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Abstract: Cleaning is an important factor in most aspects of our day-to-day life. This research
work brings a solution to the fundamental question of “How clean is clean” by introducing a novel
framework for auditing the cleanliness of built infrastructure using mobile robots. The proposed
system presents a strategy for assessing the quality of cleaning in a given area and a novel exploration
strategy that facilitates the auditing in a given location by a mobile robot. An audit sensor that works
by the “touch and inspect” analogy that assigns an audit score corresponds to its area of inspection has
been developed. A vision-based dirt-probability-driven exploration is proposed to empower a mobile
robot with an audit sensor on-board to perform auditing tasks effectively. The quality of cleaning is
quantified using a dirt density map representing location-wise audit scores, dirt distribution pattern
obtained by kernel density estimation, and cleaning benchmark score representing the extent of
cleanliness. The framework is realized in an in-house developed audit robot to perform the cleaning
audit in indoor and semi-outdoor environments. The proposed method is validated by experiment
trials to estimate the cleanliness in five different locations using the developed audit sensor and
dirt-probability-driven exploration.

Keywords: autonomous cleaning audit; cleaning benchmark; audit robot; dirt driven exploration

1. Introduction

The impact of cleaning and cleanliness can span from an individual’s tiny social space
to a nation [1]. It is reported that, the cleaning related industry and services market is
valued more than 292.6 Billion USD in 2019, and it is expanding steeply with a growth
rate above 5% annually around the globe [2,3]. The importance of cleaning acts as a
pull factor for the entry of newfangled technologies into the domestic and professional
cleaning services, targeting the improvement of the quality and productivity of the cleaning.
This includes effective disinfection strategies and automation of cleaning process using
robots [4–6].

A large volume of research work is reported under cleaning robots for the past ten
years. For instance, the development of a terminal floor cleaning robot is discussed in [7],
where authors emphasize on robotic ultra-violet disinfection strategy for eliminating
pathogens. Lee et al. reported a study on the mechanism and control of the robot for
glass façads cleaning [8]. The work mentioned in [9,10] discusses the successful usage of
re-configurable mechanisms for improving the area coverage of a robot by adapting various
morphology concerning the operational environment. Liu et al. discusses sensor-based
complete coverage path planning for cleaning robots, where the reported works claim the
effectiveness in most work-spaces [11]. The research work mentioned in [12] discusses a
strategy for choosing an optimal footprint for efficient cleaning task execution by a ship
hull cleaning robot. The research focuses on robot-aided cleaning is centered around
the invention of novel mechanisms for space accessibility, methods, and tools for energy
efficient cleaning, optimal path planning, and smart and intelligent autonomous cleaning
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behavior for robots. The cleaning performance by the robots is assessed mostly by the area
coverage of the robot under the notion that if a robot covers an area, it is assumed to be
cleaned. The verification of the cleaning quality remains as archetypal visual inspection.
Hence, an effective method for inspecting the finer details of cleaning quality is essential
to assess the cleaning performance of the robot. A multitude of methods are reported to
perform a cleaning process efficiently. However, primitive focus were given to studying the
extend of cleanliness of an area after a cleaning process. The cleaning auditing process is
done either using visual inspection methods or by microbial analysis [13–15]. One among
the attempts for evaluating the cleaning performance is ATP (adenosine triphosphate)
bio-luminescence method and benchmarking in relative light units (RLU) [16–18]. The
applicability of ATP bio-luminescence methods are confined to hospitals and food handling
environments where pathogenic infestation control is critical. Nevertheless, cleaning is
indispensable in a broad spectrum of the domain, including every industrial and domestic
setting. Hence, the cleaning auditing strategies should be scalable beyond microbial
analysis for a limited environment similar to hospitals and food processing industries.

Robot aided cleaning is a field that is advancing by leveraging cutting-edge technolo-
gies like artificial intelligence, sensing, energy-efficient systems, etc. [19–22]. An effort to
bridge the research gap in estimating the quality of cleaning and formulating a strategy to
execute it using robots can bring a solution to the paradox—“how clean is clean”. Even
though a strong precedence for robot-aided cleaning assessment is missing, a superficial
research effort towards detecting the extent of cleanliness of a surface is evident. Especially
to estimate the number of dirt particles accumulated on a surface. For instance, a vision-
based dirt detection method is discussed in [23] for performing selective area coverage
by a re-configurable robot. Grünauer et al. proposed an unsupervised learning-based
dirt detection strategy for automated floor cleaning using robots [24]. The research work
mentioned in [25] utilized neural networks for the development of locating the dirt for
autonomous cleaning robot.

