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Abstract

RAS effectors specifically interact with the GTP-bound form of RAS in response to extracel-

lular signals and link them to downstream signaling pathways. The molecular nature of

effector interaction by RAS is well-studied but yet still incompletely understood in a compre-

hensive and systematic way. Here, structure-function relationships in the interaction

between different RAS proteins and various effectors were investigated in detail by combin-

ing our in vitro data with in silico data. Equilibrium dissociation constants were determined

for the binding of HRAS, KRAS, NRAS, RRAS1 and RRAS2 to both the RAS binding (RB)

domain of CRAF and PI3Kα, and the RAS association (RA) domain of RASSF5, RALGDS

and PLCε, respectively, using fluorescence polarization. An interaction matrix, constructed

on the basis of available crystal structures, allowed identification of hotspots as critical deter-

minants for RAS-effector interaction. New insights provided by this study are the dissection

of the identified hotspots in five distinct regions (R1 to R5) in spite of high sequence variabil-

ity not only between, but also within, RB/RA domain-containing effectors proteins. Finally,

we propose that intermolecular β-sheet interaction in R1 is a central recognition region while

R3 may determine specific contacts of RAS versus RRAS isoforms with effectors.

Introduction

RAS family proteins, including HRAS, KRAS, NRAS, RRAS1, RRAS2 (or TC21), RRAS3 (or

MRAS) and ERAS, act as signaling nodes and regulate the function of various effectors with

divergent biochemical functions in all eukaryotes [1,2,3]. Signal transduction implies physical

association of these proteins with a spectrum of functionally diverse downstream effectors,

e.g., CRAF, PI3Kα, RALGDS, PLCε and RASSF5, and their activation [1,4,5,6,7,8,9,10]. CRAF,

a serine/threonine kinase, activates the MEK-ERK axis and controls gene expression and cell

proliferation [11]. PI3Kα generates phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and reg-

ulates cell growth, cell survival, cytoskeleton reorganization, and metabolism [12]. RALGDS

links RAS with RAL, a RAS-related protein, and regulates cellular processes, such as vesicular

trafficking and migration [13]. PLCε generates two second messengers of diacylglycerol

(DAG) and inositol trisphosphate (IP3) leading to an intracellular increase of calcium levels,
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which controls endocytosis, exocytosis, and cytoskeletal reorganization [14]. RASSF5 forms a

complex with MST1/2 kinases, human orthologues of Hippo, and WW45 which promote apo-

ptosis and cell cycle arrest [15].

Gain-of-function RAS mutations are frequently found in human cancers, (e.g., pancreatic

cancer [16]) and developmental disorders, including Noonan syndrome [17,18,19]. Whereas

the latter is thought to be commonly caused by dysregulation of mainly one pathway, the

RAS-MAPK pathway [19], RAS-mediated cancer progression involves activation of several

pathways, e.g., PI3K-AKT [3,20], RALGDS-RAL [9,13], PLCε-second messengers [14] or

Hippo-YAP [21] as well as RAS-MAPK [22]. Understanding how effectors selectively recog-

nize RAS-GTP is an attractive approach to functionalize peptides and peptidomimetics capable

of inhibiting RAS interactions and signaling.

RAS effectors contain either a RAS binding (RB) or a RAS association (RA) domain

(among other domains; Fig 1) [7,23,24]. RAS-effector interaction essentially requires RAS

association with membranes [25] and its activation by specific regulatory proteins (e.g., gua-

nine nucleotide exchange factors or GEFs), leading to the formation of GTP-bound, active

RAS [26,27,28]. Notably, RAS proteins change their conformation mainly at two highly mobile

regions, designated as switch I (residues 30–40) and switch II (residues 60–68) [29,30]. Only in

GTP-bound form, the switch regions of the RAS proteins provide a platform for the associa-

tion with effector proteins, especially through their RB or RA domains, respectively. This inter-

action appears to be a prerequisite for effector activation [24,31,32,33]. RB/RA associations

with RAS proteins do not exhibit the same mode of interaction among different RAS effectors

