
RESEARCH ARTICLE

Imaging & identification of malaria parasites

using cellphone microscope with a ball lens

Temitope E. AgbanaID
1☯*, Jan-Carel DiehlID

2‡, Fiona van Pul3‡, Shahid M. Khan3,

Vsevolod Patlan4‡, Michel Verhaegen1¤a, Gleb Vdovin1,4☯¤b

1 Delft Center for Systems and Controls, Delft University of Technology, Delft, The Netherlands, 2 Design for

Sustainability, Industrial Design Engineering, Delft University of Technology, Delft, The Netherlands,

3 Parasitology and Immunologyparasitology Group, Leiden University Medical Center, Leiden, The

Netherlands, 4 Flexible Optical BV, Rijswijk, The Netherlands

☯ These authors contributed equally to this work.

¤a Current address: Delft Center for Systems and Control, 3ME Faculty, TU Delft, Delft, The Netherlands

¤b Current address: Precision and Microsystems Engineering, 3ME Faculty, TU Delft, Delft, The Netherlands

‡ These authors also contributed equally to this work.

* t.e.agbana@tudelft.nl

Abstract

We have optimized the design and imaging procedures, to clearly resolve the malaria

parasite in Giemsa-stained thin blood smears, using simple low-cost cellphone-based

microscopy with oil immersion. The microscope uses a glass ball as the objective and the

phone camera as the tube lens. Our optimization includes the optimal choice of the ball lens

diameter, the size and the position of the aperture diaphragm, and proper application of

immersion, to achieve diagnostic capacity in a wide field of view. The resulting system is

potentially applicable to low-cost in-the-field optical diagnostics of malaria as it clearly

resolves micron-sized features and allows for analysis of parasite morphology in the field of

50 × 50 μm, and parasite detection in the field of at least 150 × 150 μm.

Introduction

Malaria is a life threatening disease prevalent in tropical and subtropical countries with high

mortality and significant economic loss. Based on World Health Organization (WHO) report,

429,000 death cases were attributed to malaria in the year 2015. 212 million new cases of

malaria worldwide was reported in the same year and about 3.2 billion people remain at risk of

malaria globally [1].

Development of rapid diagnostic test (RDT) kits has enabled reliable detection of malaria

infections particularly in remote areas with limited access to quality microscope services [2, 3].

However, RDTs performance have been reported in literature [4, 5] to degrade in tropical

areas. Detection capabilities is low in sensitivity and specificity as compared to conventional

diagnostic methods. Its current sensitivity threshold is reported to be greater than 100 para-

site/μl of blood and as such not sensitive enough to detect early-stage infections. Polymerase

Chain Reaction (PCR) molecular detection methods are proven to be excellent diagnostics

approaches with high efficacy. The cost of PCR equipment and the need for specialized trained
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personnel however restricts its usability to standard and sophisticated clinical laboratory set-

tings. Microscopic examination of thick and thin blood smear still remains the recommended

gold standard for clinical diagnosis of malaria [6, 7]. Widespread application and availability

of conventional microscopy in remote low resource settings where malaria is prevalent is lim-

ited by (i) high cost, (ii) bulkiness of equipment, (iii) shortage of skilled personnel and (iv) lack

of required equipment maintenance skills. Leveraging on the expansion in global cellphone

network coverage, advances in cellphone imaging capabilities and computational power, sim-

ple high resolution diagnostic instrument useful in the global fight against malaria disease are

fast becoming realizable. Optical techniques used in the design of cell-phone microscopy are

based on (1) external optical attachment (2) on-lens design analysis and (3) on-chip optical

design methodology.

Breslauer et al [8] implemented the external attachment technique by redesigning a stan-

dard microscope and attaching it to a cell-phone. The optical train attachment consist of a

60 × achromat objective and standard eyepiece to achieve a spatial resolution of 1.2 μm.

