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Abstract: Given the intensity and frequency of environmental change, the linked and cross-scale
nature of social-ecological systems, and the proliferation of big data, methods that can help synthesize
complex system behavior over a geographical area are of great value. Fisher information evaluates
order in data and has been established as a robust and effective tool for capturing changes in system
dynamics, including the detection of regimes and regime shifts. The methods developed to compute
Fisher information can accommodate multivariate data of various types and requires no a priori
decisions about system drivers, making it a unique and powerful tool. However, the approach has
primarily been used to evaluate temporal patterns. In its sole application to spatial data, Fisher
information successfully detected regimes in terrestrial and aquatic systems over transects. Although
the selection of adjacently positioned sampling stations provided a natural means of ordering the
data, such an approach limits the types of questions that can be answered in a spatial context. Here,
we expand the approach to develop a method for more fully capturing spatial dynamics. The results
reflect changes in the index that correspond with geographical patterns and demonstrate the utility
of the method in uncovering hidden spatial trends in complex systems.

Keywords: Fisher information (FI); information theory (IT); spatial assessment; regime shifts;
geospatial data; early warning indicators (EWI)

1. Introduction

Today’s digital landscape presents a world full of information with more access to geotagged
datasets. Accordingly, in this era, analysts are less likely to struggle with a lack of available data.
Instead, they are taxed with overwhelming amounts of information and charged to make good use of
the data. Large-scale datasets present a variety of challenges (e.g., storage, data integrity, security), yet
offer great opportunities for pivotal discoveries. From detecting medical outbreaks to mining social
media data to developing management options for impaired ecosystems, there is a great need for
methods that not only provide insight on observable phenomena but can uncover latent characteristics
and emergent properties in a veritable data haystack [1].

Geospatial assessment is a well-developed and growing field. Spatial analyses typically involve
the visual assessment of mapped parameters, use of zonal/spatial statistics (e.g., Moran’s I), or
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regression and data aggregation approaches (e.g., principal components analysis) [2,3]. Visual analytics,
data mining and data discovery are fields in statistics catalyzed by high speed computing, enhanced
data storage capability, machine learning techniques and visualization tools [4,5]. These approaches are
often highly interactive, and applications may range from simple data exploration and visualization
to pattern recognition and model development. They have been used to study a variety of problems
from land use change and text mining to intelligent transportation and network security (e.g., [6–8]).
Szewrański et al. [9] demonstrate the utility of combining GIS and business intelligence (BI) to enhance
visual data discovery by linking ArcGIS and Tableau. Similar to the use of ArcGIS with programming
tools (e.g., R, Python) or BI platforms (e.g., Microsoft Power BI, Qlik Sense), such an approach
capitalizes on the unique strengths of each tool. While this is a useful approach, researchers note
that complex problems often necessitate the use of highly complicated tools and techniques which
may limit a broader application of the approaches [4,10]. Still researchers are faced with the need to
understand complex systems, capture patterns and trends in multiple variables, and identify system
drivers. Furthermore, there is a growing emphasis on identifying patterns in underlying dynamics
before a system shifts in its overall condition, which can result in costly, long-term effects. A large and
thriving literature presents the development and use of statistical approaches to detect early warning
signals of regime shifts and tipping points in time series data, but there is a relative lack of such studies
on spatial regimes.

Classic early warning indicators (EWI) are based on the concept of critical slowing down (CSD),
the phenomenon whereby a system’s rate of return to equilibrium slows down in the proximity
of a bifurcation point [11,12]. These CSD-derived indicators assess univariate data for changes in
variance, autocorrelation, conditional heteroskedasticity, density ratio and spectral reddening, among
others [13,14]. Their appeal lies in their generality and ability to be widely applied without requiring
equations, models, or even a mechanistic understanding of the key system processes. However, when
applied to real data, inconsistencies in the ability of CSD-derived indicators to detect regime shifts have
been problematic [15–19]. Their general applicability was also reduced when researchers found that
not all bifurcations are preceded by CSD [20], giving a false negative, and that it is possible to detect
critical slowing down in systems that exhibit nonlinearity but do not have a bifurcation point, giving a
false positive [21]. Spatial correlates of CSD-derived indicators (e.g., spatial variance, near-neighbor
autocorrelation, spatial skewness and spatial spectral density) have been developed and offer many
of the same benefits and fewer concerns than their temporal correlates [11,22,23]. Their utility is
being confirmed in empirical studies [24–27], but their trends may not be consistent in self-organized,
patterned spatial systems because environmental changes other than an impeding regime shift may
be driving trends in the indicator [28]. Spatially heterogeneous stressors also appear to confound the
detection of a CSD-signal [29,30].