[24,34,35,36]. However, CRAF-RB and RALGDS-RA domains share a similar ubiquitin-like

fold and contact the switch I region via a similar binding mode. In contrast, PI3Kα-RB, RASS-

F5-RA and PLCε-RA domains do not share sequence and structural similarity but commonly

associate with the switch regions, especially switch I [34,35,36,37,38]. Early cell-based studies

have shown that distinct amino acids in switch I, e.g., Thr-35, Glu-37, Asp-38 or Tyr-40) dic-

tate effector specificity [39,40,41,42]. However, there is no clear explanation for such a differ-

ential selection of the switch I region by various effectors.

To date, various methods and different conditions for measuring the binding affinity

between different effectors and RAS proteins, especially HRAS, have been used in many labo-

ratories (reviewed in [4,24,43]), as summarized in Table 1. In this study, the interactions of

five different RAS proteins with both the RB domains of CRAF and PI3Kα, and the RA

domains of RALGDS, PLCε and RASSF5 were reinvestigated under comparable conditions

Fig 1. Domain organization of RAS effectors and different proteins used in this study. (A) Various domains are highlighted, including RAS

association domain (RA) and RAS-binding (RB) domain in blue. The numbers indicate the N- and C-terminal amino acids of the respective effector

domain used in this study. Other domains are: C1, cysteine-rich lipid binding; C2, calcium-dependent lipid binding; CRD, cysteine rich domains; DEP,

Dishevelled/Egl-10/Pleckstrin; EF, EF-hand; kinase, serine/threonine or phosphoinositide kinase; PH, pleckstrin homology; PI3K, Phosphoinositide

3-kinase family, accessory domain; PP, proline-rich region; RA, RAS association; RALGEF, RAL specific guanine nucleotide exchange factor;

RASGEF, RAS specific guanine nucleotide exchange factor; RB, RAS binding; REM, RAS exchanger motif; SARAH, Salvador/RASSF/Hippo. (B)

Coomassie brilliant blue (CBB) stained SDS-PAGE of purified MBP fusion proteins used in this study.

doi:10.1371/journal.pone.0167145.g001
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using fluorescence polarization. In addition, available complex structures and sequence align-

ments were utilized to construct an interaction matrix and systematically assess the association

of investigated effector domains with various RAS proteins. The dissociation constants (Kd val-

ues) obtained were combined with the interaction matrix enabling us to determine common

hotspots as critical specificity-determining residues and to predict selectivity of five RB- and

RA-containing proteins.

Materials and Methods

Constructs

Fragments of human genes encoding both RBs of CRAF (accession number P04049; amino

acids or aa 51–131), PI3Kα (P42336; aa 169–301), and RAs of RALGDS (Q12967; aa 777–872),

PLCε (Q9P212; aa 2130–2240), RASSF5 (Q8WWW0; aa 200–358) were cloned into pMal-

c5X-His vector. Constructs for the expression of human HRAS, KRAS, NRAS, RRAS1 and

RRAS2 isoforms were described previously [5].

Proteins

All RAS and the effector proteins were expressed in Escherichia coli using the pGEX and

pMAL-His expression systems and prepared using glutathione and Ni-NTA based affinity

chromatography as described previously [18]. RAS-mGppNHp was prepared as described [18].

Fluorescence polarization

RAS-effector interaction was performed in 50 mM Tris/HCl pH 7.5, 100 mM NaCl, 5 mM

MgCl2 and 3 mM dithiothreitol at 25˚C using a Fluoromax 4 fluorimeter in polarization mode

as described [18]. Increasing amounts of MBP-tagged effector proteins (0.05–100 μM) titrated

to 1 μM RAS-mGppNHp resulted in an increase of polarization. Equilibrium dissociation con-

stants (Kd) were calculated by fitting the concentration dependent binding curve using a qua-

dratic ligand binding equation.