Although the authors demonstrated the application of the system in the imaging and analysis

of malaria infected blood smear, the use of conventional microscope optics and the fabrication

of a bulky attachments increases the cost, complexity and required maintenance skills of the

instrument. To circumvent the disadvantages of the bulky optical attachment, on-lens optical

design techniques offer a relatively simple and low-cost alternative. Using this technique, a

refractive optical element is directly attached to the camera lens of a cell-phone. Smith et al [9]

reports on using a single ball lens attachment to a cell-phone for successful diagnosis of iron

deficiency and sickle cell anemia in a blood smear. The imaging capability of same technique

in the detection of soil helminths in stool sample using a single 3 mm ball lens has been dem-

onstrated in [10]. With this technique, achievable spatial resolution is limited by the aberration

of the attached optics. As a result, imaging of malaria parasite within the red blood cell was dif-

ficult to realize. Using a reversed mobile phone camera lens attachment, a larger field of view

with unity magnification and a spatial resolution < 5 μm is reported in [11]. Detection of soil-

transmitted helminth eggs in stool sample and imaging of red blood cells have been presented

in their paper. Same technique with improved spatial resolution used for detection of Shistoso-
miasis haemtobium infection on the field is reported in [12].

On-chip technique for holography based microscopy demonstrated by researchers in Uni-

versity of California (UCLA) requires major hardware modification [13, 14]. A fabricated

holographic platform is used as a replacement for the original cell-phone objective lens. With

this technique, a high field of view without loss in spatial resolution was reported. However,

reconstructing a standard image from the recorded fringe patterns is computationally

demanding. Furthermore, holographic microscopy requires a small sample to sensor distance

[15–17]. This makes its application for imaging of blood smear and biological tissues a bit

more cumbersome. It’s application in the imaging of red and white blood cells as well as Giar-

dia lambia cyst has been experimentally validated.

Mobile-based optical polarization imaging device reported in [18] detects hemozoins crys-

tals in infected blood smears. Integrated optics include low cost plastic lens assembly which

increases system aberration and complexity. Since hemozoins crystals are formed at the later

stage of the ring form of malaria parasite, imaging of the early ring trophozoite cannot be

demonstrated.

Taking advantage of the low-cost cell-phone with high pixel resolution sensors, advances in

low-power light-emitting diodes (LEDs) and 3-D printing technologies, a battery powered

cell-phone based platform has been developed for field use. Optimized for use with immersion

medium, our diagnostic instrument provides images with the morphology of the parasite at

the early ring trophozoites and other mature stages of the parasite’s developmental cycle. To
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the best of our knowledge, this is the first practical demonstration of imaging and morphologi-

cal identification of malaria parasite using immersion based on-lens optical design techniques.

This constitutes a major difference between our work and existing research works with similar

optical design methodology. Giemsa staining is a simple protocol where blood smears are

immersed in a staining solution containing Azure B and Eosin Y and then rinsed in with

water. As the stains are chemically stable, low cost and do not require access to laboratory

equipment, they can be rapidly deployed in low resource settings where access to efficient clin-

ical laboratory infrastructure is unavailable.

Design and performance

The design of the mobile phone is optimized for photographic imaging, and imposes limita-

tions to the optical scheme, when used in the microscope configuration. Fig 1 illustrates the

two possible realizations of a mobile phone microscope, with the lens of the phone camera

focused to infinity. In the first configuration, shown in the top of Fig 1, the phone camera

replaces the human eye in the exit pupil of a classical microscope. Since the diameter of the

phone lens (not to scale in the figure) is smaller than the average diameter of the pupil of the

human eye, the phone lens tends to reduce the numerical aperture and the achievable resolu-

tion of the instrument. This scheme results in a rather bulky setup, as it requires a complete lab

microscope to be present and properly coupled to the cellphone.

In the second configuration, shown in the bottom of Fig 1, the mobile phone lens is used as

the tube lens. It allows for a very compact implementation, with external lens mounted directly

to the cellphone. However, to obtain an acceptable magnification M� 1 between the sample

and the image, the external objective should have a very short focal length.