In this article, we propose a novel strategy to assess the extent of cleanliness using an
autonomous audit robot. The method of auditing is formulated using artificial intelligence-
based vision system together with a new dirt-probability-driven exploration strategy and
a sensor module for auditing by extracting dirt from a given area. As per the proposed
framework, the robot can trans-locate inside a built infrastructure carrying the audit sensor
to analyze the cleanliness of the floor. Upon completion of the auditing, the robot provides
a dirt density map, and an estimate of dirt distribution corresponds to the location. The
insight of cleaning quality and dirt accumulation pattern reported by the audit robot opens
up the opportunity to benchmark either human cleaning or automated cleaning in an
effective way. The proposed framework is simple and interoperable with a conventional
autonomous mobile robot capable of performing Simultaneous Localization and Mapping
(SLAM). This article is organised as Section 2 detailing the general objective of this study
followed by the overview of the proposed system in the Section 3, working principle and
development of audit sensor in Section 4. The methods to integrate the framework and
exploration strategy for the robot is detailed in Sections 5 and 6. The validation of the
system through experiment results are given in Section 7, followed by the conclusion of
our findings and future work in the Section 8.

2. Objective

This study is designed to put together a framework to quantify the extend of cleanli-
ness of a built-infrastructure using an autonomous robot. This general objective is subdi-
vided into three components:

1. Develop an audit sensor capable of analysing the extent of cleanliness at a given point
on the floor.

2. Integrate the audit sensor in an in-house developed mobile robot, and formulate an
exploration strategy for auditing an area.
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3. Experimentally determine the cleanliness benchmark score of the audit area using the
in-house developed mobile robot.

3. Cleaning Audit Framework Outline

An outline of a simple auditing and benchmark framework is illustrated in Figure 1.
An autonomous cleaning audit is comprised of two auditing processes, sample auditing
and space auditing. Sample-auditing is the assessment of dirt accumulation in a given
point. Space-auditing is the repeated sample-auditing in the entire space to obtain an
overall information of dirt distribution. The sample auditing is realized using an auditing
sensor that assigns an auditing score for a given point under inspection. The space-auditing
is realised with a mobile robot which is capable of exploring the territory with an auditing
sensor on-board. It is not practical to do the sample auditing in a finer resolution for a vast
area. Hence, the exploration algorithm of a robot has to be smart by reducing the sample
auditing space with the help of specific heuristics about the probabilities to find a dirt.
This is realized by a dirt probability driven exploration, where the exploration is driven by
heuristics regarding the probability for finding dirt. Upon completion of exploration, the
robot provides an audit report comprised of a dirt density map and a cleaning benchmark
score. The proposed strategy for cleaning auditing is simple to integrate onto an existing
autonomous robot.
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Figure 1. Processes involved in an auditing and benchmark framework for cleaning.

4. Audit Sensor

Figure 2 shows the diagram of the sample auditing sensor and components associated
with it. An auditing sensor provides information of the extend of cleanliness of a sample
area. In the case of floor cleaning, the sensor should detect the amount of dirt distribution
in a sample point (a small section of area) on the floor. The sensor module consists of an
embedded MPU for handling the computation tasks and a pair of bipolar stepper motors
to enable the sample collection action. The sensor is also equipped with a USB camera with
a fixed focal length to capture the close-range picture of collected dust samples and an
MCU unit that does low-level hardware integration and actuator control. The sensor can
be interfaced with the robot either by USB or by Ethernet. The sensor takes the sampling
instruction from the robot and provides an “audit score“ that represents the amount of dirt
accumulation at the point.
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Cam

Compression spring

Pressing RAM Idler

Adhesive Tape catridge

Stamping Stepper

Winding Stepper

Area of inspection

USB Camera

Figure 2. An overview of sample auditing sensors and its major components.