Sequence and structural analysis

Sequence alignments were performed with Bioedit program using the ClustalW algorithm

[44]. Chimera was used to adjust sequence alignments with superimposed structures [45]. A

python code was written to match sequence alignments with complex structures (S1 Table)

and calculate intermolecular contacts in the form of an interaction matrix. The intermolecular

contacts were defined as pairs residues with a distance�4.0 Å between effectors and RAS pro-

teins in available complex structures in the protein data bank (http://www.pdb.org). Biopython

modules [46] were also used to elucidate corresponding residues in all available complex struc-

tures. All structural representations were generated using PyMol viewer [47].

Results

A general approach for quantitative study of RAS-effector interaction

As previous studies focused mainly on HRAS interaction with effectors, there is a lack of infor-

mation for other RAS proteins (Table 1). Dissociation constants (Kd values) have been invalu-

able in providing insights into particular RAS-effector interactions. However, they have been

obtained under various conditions using diverse experimental techniques (see Table 1) and

cannot be used as such for a comparative evaluation of the interaction of different RAS pro-

teins with various effectors. For this reason, we set out to analyze the interaction of HRAS,
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Table 1. Register of dissociation constants (Kd) determined for the RAS-effector interactions.

RAS Nnucleotidea Effectorsb Kd (μM) Methodc T (˚C) Reference

HRAS mGTPγS CRAF-RB 0.005 GDI 37 [102]

mGDP CRAF-RB 24.0 GDI 37 [102]

[3H]GTP CRAF-RB 0.065 SPA 37 [103]

[γ32P]GTP CRAF-N275 0.029 CPA 4 [104]

[γ32P]GTP RALSGDS-C127 0.028 CPA 4 [104]

mGppNHp AF6-RA1 2.4 GDI 37 [105]

AF6-RA1 2.4 FK 10 [106]

AF6-RA1 2.8 FK 25 [107]

CRAF-RB 0.16 FK 25 [107]

CRAF-RB 0.14 FP 25 [108]

CRAF-RB 0.22 FP 25 [18]

CRAF-RB 0.018 GDI 37 [102]

CRAF-RB 0.16 GDI 25 [109]

CRAF-RB 0.33 GDI 25 [110]

RALGDS-RA 2.70 FP 25 [108]

RALGDS-RA 1.30 FK 25 [107]

RALGDS-RA 3.50 GDI 37 [111]

RASSF5-RA 5.20 FP 25 [108]

RASSF5-RA 0.8 GDI 37 [35]

RASSF5-RA 0.08 FK 37 [35]

PLCε-RA2 5.20 FP 25 [108]

GppNHp CRAF-RB 0.08 ITC 25 [112]

AF6-RA1 3.00 ITC 25 [112]

AF6-RA1 2.20 ITC 25 [24]

RALGDS-RA 1.0 ITC 25 [112]

RALGDS-RA 1.0 ITC 25 [24]

RASSF1-C1-RA 39.0 ITC 25 [24]

RASSF5-C1-RA 0.40 ITC 25 [113]

RASSF5-RA 0.21 ITC 25 [113]

PLCε-RA2 0.82 ITC 25 [24]

PLCε-RA1/2 0.98 ITC 25 [24]

AF6-RA1(Y32W) 0.58 WF 10 [106]

KRAS mGppNHp CRAF-RB 0.04 GDI 37 [102]

CRAF-RB 0.102 ITC 25 [17]

GppNHp CRAF-RB 0.056 BBA 25 [114]

NRAS mGppNHp RAF-RB 0.04 GDI 37 [102]

PI3Kγ-RB 2.90 FP 20 [36]

RRAS1 mGppNHp CRAF-RB 252.9 FP 25 [115]

RALGDS-RA 376.7 FP 25 [115]

RASSF5-RA 54.6 FP 25 [115]

PLCε-RA1 306.6 FP 25 [115]

PI3Kα-RB 330.5 FP 25 [115]

CRAF-RB 1.10 GDI 37 [116]

(Continued )
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KRAS, NRAS, RRAS1 and RRAS2, with five distinct RB- and RA-containing effectors (Fig 1)

under the same conditions. Since the kinetic analysis using stopped-flow spectrofluorometric

method was not applicable to all isolated effector proteins, we utilized the fluorescence polari-

zation approach [48].