Alternative spatial EWIs that aim to avoid the issues associated with CSD-derived indicators
have largely been based on vegetative patch size distributions, with the expectation that they fit a
power law function unless an environmental stressor changes the patch size distribution by truncating
it [31,32]; thus, a changing power law fit acts as an EWI. There has been controversy over the biological
reasonableness of this approach [33]. Regardless of the merits of the debate, the method was developed
for terrestrial drylands, so it may not be appropriate for other types of spatial systems, particularly if
they are not heterogeneously distributed across space. Rather than track the patch size distribution,
several methods focus on other patch size properties such as time fluctuations in the largest cluster
size, variance in the size of the largest patch in proportion to the area of the system, variance in the
proportion of the largest patch to the total area occupied by the same species, and the probability that
a cluster will grow or shrink as a function of its size [34–37]. However, as with the spatial correlates
of critical slowing down, most authors are evaluating these variables over time, requiring temporal
data to document the changes to spatial metrics [38]. Few methods can detect a critical transition with
only 2–3 temporal snapshots, as Weissmann et al. [36,37] attempted with their model of probability of
cluster growth.
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Other spatial EWIs are being developed, such as the recovery length method of Rindi et al. [39],
and network-based indicators such as degree, assortivity, and clustering [40]. The recovery length
refers to the spatial distance from a perturbation at which a population recovers and may be less
data intensive than classic indicators [41]. As a system moves closer to a critical transition, the
recovery length increases. However, this metric is only appropriate for systems that have a sharp
boundary between habitats, such as algal canopies, mussel beds, shallow lakes, salt marshes, and
forest-savannah [39], and is not suitable for highly spatially heterogeneous systems. Network based
indicators such as those in Yin et al. [40] may be more general in their adaptability to a system type
but require long term data with high frequency measurements. A conclusion of most EWI studies is
that multiple methods will always be required, to account for key differences between the ecosystem
types and inconsistencies of the signal detection within a given indicator. Coupled with these issues is
the challenge of capturing a regime shift using univariate data (monitoring one variable). Unless the
system is exquisitely well understood, there is the risk that the variable chosen to represent the system’s
response to a perturbation is insufficient or inaccurate; this is a core issue for traditional indicators [42].
Using traditional EWIs for multivariate systems requires tracking trends in the indicator separately
for each individual variable (i.e., examining 50 bird species requires the computation and tracking
of 50 variance patterns). However, there has been limited success with such an approach. Although
Litzow et al. [43] found that monitoring an increasing variance in pooled fisheries catch data greatly
increased the detection of a collapse, other researchers noted inconsistent trends in univariate EWIs
(e.g., variance, autocorrelation) as a system approaches a critical transition [13,19,44].

Multivariate methods thus become highly desirable, as they are more likely to capture the realistic
complexity inherent in human and natural systems [12,16,45]. The variance index was developed by
Brock and Carpenter [46], and it detects the dominant variance component in a multivariate system.
It is computed using the largest eigenvalue of the covariance matrix and should spike prior to a
transition; however, the results from this index are sometimes unclear [16,17].

Information theory (IT) may offer a useful alternative to the methods mentioned above. IT-based
approaches have been useful for understanding ecosystem function, structure and complexity [47–50].
In a spatial context, entropy has been applied to geography, geoinformatics (e.g., for city zoning,
visualization and modelling), landscape diversity and cognitive development [51–56]. Fisher
information has been demonstrated as an effective tool for capturing trends in complex systems.
It can be employed to assess univariate and multivariate systems using a variety of data types (e.g.,
economic, social, environmental). There is no strict data requirement, minimal assumptions are
necessary, and it is agnostic with regards to the degree of heterogeneity it can handle [57–59].

Fisher information was developed as a measure of disorder in data [60] and provides a means of
quantifying organizational dynamics in complex systems [61]. It has been adapted into an index that
reflects the dynamic order within a system by collapsing patterns in the underlying system variables
into a measure that can be tracked to assess systemic change [58]. This form of Fisher information
has been used to assess sustainability, political instability and resilience, and it has been proposed as
an EWI in a variety of human and natural systems at multiple spatial scales (e.g., [17,57,59,62–66]).
However, it has primarily been employed to evaluate temporal dynamics with time as a natural
ordering parameter. In the first foray into geospatial assessments, Sundstrom et al. [67] used Fisher
information to assess spatial regimes in avian and zooplankton communities. Abundance data was
gathered from historical records for over 200 species collected from routes along transects through
multiple terrestrial ecoregions and aquatic domains. The Fisher information detected spatial regimes
in both systems and delivered additional details about changes in the communities not provided by
other multivariate approaches. Selecting adjacent routes along each transect afforded the ability to use
linear proximity (i.e., the next station) to order the data; however, such an approach limits the types of
questions that can be explored or the assessments that can be performed.