Working Principle

Stepper actuates a pressing RAM vertically down and the adhesive tape makes contact
with the floor, resulting in the adhesion of dirt particles on it. The adhesive tape is moved
under the field of view of a camera for computer vision-based auditing. Upon receiving
a sample collection request from the robot, the winding stepper moves 4 cm of adhesive
tape from the roll. The adhesive tape on the sensor can be replenished with a new one
after repeated sampling collection. A sample point is considered as a 30 mm × 20 mm
rectangular patch on the floor.

Certain parameters can be used to estimate the cleanliness of a region by analyzing
the collected sample. For instance, some of the cleanliness determining parameters could
be the number of dirt particles concentrated in the sample or the changes in color and
texture due to dirt accumulation. If cleanliness is defined at a microscopic level, microbial
infestation could be a parameter that defines cleanliness. For a vision-based sample
auditing approach, the sample audit score can be computed based on the above-mentioned
cleanliness determining parameters extracted from the sample image captured by the
camera after the dust extraction from the floor. A weighted average of the extracted
parameters gives the sample audit score. The Equation (1) computes the sample audit score
from n distinct parameters that are extracted from sample auditing, where Pi and wi are ith
parameter and weight corresponding to it.

Sn =
∑n

i=1 wiPi

∑n
i=1 wi

(1)

In a typical floor cleaning auditing scenario, sum of absolute differences (SAD) and
the Mean Structural Similarity Index Measure (MSSIM) are two suitable parameters for
computing audit scores. In the domain of computer vision, SAD gives a measure of
similarity between two images. It is calculated by taking the absolute difference between
each pixel in the test image and the corresponding pixel in the reference image [26,27]. In
the given scenario, the test image and reference images are taken as the image captured
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after dust extraction, from the surface of adhesive tape, and the image captured before
dust extraction. These inferred differences between the test image and reference image are
summed up to form a similarity image, which can be mathematically represented as in
Equation (2).

ISimilarity(t) =
M

∑
i=0
|ITest(i)− IRe f (i)| (2)

where, ISimilarity, ITest, IRe f , and M are similarity image, test image, reference image and
resolution respectively. A threshold range is applied on the similarity image, and a binary
image (1 corresponds to dirt pixels, 0 corresponds to non-dirt pixels) is obtained, which
holds the information of possible pixels representing dirt (Figure 3). From the binary image,
dirt density ρ can be computed using Equation (3).

ρ =
No o f dirt pixels
total no o f pixels

(3)

Besides the dirt density from SAD, the structural similarity index of the image is
calculated to determine extent of dirt particles populated on the adhesive tape surface after
the dust lifting. Structural Similarity Index is one of the popular methods to compute the
quality assessment between two images [28,29]. The approach mentioned above has been
taken under the notion that the similarity with the reference image (clean image) will be
altered when dust particles appear on the captured test image. The structural similarity
index is comprised of luminance, contrast, and structural similarity features from an image.
A Mean Structural Similarity Index (MSSIM) is an average value of similarity indices taken
across multiple sections of an image (Equation (4)).

MSSIM =
1
M

M

∑
i=1

SSIM(xi, yi) (4)

where, SSIM is the Structural Similarity Index Measure calculated at every pixel on the
image [28]. The MSSIM values will be lower for an image with fewer dirt pixels on it (less
similar to the reference image) compared to an image that captured no dirt (more similar
to the reference image). The MSSIM is range of values in the interval [−1,+1]. Since the
parameter Pi in Equation (1) only takes in values in the range [0,+1], MSSIMMapped is
calculated to map the MSSIM value to the desired interval [0,+1] using Equation (5).

MSSIMMapped =
1−MSSIM

2
(5)

Figure 3. Reference image taken by the sensor (a), dirt extracted from floor by the audit sensor (b), green region represents
the dirt detected (c).

Since ρ gives the dirt density, the significance of ρ is higher when dirtiness is caused
by dust particles. Similarly, the significance of MSSIMMapped is higher when dirtiness is
caused by colored or colorless stains on the floor. Since both factors are equally important,
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equal weights are given for both for the floor cleaning scenario. The sample audit score S2
(n = 2 and w1 = w2 = 1) can be calculated by:

S2 =
ρ + MSSIMMapped

2
(6)

The audit score calculation is done on the embedded MPU on the sensor. The dust
extraction and audit score calculations are triggered upon a request from the robot, and the
audit score is updated back to the robot.