Therefore, we prepared both, the RAS proteins in complex with mant (m) GppNHp, a non-

hydrolysable fluorescent GTP analog, and the effector proteins fused to maltose-binding

protein (MBP, 42 kDa). We chose the MBP because it increases the molecular mass of small-

sized RB or RA domains, leads to an amplified fluorescence signal (Fig 2A) and ensures a

Table 1. (Continued)

RAS Nnucleotidea Effectorsb Kd (μM) Methodc T (˚C) Reference

RRAS3 GppNHp AF6-RA1 2.80 ITC 25 [24]

RALGDS-RA 3.70 ITC 25 [24]

PLCε-RA1/2 7.50 ITC 25 [24]

a Different GTP or GDP analogs bound to HRAS have been used: GppNHp, Guanosine-5’- [(β,γ) -imido]triphosphate; mGDP, N-methylanthraniloyl-

guanosine-5’-diphosphate; mGppNHp, N-methylanthraniloyl-GppNHp; mGTPγS, N-methylanthraniloyl-guanosine 5’-[gamma-thio-]triphosphate; [3H]GTP,

tritium-labeled GTP; [γ32P]GTP, gamma 32-phosphate-labeled GTP.
b RAS binding (RB) and RAS association (RA) of various effectors were used; CRFA-N275 contains the N-terminal 275 aa encompassing RB domain;

RALGDS-C127 contains the C-terminal 127 aa encompassing RA domain. PI3Kγ-RB consists of aa 144–1102.
c BBA, bead–based assay; CPA, co-precipitation assay; FK, fluorescence kinetics; FP, fluorescence polarization; GDI, guanine nucleotide dissociation

inhibition; ITC, isothermal titration calorimetry; SPA, scintillation proximity assay; SPR, surface plasmon resonance.

doi:10.1371/journal.pone.0167145.t001

Fig 2. Equilibrium dissociation constants for RAS-effector interaction determined Fluorescence polarization. (A)

Fluorescence polarization experiments were conducted by titrating mGppNHp-bound, active forms of RAS proteins (1 μM,

respectively) with increasing concentrations of the respective effector domains as MBP fusion proteins. Data of two

representative experiments for the interaction of KRAS (upper panel) and RRAS2 (lower panel) with CRAF-RB and PI3Kα-

RB, respectively, are shown. All other data are illustrated in S1 Fig (B) Evaluated equilibrium dissociation constants (Kd)

in μM shown as data points illustrate a significant difference in the binding properties of the effector proteins with both RAS

and RRAS isoforms, respectively. A mean value of 0.94 ± 0.014 μM has been determined for the interaction between HRAS

and CRAF to exemplify the reproducibility of this approach.

doi:10.1371/journal.pone.0167145.g002
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homogeneous monomeric form of the fusion proteins. GST-fusion protein in contrast yielded

a mixture of dimeric and monomeric species (data not shown). Equilibrium titration experi-

ments revealed sufficient signal changes upon binding and guaranteed comparable experimen-

tal conditions for all measurements. By taking advantages of this method, complexes formed

between these two types of proteins provided distinct polarized signals (Fig 2A and S1 Fig)

that enabled us to determine Kd values for RAS-effector interactions (Table 2).

The affinities determined for the interaction between RAS proteins and individual effector

domains vary between 48 nM for the NRAS–CRAF interaction and 205 μM for the interaction

between KRAS and PI3Kα (Fig 2B; Table 2). In general, the tested RAS proteins can be nicely

divided according to their affinities into two distinctive groups, the first comprising HRAS,

KRAS, NRAS and the second the RRAS proteins. Highest affinities were obtained for CRAF,

which were roughly 3–8 fold higher when compared to those for RASSF5, followed by

RALGDS and PLCε with Kd values in the lower micromolar ranges (Fig 2B; Table 2). In con-

trast, RRAS1 and RRAS2 have similar micromolar affinities for the effectors and, interestingly,

also for PI3Kα but not for PLCε. Our data clearly support previous findings (see Table 1) that

isolated effector domains, such as RB or RA, represent functional units, capable of recognizing

and tightly binding to RAS proteins. Exceptions are the low affinity of PLCε RA domain for

the RRAS proteins and PI3Kα RB domain for HRAS, KRAS and NRAS.