Human blood cells have disk-like shape with outer diameter in the range between 7 and 9

μm. For imaging of malaria parasite, nested inside the blood cell, the optical resolution r

Fig 1. Cellphone camera coupled to classical microscope (top), and used as a tube lens coupled to external micro-

objective (bottom).

https://doi.org/10.1371/journal.pone.0205020.g001
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should be: r� 1 μm. The corresponding minimum resolved spatial frequency is estimated as

Fmin � 1/2r = 500 lp/mm.

The camera of a standard mobile phone has focal length in the range F * 3. . .5 mm, back

numerical aperture of NA� 0.25, and the pixel pitch in the image sensor of p * 1.25. . .2 μm.

According to the sampling theorem, one period of the maximum spatial frequency should

cover at least two camera pixels:

p <
lM
4NA

; ð1Þ

where NA is the numerical aperture. According to Rayleigh criterion, the resolution is given

by:

r �
0:61l

NA
: ð2Þ

So the minimum magnification M between the sample and the sensor of the phone should

be at least:

M > 2
p
r
; ð3Þ

where p is the pixel pitch, and r is the required resolution. Assuming p in the range 1.25 . . .2

μm, and r� 1 μm, we obtain the condition:

M > 2:5 . . . 4: ð4Þ

Since the focal length of the phone objective * 4 mm is much smaller than the standard

focal length of a tube lens, which is of the order of 200 mm, the maximum achievable magnifi-

cation would be * 50 times smaller than with the standard tube lens. The focal length of the

objective lens, according to 3 should be rather short:

Fo < F=M � 1:33 mm: ð5Þ

Even 100× standard microscope objective has a longer focal length, therefore glass ball lens,

allowing for a very short focal lengths, is the natural choice.

References [8–10, 19, 20] mention cellphone as a promising diagnostic tool for malaria

detection and exploit glass ball lenses as a cheap objective for the cell-phone based microscope.

However up to date we are not aware of any practical imaging of malaria parasite with a ball-

lens microscope, that allows for analysis of its morphology. It is of a great interest to perform

the optimization of the optical design of the ball lens cell-phone microscope to its ultimate per-

formance. The optimization should define the parameters, such as the material of the ball lens,

the ball lens diameter, the distance from the ball lens to the phone objective, and the size and

position of the aperture stop, that defines the numerical aperture and sets the diffraction limit

to the achievable resolution. Optimized setup should provide the highest image quality in the

widest field, with white light illumination.

For preliminary ray tracing we approximated the cellphone lens with a paraxial model. To

obtain a better estimate, we used the raytracing model of a cellphone micro-objective,

described by the US patent 20070024958, with focal length of F� 4 mm and the image space

numerical aperture A = 0.2. The realistic model of the objective allows to take into account the

practically important vignetting factors. We found that for the rest, the standard phone objec-

tive has a very good correction and performs almost as good as the ideal paraxial lens. This is

explained by the fact, that the numerical aperture in the image space is M times smaller than in

the object space. Assuming maximum numerical aperture in the object space of A = 0.2 and
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magnification M = 4, we obtain A/M = 0.05, which corresponds to F# = 10, where F# corre-

sponds to the photographic focal number of the cellphone lens. Modern cellphone lenses are

corrected for F#� 3, therefore they are expected to have diffraction limited quality at F#� 10.

The optical scheme of the cellphone microscope integrated with an optimized ball lens and

the designed aperture, is shown in Fig 2. Our multi-parametric optimization of the optical

scheme, performed with Zemax Optics Studio, resulted in the following practical conclusions:

• The optimal object space numerical aperture of the glass ball microscope limited by the

spherical aberration should not exceed * 0.2, limiting the maximum achievable resolution.