5. Audit Robot and Framework Integration

An autonomous mobile robot equipped with an auditing sensor is the key facilitator
for the space-auditing process in the proposed cleaning auditing framework. Figure 4
shows the developed audit robot capable of performing autonomous navigation and
mapping. The robot with an audit sensor on-board explores its area of operation using
dirt-probability-driven exploration, and an audit report is generated. The audit report
comprised of dirt density map and dirt distribution pattern generated from the information
from robot’s audit sensor and 2D map.

2D Lidar

RGB-D Camera

Front Castor

Sample Audit Sensor

Drive wheel

Audit Sensor Prototype (c)3D CAD of Audit benchmark robot (a) 

Robot platform under operation (b)

Sensor Cabinet

Figure 4. CAD diagram of robot (a), Prototype robot under operation in a food court (b), Sample audit sensor prototype (c).

Audit-Robot Architecture

The system architecture of the audit robot is shown in Figure 5. The robot platform
has a differential drive wheel configuration with three-point of contact. A pair of brushless
DC (BLDC) motors (left and right) is the primary drive mechanism of the robot. Two
BLDC motor drivers control the speed, acceleration, and direction of rotation of each motor.
The BLDC motor drivers do a closed-loop velocity control of the motors and provide
instant velocity feedback. The motor driver is commanded over MODBUS communication
protocol implemented over RS485 [30]. The RS485 communication bus of the left and right
motor drivers are connected in a daisy chain fashion. A 24VDC LiFePO4 battery powers
the systems and subsystems of the robot. A 2D LIDAR (Sick TIM 581) and depth camera
(Intel Realsense 435i [31]) sensor provide real-time information of the surroundings for
perception. The Realsense D435i have maximum resolution 1920 × 1080 with a field of
view of 87deg × 58deg A 9-DoF (Vectornav VN100 IMU) and the odometry information
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from the robot wheels provide the necessary information for dead-reckoning. The software
packages for the robot perception, localization, and navigation are implemented over ROS
middleware. An Embedded computer with an intel core i7 processor with Ubuntu 20.04
operating system is used to implement the software nodes and low-level drivers. The
LiDAR is interfaced with the Embedded PC using Ethernet. The BLDC Motor drivers and
IMU sensor are connected to the embedded PC by a USB-RS485 converter.

Besides the sensors for navigation, the robot carries the prototyped audit sensor. An
NVIDIA Jetson NX has been used as the embedded MPU for the sensor. The electronics
part of the sensor is positioned in the robot. NEMA 17 bi-polar stepper motors are used for
enabling sample collection action. A TB6600 stepper motor driver is used for micro-step
control of the stepper motor. The sample sensor module is interfaced with the embedded
PC of the robot via Ethernet. The power requirement for the sensor is supplied from the
robot’s battery.

Power Supply 
24VDC

Embedded PC

2D-Lidar IMU Depth Camera

BLDC Motor
Driver Left

BLDC Motor
Driver Right
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USB - Hub
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Figure 5. Block diagram of system architecture of Audit-Robot with audit sensor payload.

6. Exploration Strategy

This section explains the dirt probability-driven exploration and path-planning strate-
gies that facilitate the cleaning auditing by the audit robot. The robot should set an
exploration out with the objective of covering the maximum locations possible and gener-
ate a map by SLAM. There are many auto-exploration approaches that are used in mobile
robots, such as patrol robots, inspection robots, rescue robots etc. [32–34]. Frontier explo-
ration is one of the popular exploration methods in single or multi-robot systems, where
the destination pose of the robot is decided by the frontiers in a grid map [35–37]. However,
for the audit robot, the objective of the exploration aims not only to visit all the locations
for mapping but also to cover the most probable dirt regions for sample collection. This
is made possible by modifying the frontier exploration strategy. The pseudo-code for
modified frontier exploration is given in the Algorithm 1.
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Algorithm 1 Pseudo-code of the exploration strategy with modified frontier exploration
algorithm

1: F ⇐ checkFrontier()
2: for Every points in F do
3: if F is a connected frontier then
4: Fconnected ⇐ Fi
5: end if
6: end for
7: for Every points in Fconnected do
8: Copen ⇐ compute centeroid of Fconnected
9: Arrange Copen in ascending order of distance from robot pose