Identification of hotspots within protein interfaces

To date eleven complex structures of RAS proteins and their effectors has been determined (S1

Table). Since some of them contain more than one complex in the unit cell, there were alto-

gether sixteen complex structures available for the analysis. In order to map atomic interac-

tions responsible for observed variable affinities, we have extracted information about

interacting interface from all these complex structures and combined them with their sequence

alignments (S2 and S3 Figs). Interestingly, effectors show low sequence similarity (S2A Fig),

but their mode of interaction appears to be well conserved as can be seen after a superposition

of the complex structures on the RAS structure (Fig 3 and S4 Fig). However, some amino acids

aligned according to the sequence were quite distant in the space. Therefore, we edited the

sequence alignment to synchronize it with structural alignment (S2A Fig). Our python code

finally took sequence alignments with PDB files of complex structures as inputs and calculated

all interaction pairs in analyzed complex structures in the form of a matrix (Fig 4A).

Interaction matrix and binding regions

An interaction matrix relates, in a comprehensive manner, the interacting residues on both

sides of complexes, with RAS isoforms as rows and effector proteins as columns (Fig 4A). All

numbering in this study is based on HRAS and CRAF proteins. Each element of the matrix

Table 2. Dissociation constants (Kd) in μM for the interaction between RAS proteins and effectors.

Effector domainsa HRAS KRAS NRAS RRAS1 RRAS2

CRAF-RB 0.094 0.142 0.048 2.29 4.09

RASSF5-RA 0.238 0.421 0.442 11.5 10.00

RALGDS-RA 2.50 1.39 2.84 9.71 5.78

PLCε-RA2 3.70 8.90 5.36 114.4 145.4

PI3Kα-RB 84.3 204.7 145.0 11.00 18.10

a The effector domain were used in these fluorescence polarization measurement as MBP fusion.

doi:10.1371/journal.pone.0167145.t002
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accounts for the number of contacts between corresponding residues in all analyzed structures.

Residues, involved in at least one interaction, were considered to represent a general interac-

tion interface between RAS proteins and their effectors. Interacting amino acids form continu-

ous patches on both sides of the complexes. Particular modes of interactions between parts of

these two patches correspond to regions in the interacting matrix. We identified five such dis-

tinct regions (denoted from R1 to R5) in the matrix which had the highest number of interac-

tions. These are separately highlighted in Fig 4.

Most pronounced is R1, located in the middle of matrix. Inspection of the particular inter-

actions corresponding to this region clearly shows an arrangement of intermolecular β-sheet

interactions in an anti-parallel fashion (Fig 4B). As many of these contacts in R1 are mediated

by main-chain/main-chain interactions, we divided each element of R1 in the matrix into four

categories of interactions (main-chain–main-chain, main-chain–side-chain, side-chain–main-

chain and side-chain–side-chain; S5 Fig). Main-chain–main-chain interactions typically

involve hydrogen bonds between the N-H group and the carbonyl oxygen. We found three

interaction hotspots in all RAS-effector complexes, which represent a central recognition site

in R1. These amino acids are Glu-37, Asp-38 and Ser-39 from the RAS side and positions 66 to

69 from the effector side (Fig 4A, red box). However, side-chain interactions are also highly

Fig 3. Superposition of all available RAS–effector complex structures. Nine structures of RAS-effector domain complexes,

found in a PDB search, including HRAS-CRAF (PDB code: 4g0n, 4g3x, 3kud; red), HRAS-BYR2 (PDB code: 1k8r; yellow),