The optimal theoretical position of the system pupil is in the center of the ball lens. Since

such a position is difficult (but not impossible) to implement, the next practically acceptable

position for the aperture stop is directly behind the ball lens. The position and the size of the

stop are rather critical for the image quality.

• The system is almost insensitive to the distance between the glass ball and the phone lens. In

our simulation we have changed this distance in the range from 0.5 to 3 mm, without any

significant change of the on-axis image quality. Longer distances result in significant vignett-

ing in the off-axis areas, which are anyway strongly aberrated. Vignetting can be used to

align the ball lens with the optical axis of the microscope objective, by centering the image

circle on the cellphone screen.

• The field of view is limited by the off-axis aberrations of the ball lens, with major contribu-

tion from the field curvature.

• Due to high refraction difference between the cell tissue and air, the image of a blood cell in

air has a very high contrast. This contrast is masking parasite inside the cell. Filling the space

between the ball lens and the sample with immersion liquid mitigates the refractive index

difference, allowing for clear imaging of the low-contrast parasite inside the cell. Immersion

also reduces the amount of spherical aberration by eliminating the contribution of the front

surface of the ball lens. The integral effect of immersion allows for a wider field of view. The

type of immersion liquid is not of critical, as long as its refraction index is close in the range

between that of water n� 1.33 and glass n� 1.51.

• The chromatic aberrations did not contribute significantly to the resolution loss.

To mount the ball lens on the mobile phone, we used 50 μm aluminom foil. The ball lens

was mounted between two pieces of foil with a double sided tape. The mounted ball lens was

aligned and attached to the cellphone with a 0.0625 mm scotch tape. The front piece, facing

Fig 2. Ball lens coupled to the cellphone lens, to form a microscope and the zemax model of the aperture inserted

behind the ball lens.

https://doi.org/10.1371/journal.pone.0205020.g002
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the sample, has aperture of about 200 to 300 μm, to provide for a sufficient field of view. The

aperture stop was formed in the piece of foil facing the phone lens. The diameter of the aper-

ture was chosen according to the results of optimization (see Table 1). The misalignment of

the aperture stop within 10% of the aperture diameter does not constitute any serious degrada-

tion in the performance of the optical system. This is quite easily achievable in the practical

implementation of the system. The glass ball was self-centered between two apertures and

mounted directly on the phone. The lateral position of the ball lens assembly with respect to

the phone lens was aligned by centering the defocused image circle produced by a remote

extended light source.

The illumination was provided by an array of white LED, supplemented by a scatterer

formed by a piece of white paper. We found that the position of the scatterer is not critical as

long as the angular size of the scatterer exceeds 2 NA, where NA� 0.2 is the numerical aper-

ture of the glass-ball microscope [21–23].

Table 1 illustrates the visible polychromatic performance of the optimized glass ball micro-

scope with 0.5 mm and 1 mm lenses in air and immersion (imm). The resolution is estimated

on axis r0, and in the corner of the field of 50 × 50 μm and 100 × 100 μm, r35 and r70, where r is

the rms radius of the geometrical point spread function. Obviously, the real resolution is lim-

ited by the diffraction limit rdl for any r< rdl. The theoretical cut-off spatial frequency at zero

MTF contrast corresponding to the estimated numerical aperture (NA) at the wavelength λ =

550 nm is listed as Fm on Table 1.

We have experimentally validated the performance of the cell-phone microscope with the

optical parameters prescribed in Table 1. The “Moto X-style” medium-range smart-phone

used in our experiments has the following sensor specification: Sensor dimension is 5.99 × 4.5

mm with pixel size of 1.12 μm. Focal length of the phone objectives is 4.61 mm and the image

resolution is 5344 × 4008 pixels. We used 0.5 mm diameter, N-BK7 Ball Lens (Edmund Optics

Stock #45 − 553) and 1 mm diameter N-BK7 (Edmund Optics #43 − 708). The aperture dia-

phragm prescribed in the model was created in the aluminum sheet using laser machine for

maximum precision, and mounted directly on the back of the ball lens. To avoid uncertainty

caused by the autofocus function, the camera phone was fixed to infinity. Self-timer was used

to avoid any vibration due to touchscreen operation.