10: end for
11: for Copen is not empty do
12: destination_pose⇐ Fopen

i
13: Check for Probable Dirt Points.
14: if Probable Dirt Points then
15: Transform interest point to global frame assign to IPopen

16: Arrange DPopen in ascending order of distance from robot pose
17: for Every points in DPopen do
18: Transform interest point to global frame
19: Generate sample points S
20: Select sample points diagonally and insert to SP
21: if Selected sample point not in obstacle then
22: Insert sample point to SP
23: end if
24: for Every points in SP do
25: Navigate the robot to SPi
26: end for
27: DPclosed

i ⇐ DPopen
i

28: end for
29: end if
30: Navigate the robot to Copen

i
31: Cclosed

i ⇐ Copen
i

32: Initiate a 360deg sweep
33: F ⇐ checkFrontier()
34: end for

Typically an occupancy grid of robot possess three values. Obstacle region, free space
and unexplored region. A frontier is defined as the boundary between a free space and an
unexplored region in the occupancy grid. Frontiers are formed either when the boundary
is beyond the sensor’s field of view or mapping at the particular territory is incomplete. A
perfectly mapped region will be devoid of frontiers in its occupancy grid representation.
The frontier exploration directs the robot to navigate towards the frontier and explore
repeatedly and extend the boundaries of the map till no new frontiers are left to explore. A
frontier can be identified by running a Breadth-First Search (BFS) across the entire grid map.
The identified frontier points are pushed to a list F. From the frontier points on the data
container, connected frontier points above minimum size are identified Fconnected. From the
Fconnected, identified frontiers centroid are pushed to an another list in the increasing order
of euclidean distance between the robot’s current location provided by the SLAM algorithm
Copen. In the classical frontier exploration strategy, robot navigates to frontier centroids
in the list by First In First Out (FIFO) fashion. However, this step has been re-defined in
the proposed algorithm for auditing benchmark exploration. Before the algorithm sets
the robot’s way-point to a frontier centroid Copen, it will look for a detected probable dirt
region in its field of view by the dirt region locator algorithm using semantic segmentation
and periodic pattern detection. If a probable dirt region is detected in its filed of view, the
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centeroids of probable dirt regions are pushed to a list DPopen (probable dirt region open
list) in ascending order of euclidean distance from the current robot pose.

A breadth first search (BFS) is executed in the list DPopen and a square region around
the probable dirt region is selected. The selected square region is sampled uniformly to
obtain the set of sample points corresponding to DPopen. The sample points are selected
and arranged in a zig-zag fashion (diagonal selection). If the selected sample points are
not on an obstacle in the map, the selected sample points are added to a list SP.The robot
navigates to every points in SP. While navigating, robot takes the audit samples in every
sample points. Once the robot covers all the sample points SP associated with a probable
dirt region DPopen

i , it is pushed to the closed list DPclosed. The robot never generates
sample points around probable dirt region in the DPclosed. Robot continues navigating
and generating sample points till every element in DPopen is moved to the DPclosed. When
DPopen is an empty container, the destination is switched to Copen

i . Once robot reaches a
point in Copen

i , Copen
i is appended to Cclosed

i and a 360deg sweep is performed to scan for
next frontiers. This whole cycle is continued till Copen becomes an empty list. The Figure 6
illustrates the dirt probability driven exploration strategy, identified probable dirt region
and sample points associated it.

Probable dirt region

Figure 6. Sample points and probable dirt region identified by the robot.

The navigation for the robot is done by A∗ navigation algorithm [38] accompanied by
a Dynamic Window Approach (DWA) path following algorithm [39]. The combined usage
of A∗ and DWA allows the robot to move from one point to another without a collision.
The position of the robot in the global co-ordinate is provided by the G-Mapping SLAM
algorithm [40]. Figure 7 shows the process flow of the probable dirt region identification
using semantic segmentation and periodic pattern filter [23]. Major steps are involved in
identifying probable dirt location in the field of view of the sensors are:
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1. Capture the RGB frame and aligned depth map of the environment;
2. Perform a semantic segmentation and extract the floor region;
3. Extract the dirt region using periodic pattern filter applied on floor region;
4. Using depth map, transform the centroid of dirt region from pixel-coordinate to robot

co-ordinate;

Encoder Decoder

Semantic Segmentation Model 
RGB – frame (a)

(b)(c)(d)

Figure 7. RGB image frame taken from (a), segmented output (b), extracted floor pixels (c), Most
probable dirt region (d).