Here, our goal is to adapt the computation of Fisher information to develop a general method for
handling geospatial data in a way that does not require conceptualizing the study area as a series of
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transects. The approach intends to offer an assessment of patterns across a landscape by capturing the
trends in the variables that characterize the condition at each sampling location. Using simulated and
real data, we test the utility of the method and identify mechanisms for detecting signals of geospatial
change. This effort is an extension of the spatial regimes work [67] and involves examining methods at
the nexus of information theory, systems thinking and geographical information systems.

2. Materials and Methods

2.1. Fisher Information

Fisher information was developed as a statistical measure of the amount of information inherent
in data useful for estimating a parameter [60]. Accordingly, it relates to the order and, therefore, the
patterns in data [17]. The form of Fisher information used in this work is based on the probability of
observing states (s) of a system, p(s) [61,68]. From Equation (1), note that the Fisher information (I) is
proportional to the slope of the probability of observing a system state p(s) with respect to the state
(dp(s)/ds); hence, the higher the probability of observing a state (i.e., more consistent patterns), the
higher the Fisher information:

I =
ds

p(s)

[
dp(s)

ds

]2
(1)

System states reflect the system condition using a set of measurable variables (xi). When assessing
temporal trends, the trajectory of a system is defined by a series of points over time, e.g., pti

(
tj
)

:[
x1
(
tj
)
, x2

(
tj
)
, x3

(
tj
)
, . . . , xn

(
tj
)]

. Systems may experience a nominal variation within a particular state
or dramatically change due to internal dynamics (e.g., variation in linked mechanisms or in response to
external perturbations). Given measurement uncertainty and the fact that systems randomly fluctuate,
the points within a finite range may be viewed as observations of the same state; hence, the likelihood
of a specific state relates to the number of points that fit within a specified range (or tolerance) [58].
Karunanithi et al. [58] adapted Equation (1) to handle empirical data using this grouping strategy or
“binning” approach, and Fisher information (henceforth, denoted as FI) is numerically estimated as:

FI = 4
n

∑
s=1

[qs − qs+1]
2 (2)

where q(s) ≡
√

p(s).
Interpreting FI is predicated on the fact that distinct processes and patterns control different

system regimes. Since the deviations in FI indicate changes in the system condition, tracking FI
provides a means of capturing this behavior. Increasing FI signifies a rising dynamic order and
suggests possible movement to more consistent (stable) patterns. Conversely, decreases in FI denote
instability, resilience loss and may warn of an impending regime shift [16,58,66]. When comparing the
stability of different systems, regions or periods of interest, the mean (µFI), standard deviation (σFI)
and coefficient of variation of FI (cvFI) may be used to help distinguish stable regimes from critical
transitions (or regime shifts). Stable regimes are defined by relatively high FI with little to no variation
(↑µFI and ↓σFI) [62,69]. The coefficient of variation

(
σ
µ

)
is a measure of the dispersion around the

mean and is typically low for more stable systems (↓cvFI; [67]). Although transitions may be defined
as declines in FI between two stable regimes [58], we identify them as periods characterized by a
relatively high standard deviation and coefficient of variation in FI (↑σFI, ↑cvFI; [67]). The details on
the derivation, calculation and interpretation of FI may be found in [58,61,67,70,71].

For temporal studies, the basic steps for computing FI include: (1) gathering measurable variables
for the study period; (2) dividing the time series data into moving windows that advance forward
one-time step for each iteration. The size of the window is based upon the amount of data; however,
it is suggested that each window contain at least 8 points [70]; (3) determining the measurement
uncertainty for each variable (size of states), which becomes the boundary (tolerance) around each
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system state. The size of states (sost) may be estimated by using the amount of variation in a stable
portion of the study dataset or within a similar system as a proxy [70]; (4) in each window, binning
points in states of the system using sost; (5) counting the number of points grouped in each state and
dividing this value by the total number of points in the window to produce p(s); (6) computing q(s) =√

p(s) and calculating FI using Equation (2). This process is repeated to provide a FI result for each
window, thereby producing index values over time. Using the binning approach, FI ranges from 0 to
8 [58]. The algorithm has been coded in Matlab and Python [1,70].