Fig 3 shows the image of the last group of the USAF1951 resolution target (PS7P from

Pyser-SGI), obtained with a 0.5 mm ball lens. The optical system clearly resolves the maximum

element in Group 9 with 645.1 lp/mm, with the width of resolved bar (r) = 0.77 μm. A 1 mm

ball lens, equipped with proper aperture, also clearly resolved this group, though with smaller

magnification. The malaria parasites in the ring trophozoites stage have size of about (1/5)th of

the diameter of red blood cell. Formally, the obtained spatial resolution is sufficient to detect

the presence of parasite in a Giemsa stained thin blood smear. However, the parasite inside

blood cell have a rather low optical contrast, therefore the practical detection of a parasite is

the only ultimate criterion of the method applicability.

Table 1. Optical parameters of the ball lens microscope, optimized for the field of 100 × 100 μm, with different diameters of BK7 glass ball lens.

Ball size Stop radius M NA r0 μm r35 μm r70 μm rdl μm Fm lp/mm

0.5 air 0.09 mm -8.5 0.24 0.95 1.28 3.6 0.95 872

0.5 imm. 0.11 mm -11.5 0.23 1 1.5 3.1 0.85 836

1 air 0.16 mm -6.1 0.21 1.3 1.5 2.7 1.3 763

1 imm. 0.2 mm -4.6 0.19 1.6 2.1 2.3 1.6 690

https://doi.org/10.1371/journal.pone.0205020.t001
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Practical detection of the malaria parasite

P. falciparum parasites from the NF54 strain were obtained from the Radboud University

Medical Center (Nijmegen, The Netherlands). Parasites were in vitro cultured as described by

Marin Mogollon et al [24]. In brief, parasites were cultured using the following conditions;

RPMI-1640 culture medium supplemented with L-Glutamine and 25 mM HEPES (Gibco Life

Technologies) to which was added 50 mg/L hypoxanthine (Sigma). Culture medium was sup-

plemented with 10% human serum and 0.225% NaHCO3. Parasites were cultured at a 5%

hematocrit under 4% O2, 3% CO2 and 93% N2 gas-conditions at 75 rpm at 37˚C in a semi-

automated culture system in 10ml flasks (Infers HT Multitron and Watson Marlow 520U).

Fresh human serum and human red blood cells (RBC) were obtained from the Dutch National

Blood Bank (Sanquin Amsterdam, the Netherlands; permission granted from donors for the

use of blood products for malaria research and microbiology test for safety). RBC of different

donors were pooled every two weeks, washed twice in serum free RPMI-1640 and resuspended

in complete culture medium to 50% haematocrit. Human serum of different donors were

pooled every 4 to 6 months and stored at -20˚C until required. From the in vitro culture, thin

blood smears were prepared of mixed infected Red Blood Cells (RBCs), early ring- to late

schizont-stage parasites, slides were fixed in 100% methanol and stained with a 4% Giemsa

staining to visualize the parasites of the blood-stage cycle as described in Janse et al [25].

Giemsa stained thin blood smears were examined using a cell-phone equipped with a 0.5

mm, NBK-7 ball lens with and without oil immersion as described in Table 1. In the dry imag-

ing, the light is mostly scattered on cell-to-air boundaries, resulting in cell imaging with high

contrast, while the malaria parasites contained within the blood cells are hardly detectable as

shown in the left of Fig 4.

