjects with COVID-19 followed 
longitudinally, suggesting a link between immunofi-
brotic drivers and loss of lung function, although study 
subjects did not have lung imaging (53). Further work 
is needed to understand the specificity of these mark-
ers for COVID-related lung injury and whether they 
predict fibrotic complications post COVID.

We found it striking that the protein signature 
seemed to predict harm from corticosteroids among 
subjects with low protein severity scores and only mar-
ginally and nonsignificantly predicted improvement 

TABLE 2. 
Elastic Net Logistic Regression–Selected 
Proteins

Feature (Protein) Coefficient OR 

Tenascin C 0.414 1.513

C-C motif chemokine 7 0.329 1.390

IL 1 receptor like 1 0.317 1.373

MMP7 0.189 1.208

Transforming growth factor alpha 0.161 1.175

IL17C 0.113 1.120

CD274 0.083 1.087

Galectin-9 0.048 1.049

Osteopontin 0.039 1.040

IL12B –0.011 0.989

Tumor necrosis factor superfamily 11 –0.031 0.970

Apolipoprotein M –0.122 0.885

MMP9 –0.166 0.947

Lymphotoxin alpha –0.235 0.790

CD = cluster of differentiation, IL = interleukin, MMP = matrix 
metalloproteinase, OR = odds ratio.
Feature coefficients from the final elastic net logistic regression 
model presented on the log-odds and OR scale, quantifying the esti-
mated association between the feature and risk of severe disease at 
day 28. Because the input data were normalized, these coefficients 
can be directly compared and serve as a direct measure of relative 
feature importance of each protein to the predictive model.
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with corticosteroids in the high protein severity score 
group. There are prior examples, in both observa-
tional and randomized settings, of molecular pheno-
types predicting harm from corticosteroids (14, 54, 
55). It may be that low protein severity score indicates 
a more regulated host response to infection (3), and 
perturbing this favorable response has untoward con-
sequences. Alternatively, since subjects who received 
corticosteroids in our observational cohort commonly 
received methylprednisolone rather than dexameth-
asone or hydrocortisone, perhaps we are observing 
drug-specific effects. We also acknowledge the strong 
threat of residual confounding despite our adjustment 
for our measured confounders (eFig. 3, http://links.
lww.com/CCX/B90) and that this shortcoming may 
bias our apparent treatment interaction. However, it is 
encouraging that we did not detect interaction in the 
steroid treatment effect for severity of illness as meas-
ured by the APACHE III score nor for the enrollment 
level of COVID-19 severity.

Despite these promising implications of our signa-
ture, our study has significant limitations and multiple 
barriers to overcome before operationalizing the sig-
nature to select trial participants or specific treatments. 
Foremost, Olink is a discovery platform with protein 
expression measured on the NPX scale normalized to 
the samples generated from pooled control plasma. 
This precludes direct quantitative comparisons be-
tween samples for the same protein or between these 
results and methods that return an absolute quanti-
tative value. For the same reason, calibration of our 
model was not directly assessed. Our model identifies 
a discriminative, parsimonious feature set, and future 
work could focus on developing biomarker detection 
techniques that are rapid, reliable, and informative. 
These features could then be used in an individual 
manner or as part of a multivariable model, both of 
which will require thoughtful probability calibration. 
We assessed proteins at only one early time point 
and validated using day 3 values in the replication 

Figure 2. Average risk of mortality as a function of protein-derived risk stratified by steroid administration and adjusted for demographic 
factors, comorbidity, and disease severity. The solid line reflects the marginal estimate, with the darker and lighter shaded areas 
reflecting 1 and 2 sds, respectively. Although the analysis is underpowered, the risk of mortality for patients with low protein derived risk 
is estimated to be higher for those receiving steroids compared with those not receiving steroids, but the balance of benefit versus harm 
reverses as the protein score predicted risk increases.

http://links.lww.com/CCX/B90
http://links.lww.com/CCX/B90
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population. Although values early during admis-
sion have face validity for prognostication, we cannot 
address the stability of the protein signature over time 
nor whether the signature varies with clinical course 
to represent a treatment response indicator. Although 
we did sample blood at 1 week, we observed signifi-
cant informative missingness at the later time point 
due to competing risks of death or discharge. Last, the 
SARS-CoV-2 virus has continued to evolve as has the 
landscape of the host response with the introduction of 
various vaccines and early therapies, and therefore, we 
will need to confirm that features of this signature have 
remained significant in more current populations. Our 
study was conducted during the first Alpha variant, in 
the era of randomized trials for remdesivir and pre-
ceding widespread use of other immunomodulators, 
monoclonal antibodies, or convalescent plasma; thus, 
we cannot determine whether those treatments or dif-
ferent virus strains might influence our results.

CONCLUSIONS

This work, which began with a high-dimensional sam-
pling of the proteomic milieu and concluded with 
an externally validated, parsimonious protein sig-
nature, suggests important biomarker features of se-
vere COVID-19. We find that this signature performs 
well in disease prognostication and may interact with 
immune-focused therapy on risk of mortality. Our 
work adds to the growing literature that disentangle 
heterogenous critical illness syndromes into subgroups 
of host response, characterized largely by variation in 
host inflammatory processes. Future studies seeking 
to develop treatments for severe COVID-19 and other 
critical illness syndromes will benefit from methods 
that deconvolute this underlying heterogeneity allow-
ing for the precise targeting of therapeutics to those 
most likely to benefit.
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