2.2. Assessing Geospatial Patterns with FI

Adapting FI to assess spatial dynamics involves first understanding that the core of the
approach involves tracking system states. The system condition may change both temporally
and spatially, where the condition at a location (l) is defined by Sundstrom et al. [67] as C

(
lJ
)

:[
x1
(
lj
)
, x2

(
lj
)
, x3

(
lj
)
, . . . , xn

(
lj
)]

. Since the goal is to evaluate patterns over a geospatial area defined
by latitude, longitude and possibly elevation (or depth for aquatic systems), the challenge then becomes:
What ordering principle should be used for this type of data? How do we capture patterns over an
entire area?

The initial dilemma was determining the optimal way to traverse the area ensuring that all
sampling stations are included in the assessment and a FI value could be assigned to specific locations
over the area. We wanted to examine the data based on the proximity of the survey sites; however,
separating the area into a series of transects would not afford the ability to include adjacent stations that
are not on a fixed path. Furthermore, processing the data in this manner is complicated by determining
where the transects begin and end. Clustering approaches provide an interesting option but would, in
effect, partition the area into discrete groups, thereby limiting the assessments to “regions” (one FI
value per cluster) rather than providing unique FI values for each location over the entire geospatial
area. Moving window techniques or kriging (a method of interpolation to fill data gaps or rasterize
one-dimensional data) require a specific data structure (i.e., evenly distributed observations). With the
aim of developing a method that uses raw data, accounts for the sampling location and is robust to the
resolution, quality and type of data, we opted to use a distance measure to set up moving windows for
the data.

2.3. Distance as an Ordering Parameter

We considered distance (d) metrics computed from the Pythagorean theorem and the Haversine
formula. The three-dimensional Pythagorean formula (also known as the Euclidean metric) measures
the orthogonal distance between two points in linear space:

d =

√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 (3)

The Haversine (“great circle”) formula uses spherical coordinates to account for the curvature of the
Earth’s surface (principally important when covering large areas) and is particularly useful when
using latitudes and longitudes (Equation (4)) [72]:

d = 2r arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) cos (ϕ2) sin2

(
λ2 − λ1

2

))
(4)

Incidentally, a map or equirectangular projection of the Pythagorean formula can be used to capture
the curvature, as well:

d = r

√((λ2 − λ1) cos
(

ϕ2 + ϕ1

2

))2
+ (ϕ2 − ϕ1)

2

 (5)
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In Equations (4) and (5), λ and ϕ are the longitude and latitude, respectively, and the mean radius (r) is
approximated at 6371 km [72].

To examine these methods, each approach was used to compute the distance from a reference
location to the location where the data was collected (i.e., survey location). We define the reference as
the point closest to the origin (or the minimum latitude and longitude). We created a short algorithm
to compute the Euclidean distance and used an existing function (lldistkm.m) from the Matlab file
exchange to calculate both EpPythagorean and Haversine distances [73]. Compared to Haversine
calculations, it is believed that the distance estimates from the Euclidean metric are computationally
“light” (simpler formula); however, the computational speed was not an issue for either method as
the Matlab code produced results within seconds. Since the Haversine distance is largely viewed as a
very robust, “well-conditioned” approach [72], we opted to use it to order the data. Note: the Pearson
correlation coefficients between the Haversine, Euclidean and the EpPythagorean formula were high
and statistically significant (rho ≥ 0.99, p-value ≤ 0.05) for both the model and real data.

Below are the basic steps for using FI to assess geospatial data:

1. Gather data for the study area. Data should include the route (survey station) number, route
location (latitude and longitude) and values for measured variables.

2. Use the latitude and longitude for each station to compute the distance from a reference location.
Here, the reference location is defined as the minimum latitude and longitude from the data.
The Haversine distance from the reference location is computed for all routes.

3. Order the data into a sequence of points by the Haversine distance from the reference location
(from close to far).

4. Divide the data into windows which capture small geographical “sections” of the area based on
the proximity to the reference station. Essentially, the first window will contain the data from
the stations that are closest to the reference site. The following window will advance forward to
the next closest station, and so on. As noted in Section 2.1., each window will contain at least
8 stations.

5. Estimate the measurement uncertainty for each variable (size of states) using the amount of
variation in a stable portion of the study dataset or within a similar system as a proxy [70].

6. In each window, bin points into states of the system using the sost.
7. Count the number of points grouped into each state and divide this value by the total number of

points in the window to produce p(s).
8. Compute q(s) =

√
p(s) and calculate FI using Equation (2).

9. Repeat steps 6–8 for each window.

As in temporal studies, this process results in a FI value for each window which is plotted at
corresponding route locations (latitude and longitude) over the geospatial area. For this study, the
data was managed in Excel, and short Matlab algorithms were developed or employed to compute
the distance metrics (Equations (3)–(5)). The existing FI code [70] was used to compute FI from the
data “ordered” in step 3. The visualizations of the data and results were done in Matlab (R2018b) and
ArcGIS Pro.