Immersion in oil with refractive index (n = 1.518) reduces the refraction and visibility of

the cell-to air interfaces and improves the relative visibility of the cell contents. Fig 5 is an

Fig 3. The third element of the last group of the 1951 USAF target, imaged without immersion, resolved with the

optimized cellphone microscope, equipped with a properly stopped 0.5 mm ball lens. The width of the smallest

resolved bar in the inset is 0.77 μm, corresponding to Fmax = 645 lp/mm.

https://doi.org/10.1371/journal.pone.0205020.g003
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image of in vitro cultured P. falciparum parasites in Giemsa-stained thin blood smear taken

with 1 mm ball lens cell-phone microscope using immersion oil. The in vitro blood sample

contains infected red blood cells with parasites at different points of development. After stain-

ing, infected red blood cells are clearly visible including those containing very mature parasites

(schizonts). System magnification is 4× and an increased field of view of * 150 μm is realized.

This is an obvious gain as compared to the 100 μm field obtained with the optimized 0.5 mm

ball microscope. Although this optimized design model is sufficient for the detection of P. fal-
ciparum infected red blood cells, the 4× magnification is, however, not sufficient for distinct

discrimination of the morphology of the parasite.

To validate the presence of the parasites in the acquired images we conducted microscopic

examination of healthy blood sample, subjected to the same fixation and staining process as

the infected sample. An image obtained using this system configuration is shown in the right

side of Fig 5. The difference between the infected and the healthy samples is clearly visible.

Fig 4. Images of in vitro cultured P. falciparum parasites in Giemsa-stained thin blood smears taken with 0.5 mm

ball lens cell-phone microscope registered without immersion oil, with high contrast masking the cell contents (a)

and with immersion revealing parasites inside blood cells (b).

https://doi.org/10.1371/journal.pone.0205020.g004

Fig 5. Images of Giemsa-stained thin blood smears with in vitro cultured P. falciparum parasites taken with 1 mm

ball lens cell-phone microscope (a), and non infected red blood cells (b).

https://doi.org/10.1371/journal.pone.0205020.g005
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The number of total fields required for a relevant diagnosis is determined by the field of

view of the microscope. In the gold-standard case, it is approximately 180 × 180 μm for 1.25

NA, 100 × oil immersion microscope objective. Current WHO standard requires 100 fields of

view to provide the final determination of malaria infection. The standard limit of detection is

30 parasites/μl of blood.

The practically realized field of view of 100 × 100 μm implies that a larger number of fields

will be taken for proper diagnosis, as compared to the current standard. Considering the gains

of mobility and simplicity, ball lens microscope still remains a usable tool for field diagnostics,

where little or no diagnostic tool is available. The mobile phone can be used not only for imag-

ing, but also for control and automation of the sample stage movement, providing automatic

registration and pre-processing of a large number of images.

The contrast of the parasite images obtained with oil immersion is rather low as compared

to results obtained from standard light microscopy, therefore post-processing algorithms that

enhance the visual image contrast by extending the histogram to available dynamic range, are

of great practical value. Fig 6 shows the gain in contrast, obtained by registering the cellphone

images in HDR mode. Since the HDR mode combines information from a number of images,

the HDR mode improves both the visibility and the information contents of the image. In this

particular case, it facilitates the detection of the early ring trophozoites.

Fig 7 compares the HDR and normal images. The right image is the reference, acquired

using standard high resolution bright field microscope with 1.25 NA, ×60 magnification and

oil immersion, obtained using a high-end Zeiss Light microscope in Leiden University Malaria

group laboratory. The High Dynamic Range (HDR) imaging is especially useful for improved

detectability with human operator. No other image manipulation was performed beyond

reported.