The centroid of the identified dirt region on robot co-ordinate is considered as the
probable dirt location. The implementation of semantic segmentation and periodic pattern
filter are detailed below.

6.1. Semantic Segmentation

The semantic segmentation is carried out using ResNet50 [41] and Pyramid Pooling
Module (PPM) encoder-decoder method trained on ADE20K indoor dataset [42–45]. The
mask corresponding to the class “floor“ has been extracted from the semantic segmentation
output. Using the mask, the pixels corresponding to the floor has been extracted and a
periodic pattern suppression algorithm has been executed to identify the most probable
dirt region. From the depth image corresponding to the captured RGB frame, the 3D point
is located on robot co-ordinate.

6.2. Periodic Pattern Filter

The outcome of semantic segmentation gives the pixels corresponding to the floor.
This image holds two information, one is the floor pattern and second one is the dirt
particles present on the floor. Periodic pattern filter is applied on the largest possible
rectangular on the extracted floor region. Periodic pattern filter detects the regular patterns
occurring on an image, these periodic patterns are floor texture on the captured image [23].

1. Step 1: Transform the image to a frequency domain using 2D Fast Fourier Transform

F(u, v) =
m−1

∑
m=0

n−1

∑
n=0

f (i, j)× e−i×2π×( u×i
m +

v×j
n ) (7)

2. Step 2: The periodic pattern filter H is determined by applying an FFT shift operation
in the input image F(u, v)

f̂ (u, v) = f̂ ([F(u, v)]) (8)
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3. Step 3: Choose the maximum log components from f̂ (u, v)

H(u, v) = log( f̂ ([F(u, v)])) (9)

Hmax(u, v) = max(log( f̂ ([F(u, v)]))) (10)

4. Step 4: Suppress the frequency components less than Hmax

F′(u, v) =

{
F(u, v), i f H(u, v) > Hmax(u, v)
0, otherwise

(11)

An inverse FFT brings back the F′(u, v) back to time domain F′(i, j). The dirt accumu-
late location is appeared as blobs. A convex hull algorithm is applied to get the boundary
of probable dirt location. The centeroid of the detected boundary is considered as the
probable dirt location. Each image captured by the depth camera have RGB data in pixel
coordinate and depth data (in meters) associated with it. Hence any point in the captured
image by the depth camera can be projected to 3D coordinate space. The relation between
pixel-coordinate and 3D real-world coordinate systems is given by the intrinsic camera
parameters. The intrinsic camera parameters and 3D projection are provided by Intel
Realsense SDK associated with the depth camera. The depth corresponds to the centroid
of the probable dirt location is identified from the depth map and transformed from pixel
coordinates to 3D coordinates to get the probable dirt region in the robot coordinate.

After an sample auditing and space auditing, following parameters are computed to
determine the extent of cleanliness of the region:

1. Dirt density map: A grid-map with audit scores are labeled to its corresponding
location. The significance of dirt density map is to visualize the sample-level details
of dirt accumulation corresponds to a region.

2. Dirt distribution map: Dirt distribution map is a surface plot that shows the prob-
ability density function (PDF) of dirt accumulation. PDF of dirt is modelled using
bi-variate Kernel Density Estimation (KDE) over the sample locations [46,47].

3. Total audit score (K): Determined by the algebraic sum of sample audit score. The
total audit score is a positive integer that represents degree of untidiness of a given
location. An ideal scenario of perfectly clean surface should have an audit score of
zero. Using Equation (6) for sample audit score, the total audit score K is given by:

K =
N

∑
i=1

S2i (12)

where N is the total number of samples collected. The maximum value of total audit
score is given by (13):

Kmax =
N

∑
i=1

Smax
2i (13)

Since maximum audit score (Smax
2i ) given by a sample is unity, the maximum possible

total audit score Kmax is N.
4. Cleaning benchmark score (Ψ): It is the measure of cleanliness of a surface out of 100.