2.4. Case Studies

The spatial patterns for system variables may fluctuate in a variety of ways. They may remain
relatively the same, increase (or decrease), deviate dramatically from location to location (or region to
region) or exhibit some behavior between these extremes. As a rudimentary test of the ability of FI
to discriminate between these basic patterns, we created four spatial surfaces that were generated by
simulating data to mimic variables with geospatial patterns that are homogenous (HoG), heterogeneous
(HeT), symmetrically differentiated (HnH: half homogeneous and half heterogeneous) and patchy
(Patch: heterogeneous patch surrounded by a homogenous surface). The data for these surfaces were
generated using the ‘rand’ function in Matlab (R2018b). We also used a combination of the simulated



Entropy 2019, 21, 182 7 of 19

variables to test the method for assessing spatial patterns in multivariate systems. Finally, we employed
FI to examine spatial patterns in avian community structure. The breeding bird survey data on the
total species richness and total population (or number of individuals) detected at each route across
the state of Louisiana were gathered from the USGS North American Breeding Bird Survey (BBS) for
the years 1990 and 2014 [74]. To provide a sense of how FI performs in normal and extreme cases
for discrete data, we initially tested the method on both the raw (actual) data and data simulated to
mimic homogeneous and heterogeneous patterns across the state. We then compared the FI results
for the raw BBS data for 1990 and 2014, and evaluated the FI values against an ecoregion map of
Louisiana and a USGS land cover map [75]. The ecoregion map provides a general expectation for the
community structure in that avian bird communities within an ecoregion should be more similar than
bird communities from different ecoregions. The ecoregion map, however, is based on the potential
vegetation as a function of underlying geological and climatic variables, so it does not always represent
the on-the-ground reality. Therefore, we also visually assessed the changes in FI against a 2001 land
use map which more accurately reflects the actual habitat types across the state. These comparisons
are only meant to highlight the possible utility of a spatial assessment using FI. The BBS case study
presents the basic ability of Fisher information to detect broad changes in a community structure across
large spatial scales where the community structure is largely expected to be spatially autocorrelated
(the bird community structure in nearby sampling locations should be more similar than that in distant
sampling locations), as well as broad shifts in the community structure as a result of differences
between the underlying habitats in which the routes are found.

3. Results

3.1. Case Study: Simulating Geospatial Dynamics

Table 1 summarizes the patterns and parameters (i.e., mean µ and standard deviation σ) used
with the ‘rand’ function in Matlab to generate the data and the expected FI results for the simulated
case studies. A plot of the surfaces shows that the primary axes (x, y) use cartesian coordinates from 1
to 20, and z reflects the simulated data values (Figure 1).

Table 1. Patterns, parameters and expected FI for the simulated case studies.

Pattern Variable Dynamics Simulation Parameters Expected FI

Homogeneous (HoG) Relatively stable HoG: mean (µ) = 50, STD (σ) = 2 FI→∞ (8)
Heterogeneous (HeT) Highly variable HeT: µ = 50, σ = 20 FI→0
Half and Half (HnH) Half stable and half variable HnH: Half HoG and Half HeT FI→0 & FI→∞

Patch Distinctly different patterns
in a particular section HoG with a HeT region FI→∞ around edges and

FI low toward the center

The point closest to the origin (1,1) was used as the reference point and Haversine distances were
computed from this location. The survey route coordinates and variable values were ordered by the
distance from the reference into a 400 X 1 array. The windows were established based on the proximity
to the reference location, so that window 1 contained “stations” located at (1,1), (1,2), (2,1), (2,2), (1,3),
(3,1), (2,3), (3,2), (3,3) and (1,4). Since the homogeneous patterns simulate relatively low random
variation, the range of the values generated for the homogeneous case was used as an estimate of the
measurement uncertainty (sost = [2]) for these initial case studies. FI values computed using a window
size of 10 (hwin = 10) produced spatial patterns in line with the expected results. The homogeneous
patterns reflect a high steady FI (µFI = 8, σFI = 0, cvFI = 0), and the FI for the heterogeneous case is
low and noisy (µFI = 2.30, σFI = 0.69, cvFI = 0.30) (Figure 2a,b). The results for the patch (µFI = 6.91,
σFI = 1.56, cvFI = 0.23), and the half and half (µFI = 4.19, σFI = 2.10, cvFI = 0.50), demonstrate how FI
captures shifting spatial patterns and corresponds with changing parameter dynamics (Figure 2c,d).
Furthermore, because FI is computed in overlapping windows, the trends in the index begin to change
prior to “reaching” the outstanding feature (e.g., patch).
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The true power of FI is highlighted when the method is used to assess multivariate data. We used
a combination of the simulated cases to mimic a multivariate system comprised of two (HoG and
Patch) and three (HoG, HeT and Patch) variables. Note that the characteristics of the underlying
variables remained intact and showed through even when in combination with other distinct patterns
(Figure 3).
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(b) heterogeneous (HeT), (c) patch, and (d) half and half (HnH) data. FI ranges from low (blue) to high
(red), where the FI value at each location represents the change in dynamic order (i.e., patterns) from
one location to the next. High steady FI indicates stable patterns and low FI suggests more variable
patterns from location to location.
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3.2. Case Study: Breeding Bird Survey Data