RAP1A-CRAF (PDB code: 1gua; lime), KRAS-ARAF (PDB code: 2mse; magenta), HRAS-RALGDS (PDB code: 1lfd; cyan),

HRAS-PI3K (PDB code: 1he8; green), HRAS-PLCε (PDB code: 2c5l; orange), HRAS-RASSF (PDB code: 3ddc; blue),

HRAS-GRAB14 (PDB code: 4k81; brown), were overlaid in ribbon presentation. Additional properties outside the interaction

interface (box) are indicated.

doi:10.1371/journal.pone.0167145.g003

Effector Selectivity of RAS Proteins
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Fig 4. RAS-effector interaction hotspots. (A) Interaction matrix of RAS isoforms and effector proteins. Interaction matrix is

launched to demonstrate interaction residues in all available structures (see Fig 3 and S4 Fig). Left and upper parts comprise

the amino acid sequence alignments of the RAS proteins and the effector domains, respectively. Each element corresponds

to a possible interaction of RAS (row; HRAS numbering) and effector (column; CRAF numbering) residues. As indicated,

interaction matrix represents five main regions, which cover the main interacting interfaces. (B) The five main regions,

comprising the main hotspot for the RAS-effector interaction, are highlighted as ribbon and surface representations in the

corresponding colors for the structures of HRAS-PLCε (PDB code: 2C5L) and HRAS-CRAF (PDB code: 4G0N). Key amino

acids which are highlighted by colored background in A are indicated on the structures as well.

doi:10.1371/journal.pone.0167145.g004
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populated in these spots indicating that the nature of amino acids in R1 region also influences

the RAS-effector association (S5 Fig).

Another distinct region is R2, which corresponds to the interactions between the residues

21 to 34 of RAS, including the N-terminal half of switch I, and an elongated loop containing

an α helix (in the case of PLCε and PI3Kα) and two α helices covering positions 83 to 90 (Fig

4). However, the overall shape of corresponding amino acids as well as the spatial orientation

of α-helical structures is very diverse (Fig 4B). These structural diversities not only cause

widely dispersed interactions in R2, but are also responsible for the interactions in the frames

of region R4. The capability of RB domains in R2 to interact also with the β-strand in switch I

of RAS simultaneously involves the recognition region R1 and gives rise to the region R4 (Fig

4B; upper panel). On the other hand, the spatial position of the N-terminal residues of RA

domains in R1 is similar to the position of the C-terminal residues RB domains in R2 resulting

in the interactions established in the region R5. Remarkably, the interaction matrix gives the

hints for a region R3 (Fig 4) that could not be defined as a general interaction patch from a

direct pair-wise comparison of individual complex structures. This region comprises critical

residues, including Ile-36, Glu-37 and Tyr-64 on the RAS side, and positions 57, 59 and 71 on

effector side. R3 very likely determines the selectivity of RAS-effector interaction, especially

because of sequence deviations at this region (Arg-41 and Tyr-64) when comparing HRAS,

KRAS and NRAS with RRAS1, RRAS2, RRAS3. Strikingly, the binding affinities between these

two groups of RAS subfamilies are indeed different.

Discussion

Since the discovery of the first RAS effector [49,50,51,52], inhibition of RAS signaling by

blocking RAS-effector interactions has been an ever-evolving and challenging venture

[53,54,55,56]. Biochemical and biophysical studies providing insights into the interaction of

the downstream effectors with RAS proteins and their variants established the basic principles

for drug design and development [31,43,53,57,58]. There is, however, a quite significant gap in

our understanding of how RAS proteins specifically bind to, and activate, their diverse effec-

tors. Rigorous understanding of this RAS-effector interplay would require an investigation of

larger fragments or full-length effector proteins that was so far been accomplished in only a

few studies [36,59,60]. For several reasons, isolated effector domains have been used in the vast

majority of biochemical and structural studies for the investigation of their interactions with