The limited field of view requires a large number of images to be acquired for a reliable test

outcome. To automate the procedure, we have built a simple device with an automated x-y

Fig 6. Images of in vitro cultured P. falciparum parasites in Giemsa-stained thin blood smears taken with 1mm

ball lens cell-phone microscope using 4x digitally zoom. Visualizing an early ring stage trophozoite (red arrow) and

a matured trophozoite (green arrow). Raw data from cell-phone microscope (a). HDR mode (b).

https://doi.org/10.1371/journal.pone.0205020.g006
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translation stage (see Figs 8 & 9), that allows for motorized movement and easy manual image

focusing of the blood smear sample. The stage is printed on a 3D printer and provides suffi-

cient precision for acquiring a large number of sharp images over a significant field. Our

device is integrated with a single motor which provides a circular x-y movement of the blood

sample. Although this rotational movement of the sample is uncommon in medical practices,

we however confirmed with stakeholders that this is a viable solution since no field of view is

repeated twice. This sample movement technique considerably reduces the size, price and

power consumption of our device. A stepper motor 28BYJ-48 5V (with a unit cost of 1 euro) is

integrated into the device using a low-cost micro-controller which cost approximately 10 €.

An SP 10000 mAh Multi USB battery which cost 13 € provides a power back-up for situations

Fig 7. Images of in vitro cultured P. falciparum parasites in Giemsa-stained thin blood smears. Taken with 0.5 mm

ball lens cell-phone microscope (left). Taken with 0.5mm ball lens cell-phone microscope, with applied 4× digital zoom

and HDR mode (middle). Image of in vivo human P. falciparum infection taken by light microscope, ×60 objective

obtained using a high-end Zeiss Light microscope in Leiden University Malaria group laboratory (right).

https://doi.org/10.1371/journal.pone.0205020.g007

Fig 8. Motorized prototype with automated x-y movement of blood sample, which enables fast acquisition of

large number of images.

https://doi.org/10.1371/journal.pone.0205020.g008
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of sudden power outages as common in remote settings. Total low volume cost which also

includes the cost of 3d printed parts, illumination, ball lens holder, diffusers, screws and

magnets used for the prototype is estimated at approximately 40 €. This price estimation

excludes the cost of the integrated smart-phone. We expect that bulk production will imply a

significant reduction in cost price. With image acquisition rate estimated to be in the range of

1-6 seconds per frame, diagnosis of patient sample could be completed in less than 30 minutes.

The live demonstration of the system is available at: https://www.youtube.com/watch?v=

jnzKhMNlSiE&feature=youtu.be.

Conclusion

Cellphone based microscope with a ball lens objective has been optimized for high resolution

bright field imaging of malaria parasite in thin blood smears. Parasites in various stages of

infection have been detected in sample infected smears. We found that the system based on

the 0.5 mm glass ball lens using immersion enables morphological identification of the para-

site, which is critical to accurate interpretation of the test results. It offers high spatial resolu-

tion, high system magnification (8.5×) in a reduced field. The optimized system based on a 1

mm ball lens however offers a larger field of view of about 150 μm and lower magnification

(* 4.5×), which is useful for preliminary detection. The performance has been critically ana-

lyzed with respect to optimal numerical aperture, field of view, camera pixel pitch, the system

magnification, lens size, and immersion. Compared to the previously reported systems [8–10,

19, 20], we have significantly improved the resolution of ball-lens cellphone-based microscope

system. Use of immersion is instrumental for morphology identification as it allows for resolv-

ing the low-contrast contents of infected cells and reduces the field curvature, thus extending

the field of view. Giemsa staining protocol is well simplified and can be implemented on the

field by rural health field workers, patent medicine vendors etc. and the process of fixing with

methanol is also realizable on the field. Our user design interaction interface survey with

potential users and stakeholders on the field in Nigeria shows the potential of integrating our

device with lab on the field diagnostic method.

Supporting information

S1 Video. 3-D stage video demonstration. The live demonstration of the system is available

at https://www.youtube.com/watch?v=jnzKhMNlSiE&feature=youtu.be.

(MP4)

Fig 9. Overview of the system design (a) depicts the battery back up and micro-controller used for the digital

control of the stepper motor (b) shows the circuitry while (c) depicts the attachment of the ball lens mounted in a

piece of aluminum foil and attached to the smart-phone with a scotch tape.

https://doi.org/10.1371/journal.pone.0205020.g009
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