A comparison of the raw 1990 Breeding Bird Survey data and simulated data representing
homogeneous (HoG) and heterogenous (HeT) patterns demonstrates the performance of FI on discrete
data. Figure 4 provides a plot of the raw and simulated total species (TS) and total population (TP)
data for each survey route. Table 2 displays the data sorted by Haversine distance (in miles) from
the minimum latitude and longitude (ref = [29.55, −93.97]) to the route locations. FI was computed
using a window size of 8 (hwin = 8), and the size of states was estimated based on the range of the
homogeneous data (sost = [15.14 452.86]). FI values were plotted at the route locations (latitude,
longitude) corresponding to each window. The results from the raw BBS data (µFI = 5.72, σFI = 1.20,
cvFI = 0.23) indicate an increasing FI (and stability) at the survey routes from southwest to east across
the landscape, with a clear reduction in FI from central west to southeast separating the state, as well
as a high FI near the eastern border (Figure 5a). As expected, FI for the homogeneous data (µFI = 8,
σFI = 0, cvFI = 0) is reflected by high steady FI, and the exact opposite is true for the heterogeneous
data (µFI = 4.09, σFI = 1.14, cvFI = 0.28), where FI is relatively low and highly variable for much of the
area (Figure 5b,c).

To compare the 1990 results to more recent trends in the avian community structure, we also
evaluated 2014 BBS data. Figure 6 provides a plot of the raw data for 1990 and 2014, showing distinctive
patterns across the state. Note that although the average number of species and total population
(number of individuals) were quite similar between the years (1990: (53.09, 906.18); 2014: (53.23,
941.57), respectively), the maximum number of individuals sampled at the routes exhibited over
a 2-fold increase from 1990 to 2014 (from 1620 to 3987 individuals); hence, there was much more
variability in the 2014 avian population (σ1990: 354.28, σ2014: 757.89). The survey routes fell into three
ecoregions, the Mississippi Alluvial Plains, the Southeastern Plains, and the Texas-Louisiana Coastal
Plain. The patterns of stability appear to have shifted over time (Figure 7). The avian community
structure in the Mississippi Alluvial Plains increased in stability from 1990 to 2014 (cvFI: 0.22 to
0.15). The Texas-Louisiana Coastal Plain had the most stable FI in 1990 (cvFI = 0.15) and maintained
a similar level of stability in 2014 (cvFI = 0.16). The Southeastern Coastal Plains remained highly
variable for both years (Figure 8a,b). An examination of the land use map (Figure 9) provides a visual
assessment of the degree of habitat heterogeneity within each ecoregion, and roughly confirms these
findings. For example, the Southeastern Plains consists of a heterogenous intermixture of pasture/hay
and medium intensity human developments in woody wetland/forest, whereas the Texas-Louisiana
Coastal Plan is more homogenous and largely dominated by cultivated crops and pasture/hay.
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Table 2. Route details and breeding bird survey data sorted by Haversine distance (H.dist). The raw
and simulated total species (TS) and total population (TP) data for 1990 are shown.