The cleaning benchmark score is determined from Total audit score K and N, which
is given by:

Ψ =

[
1− K

Kmax

]
× 100 (14)

where N is the total number of samples collected and Kmax is the maximum possible
audit score. If the maximum sample audit score (Equation (6)) is 1, Kmax can be taken
as N.
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7. Results and Discussion

The cleaning audit framework is validated through multiple field trials and exper-
iments. Five different locations with different floor types are chosen as the test-bed for
the experiment trials. Among the five locations three are indoor and remaining are semi-
outdoor environment The robot is operated in each space and allowed to navigate au-
tonomously using the dirt probability exploration strategy.For simulating the condition of
dirt accumulation, dust particles are sprinkled in different regions on the experimental loca-
tion. A mixture of tea dust, bits of paper and crushed dried leaves are taken as materials to
simulate the dirt particles. Considering the safety factors, maximum allowed linear velocity
of the robot is kept as 0.2 ms−1. After each experiment trails, the 2D map generated by the
robot, probable dirt location and the sample points generated are retrieved from the robot.
KDE is used to visualize pdf of dirt distribution in the location. An extensive comparative
study on the outcome of the proposed system in experiment trials are evaluated.

7.1. Experiment Trials

1. Trial 1: The trial was carried out in an indoor space between the corridor and connect-
ing bridge in the university. The dirt particles are sprinkled in four different locations.
Robot identified eight unique probable dirt location corresponds to the identified dirt
region. The 2D map of the explored region, location of the sample point, the audit
scores corresponds to sample points and the distribution of dirt obtained are given in
Figure 8.

2. Trial 2: The trial was carried out in a lift lobby. The environment of operation was semi-
outdoor with a floor type was coarse cement.Similar to the dirt particles are sprinkled
in four different locations. In trial2, Robot identified the dirt locations in six unique
probable dirt location. Corresponding to six unique probable dirt location, 76 samples
are collected. Even though the number of probable dirt locations are same as trial 1,
the positions of the dirt locations identified where close to the map boundaries hence
the number of accessible sample points are less compared to trial 1. The 2D map of the
explored region, location of the sample point, the audit scores corresponds to sample
points and the distribution of dirt obtained are given in Figure 9.

3. Trial 3: The trial was carried out in an narrow long indoor corridor. This environment
is a comparatively clean area than other trial locations since its an indoor space
going under regular maintenance. The floor type was polished vinyl. The dirt
particles are sprinkled on four different locations. Robot identified four unique
probable dirt location corresponds to the identified dirt region. Robot took total of
48 samples corresponding to the probable dirt locations. The narrow region of the
corridor resulted the generation of only 48 sample points which was accessible by
the robot.The 2D map of the explored region, location of the sample point, the audit
scores corresponds to sample points and the distribution of dirt obtained are given in
Figure 10.

4. Trial 4: The trial was carried out inside a cafeteria with polished vinyl floor type.
The dirt particles where sprinkled in four different locations. Robot identified eight
unique probable dirt location corresponds to the identified dirt region. Robot took
total of 127 sample points corresponding to probable dirt location. The trial region
was spacious compared to the other location this allowed to perform more sampling
for inspection The 2D map of the explored region, location of the sample point, the
audit scores corresponds to sample points and the distribution of dirt obtained are
given in Figure 11.

5. Trial 5: The trial was carried out in an semi-outdoor park with coarse cemented
and wooden floor type. The dirt particles where sprinkled in four different loca-
tions. Robot detected four probable dirt region. A total of 63 sample points are
collected.The 2D map of the explored region, location of the sample point, the audit
scores corresponds to sample points and the distribution of dirt obtained are given in
Figure 12.
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(a) Location

(c) Dirt density map

(b) Explored region

(d) Dirt distribution

Figure 8. Location under auditing (a), Map generated (b), audit scores (c), dirt distribution (d).

(a) Location

(c) Dirt density map

(b) Explored region

(d) Dirt distribution

Figure 9. Location under auditing (a), Map generated (b), audit scores (c), dirt distribution (d).
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(a) Location

(c) Dirt density map

(b) Explored region

(d) Dirt distribution

Figure 10. Location under auditing (a), Map generated (b), audit scores (c), dirt distribution (d).

(a) Location

(c) Dirt density map

(b) Explored region

(d) Dirt distribution

Figure 11. Location under auditing (a), Map generated (b), audit scores (c), dirt distribution (d).
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(a) Location

(c) Dirt density map (d) Dirt distribution

(b) Explored region

Figure 12. Location under auditing (a), Map generated (b), audit scores (c), dirt distribution (d).