Raw HoG HeT

Route Lon Lat H.dist TS TP TS TP TS TP

15 −93.34 30.01 49.49 44 691 49.92 834.73 35.87 1523.52
106 −93.02 29.77 59.60 43 1290 52.27 883.70 63.92 153.10
16 −93.32 30.83 97.00 61 613 52.51 731.16 31.75 825.01
34 −92.45 30.08 98.51 37 1489 51.68 1041.32 54.66 791.37
31 −92.23 29.85 106.56 56 1281 46.93 794.17 51.85 775.60
122 −93.50 31.07 108.75 41 506 49.87 790.54 74.38 468.32
113 −92.43 30.65 119.70 35 1557 50.57 823.04 50.43 640.17
14 −92.46 30.76 123.33 72 1063 58.23 879.98 32.06 435.44
30 −91.88 29.72 126.53 47 715 55.19 821.39 55.90 1044.21
11 −91.82 30.06 133.99 44 1157 52.26 876.80 43.09 828.21
37 −93.57 31.67 148.55 56 651 46.67 877.61 60.41 833.15
905 −91.64 30.37 151.11 59 1620 61.81 826.36 49.43 781.67
119 −92.96 31.56 151.78 60 743 57.15 808.26 50.15 1747.23
33 −91.51 30.40 158.82 62 1489 52.50 904.18 63.54 769.14
20 −92.30 31.46 165.96 47 494 57.40 1002.60 76.91 319.07

105 −91.21 29.70 166.57 52 993 52.03 1158.78 24.09 1127.89
12 −91.51 30.87 173.17 67 1240 55.97 852.82 57.46 664.27
27 −93.97 32.07 174.56 65 794 53.39 909.53 88.35 391.30

903 −91.20 30.41 176.76 54 1299 49.47 902.70 65.62 1671.22
17 −91.67 31.19 178.09 55 941 53.46 705.92 56.06 550.18
3 −90.92 29.90 184.86 53 544 56.39 847.28 91.87 683.87
29 −90.59 29.55 203.67 47 728 48.36 936.93 26.17 280.84

128 −93.48 32.55 209.80 54 644 54.00 1018.93 64.31 1059.71
125 −92.35 32.31 213.66 59 581 51.46 772.81 43.86 1380.79
32 −90.73 30.86 213.72 60 642 47.21 958.19 41.02 810.06
26 −92.62 32.46 216.65 47 538 50.43 934.38 37.17 997.79
9 −90.51 30.70 221.84 56 579 55.57 1008.05 56.33 374.07
18 −91.44 31.98 225.42 49 929 51.29 941.20 50.20 973.77
4 −90.10 29.69 233.14 55 1322 50.62 1071.73 46.51 1102.13
10 −90.25 30.88 240.76 65 621 57.23 892.86 35.60 1707.91

208 −89.85 30.27 252.32 52 493 54.61 780.47 65.70 432.20
38 −91.43 32.49 252.94 41 1007 54.56 876.27 66.42 1163.80
39 −92.28 32.95 255.62 57 650 55.31 908.47 41.62 1036.88
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Figure 5. The FI results for a multivariate assessment of the bird community structure. FI was analyzed
using both the total species and total population data for (a) raw 1990 Louisiana BBS data and simulated
(b) homogeneous (HoG) and heterogeneous (HeT) patterns. The FI values range from low (blue) to
high (red). High steady FI indicates stable patterns, while low FI suggests more variable patterns from
location to location.
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using multivariate data, consisting of total species and total population at each route location. High
steady FI indicates stable patterns and low FI suggests more variable patterns from location to location.
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Figure 8. A comparative assessment of FI for 1990 and 2014 BBS data by ecoregion [76] showing
(a) summary statistics (mean and standard deviation) for FI and (b) a plot of the coefficient of variation
(CV) for FI. Stable regions have a relatively high mean FI, low standard deviation in FI and low
coefficient of variation in FI.
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4. Discussion and Concluding Remarks

With the rise in availability of large-scale geospatial datasets coupled with the complexity of
challenges in a more connected global society, there is a need for methods that afford the ability to
examine patterns and trends in multiple variables without requiring the use of modelling, restrictive
methods or stringent data requirements. Fisher information has been used to study patterns in a variety
of human and natural systems. Researchers have effectively demonstrated the utility of the method and
compared it to contemporary approaches, noting that the approach often delivers unique information
regarding the patterns of change in complex system dynamics not present in other methods [17,67].
While it has been used to explore temporal change in social and ecological systems of various scopes
and scales, its limited application to spatial data showed promise [67]. To examine such data, it was
necessary to adapt the method to capture the dynamic order over a geospatial area. The previous
version of Fisher information was constrained because the approach involved ordering data along one
dimension. In other words, the data was either ordered by time (e.g., [17]), or by using geographically
sequential sampling locations that fell along a “straight-line” transect [67].

To develop a means of assessing the dynamic order in a spatial context, we considered a
variety of methods, including a cluster analysis and complex moving window techniques. However,
upon revisiting the theory and framing the quandary in its most basic terms (changing condition
from location to location), we found a simple solution: order the sampling locations by distance.
Euclidean and Pythagorean metrics are well-known approaches. However, because the methods
measure orthogonal distances, they produce “errors”, particularly when approaching meridians [72].
The Haversine formula accounts for the curvature of the Earth’s surface and is generally seen as the
most efficient method for assessing distance based on latitude and longitude; accordingly, it was used
for the analyses. As a side note, we found that the equirectangular projection of the Pythagorean
distance provided an approximation that closely resembled the Haversine results, and the distance
computed from all three methods was highly correlated.

Distance as an ordering parameter was quite useful for adapting FI for spatial assessments.
The approach afforded the ability to use moving windows (which capture small geographical sections
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of data) to traverse the geospatial area by organizing the data based on distance from a reference
location. The case study results for the simulated data reflected changes that corresponded with
geographical dynamics and matched the expected results based on an understanding of patterns from
previous FI work (e.g., [77]). FI from the breeding bird case study highlighted multiple ways in which
the method could be useful for spatial assessments: to monitor change over a geographical area, within
a spatial region, or even to compare homogeneity/heterogeneity among regions. In addition, the
method could be used in longitudinal studies to determine how patterns changed over time (e.g., pre-
and post-hurricane Katrina). Due to changes in the sampling techniques, resources, catastrophic events,
topographical changes, etc., it is not uncommon for sampling sites to vary over time. Typically, alternate
locations are chosen which capture important variables at sites that are accessible to surveyors and
adequately cover particular regions or features of interest. Spatial Fisher information computations are
based on the data collected at sampling sites, and while the approach is not limited by static sampling
locations, as with any method, it is important to ensure that the survey sites available during the
periods of interest capture the same area. As demonstrated by the comparative assessment of breeding
bird survey patterns in 1990 and 2014, note that while the sampling sites were not exactly the same in
both years, the locations still covered the same area. In addition, the number of survey sites actually
increased from 33 in 1990 to 44 in 2014. Still, we were able to comparatively assess how a breeding
bird community structure changed in the region during these two periods.

FI could also be used to identify the presence or spatial extent of transition zones when moving
from one spatial region to another, though we lacked data of sufficient spatial resolution to test this
in our BBS case study. There is no limit in the size of the area (global, national, regional, city, or
community), nor in the number of sampling sites used to capture the area. While a higher resolution is
ideal, even sparse datasets afford the ability to capture behavior useful for assessing aggregate spatial
(or temporal) patterns and trends. The case studies presented demonstrate the utility and versatility of
the method through its ability to detect patterns in both continuous and discrete data. Note that while
the data resolution in the initial simulated cases was much higher than the data used and generated for
the breeding bird data, the Fisher information trends were distinctive and comparable. For example,
Figure 2a,b and Figure 5b,c show that the method successfully identified patterns and trends (e.g.,
homogeneous and heterogeneous) in both relatively high and low(er) resolution cases. The case studies
were used for illustrative purposes, as they served merely to highlight the possible uses of spatial
Fisher information in an ecological context, rather than draw any ecological conclusions.

Furthermore, an application to multivariate data highlights the core strength of the method in
capturing distinct trends in the index based on patterns in the underlying data. This is particularly
important for the complex problems we face today, where drivers and management options are
unknown or difficult to identify (e.g., harmful algal blooms). Future work includes exploring
other distance approaches (e.g., nearest neighbor) or adding a spatial autocorrelation weighting
factor to test the proximity between points. It would also be useful to examine the impact of the
reference location (e.g., min vs. max latitude and longitude, closest to a particular feature) and to
evaluate other approaches for estimating measurement uncertainty. Measurement uncertainty is a
universal issue for data collection efforts, with data accuracy information often not being provided.
Accordingly, it is critical that approaches be developed to handle this uncertainty. As noted in
Section 2.1, when developing the computational approach for Fisher information [58,70], strategies
were developed for estimating uncertainty by using the variation (e.g., standard deviation) of the
measured variables in a similar system or in a relatively stable portion of the variables from the study
dataset, as an approximation of measurement uncertainty. In this study, we used the range of simulated
homogeneous data as a proxy for stable dynamics; however, as in temporal studies, the use of a “stable”
(relatively low standard deviation) region in the raw dataset may preclude the need for a proxy.

Other forthcoming activities involve applying the method to other datasets (e.g., human, natural,
social), particularly where there are known spatial shifts, comparing the index results to other
approaches (e.g., principal components analysis, Moran’s I, early warning indicators), finding a
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means of combining both space and time into the assessment, and developing methods to identify
which variables drive changes in the index to facilitate identification of management options.

This paper is a proof of concept and serves as a springboard for extending Fisher information to
geospatial assessments. There are many questions left to be answered, yet this effort demonstrates a
method that could provide a valuable tool for mining spatial data to detect latent patterns and signals
in complex systems.
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