7.2. Observation and Inference

Figure 13 shows the robot’s operation on during the trials and Table 1 consolidates the
observation and results obtained from trial–1 to trial–5. The outcome of the trial indicates
that, location corresponds to trial–3 got a less audit score compared to other locations.
Even though the dust particles are introduced to different trial locations equally, location 3
shows less audit score since, the naturally accumulated dust particles are comparatively
low. Since it is an indoor environment having frequent maintenance the possibilities for
dirt accumulation is less. The dirt distribution map of location in trial–4 shows a higher
variance corresponds to the peeks located around (16.00,10.00) and (5.00,12.50). This pattern
corresponds confirms that region where dirt particles accumulated where not far apart and
resulted in a rise in average sample a audit score. The significance of higher audit score
and dense dirt distribution map shows that, the location is less cleaned, and its cleanliness
is lower compared to a similar indoor location with same floor type (location under trial–3).
However, the total area explored by the robot and number of samples audited is higher
for trial–4. Hence, cleaning benchmark score that provides overall cleaning performance
is higher for trial–4. Some of the external factors that influences the accuracy of the
framework are:

1. Floor texture: The floor with a coarse texture makes the dust particle less suscepti-
ble for adhesive dust lifting. However it is acceptable to an extend as long as the
cleanliness benchmark is done with similar floor types.

2. Color of the dust particles: Some of the dust particles remain undetected during
sample auditing, especially dust particles that are more reflective (white paper bits
and stapler pins).
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3. Transition between floor types: The periodic pattern suppression algorithm gives
a false positive on detection of probable dirt region when the robot encounters a
transition from one floor type to another.

(a) Trial - 1 (b) Trial - 2 (c) Trial - 3 (d) Trial - 4 (e) Trial - 5

Figure 13. Robot operating on Location 1 (a), Location 2 (b), Location 3 (c), Location 4 (d), Location 5 (e).

Table 1. Consolidated results from experiment trials.

Trial-1 Trial-2 Trial-3 Trial-4 Trial-5

Environment Indoor Semi-outdoor Indoor Indoor Semi-outdoor

Floor type Polished concrete Coarse cemented Vinyl Vinyl Cemented
and wooden

Area Explored (m2) 246.70 187.53 118.39 217.11 248.17

Samples audited 100 76 48 127 63

No of dirt locations 6 6 4 8 4

Average
sample audit score 0.354 0.361 0.376 0.384 0.392

Peak
sample audit score 0.437 0.442 0.495 0.486 0.491

Peak audit score
location (m,m)

(13.00,2.25)
(11.15,4.50)
(13.50,4.35)

(7.55, 8.05)
(19.05,12.45)
(18.25,13.00)

(13.15,11.00)
(15.45,12.05)
(14.25,11.15)

(17.45,10.25)
(21.00,13.15)
(19.35,9.75)

(20.15,21.00)
(22.35,22.50)

Peak dirt distribution
location (m,m) (3,0) (12,9) (16,8) (16,10) (0,3)

Exploration time (s) 1580.0 1551.0 1175.0 1810.0 1247.0

Total audit score 37.032 31.152 21.850 48.531 25.739

Cleaning
benchmark score
(Out of 100)

62.968 59.011 54.479 61.787 59.144

8. Conclusions and Future Works

This paper proposes a framework for auditing the cleanliness of built infrastructure us-
ing an autonomous mobile robot. The proposed method for cleaning auditing is comprised
of sample auditing and space auditing strategies. The sample auditing is accomplished by
developing an audit capable of providing audit score of a sample area and space auditing
is accomplished using a modified frontier exploration based planning strategy on an in-
house developed audit robot with audit sensor on-board. The framework is validated by
conducting experiment trials in multiple locations and the insight of dirt distribution has
been obtained. The future work of this research will be focusing on:

1. Exploration of electrostatic dirt lifting principle for audit sensor
2. Usage of machine learning based data-driven approach for sample auditing.
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3. Improving the sample auditing procedure with odour based sensing.
4. Integration of cleaning audit result to improve the cleaning efficiency of cleaning robots.
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