RAS proteins, predominantly with HRAS (Table 1 and S1 Table). However, interaction char-

acteristics obtained for the same proteins differ considerably. For example, Kd values for the

interaction of HRAS-GTP with CRAF or RALGDS vary from 5 to 330 nM and 80 nM to

39 μM, respectively (Table 1). Another major difference of more than two orders of magnitude

was observed for the interaction between RRAS1 and CRAF. Such a large variation of Kd val-

ues (summarized in Table 1), which in addition have been determined by different groups

using different methods and experimental conditions, made a comprehensive analysis of

sequence-structure-function relationships practically impossible. Thus, we have quantitatively

analyzed the interaction between five effector domains and five RAS proteins, covering for the

first time RRAS2, under the same conditions (Table 2).

Our measurements reveal that the RAS isoforms (HRAS, KRAS and NRAS) behave simi-

larly toward each effector but very differently as compared to RRAS isoforms (RRAS1 and

RRAS2), in spite of their high sequence identity. A previous study has reported that RAS iso-

forms much more strongly activate the MAPK pathway via the RAF kinase as compared to

RRAS isoforms [60]. These data are consistent with Kd values determined in this study for

RAS (ranging 0.048 to 0.142 μM) and RRAS (2.29 to 4.09 μM) isoforms. Notably, RRAS

Effector Selectivity of RAS Proteins
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isoforms bind, except for PLCε, similarly to all tested effector domains with an up to 4-fold dif-

ference in binding affinities compare to RAS isoforms. Interestingly, they significantly inter-

acted with PI3Kα but not with PLCε (Table 2), which is in agreement with the cell-based data

reported previously [60].

In particular, the RAS isoforms, which exhibit high selectivity for CRAF followed by

RASSF5, RALGDS and PLCε, appeared not to retain affinity for PI3Kα. It could be argued

that the isolated RB domain of PI3Kα (consisting of the amino acids 169–301) may lack addi-

tional binding determinants, when compared to the 50-fold higher affinity obtained with the

isolated RB domain of PI3Kγ (amino acids 144–1102) (Tables 1 and 2) [36]. A recent cell-

based study has shown that RB domain of PI3Kα (aa 127–314) is sufficient to bind to ERAS, a

newly discovered member of the RAS family, but obviously not to HRAS [5,61]. However, the

immunoprecipitation studies have revealed the endogenous PI3K isoforms α and γ interact

with almost same affinity with both ERAS and HRAS [5]. These data suggest that RB domain

of PI3K is sufficient for a tight interaction with ERAS but clearly requires additional capacity

to properly associate with HRAS. Sequence deviations in effector binding regions may be criti-

cal for determining the minimal binding regions of RAS/effectors. It is, therefore, hypothesized

that ERAS and RRAS isoforms but not RAS isoforms efficiently interact with RB domain of

PI3Ks and that RAS isoforms need a second binding region or alternatively a scaffold protein.

Considering the affinities of RAS isoforms compared to RRAS isoforms, these are very sim-

ilar for both groups regardless of the effector protein. Correspondingly, the RAS isoforms have

identical effector binding regions and RRAS isoforms, also including RRAS3, revealed a very

high sequence identity in these regions (S3 Fig). Considering differences in affinities between

them, residues outside the interacting interface may play a role in the association via indirect

long-range interactions, electrostatic steering or allosteric modulation. However, direct inter-

acting residues that differ between these two classes of proteins are most likely to be responsi-

ble for observed differences. Noteworthy, there are only two such amino acids in the region R3

with significant occurrence in the interaction at position 41 (Arg/Thr in RAS isoforms com-

pared to RRAS isoforms) and 64 (Tyr/Phe). R41 in RAS isoforms interacts favorably with

asparagine and aspartic acid in CRAF respectively RASSF5, most likely stabilizing the high

affinity interactions with the effector proteins. These interactions appear to be much weaker if

Arg-41 is replaced by a threonine in RRAS isoforms. This explains, thus, huge differences in

Kd between the RAS isoforms and the RRAS isoforms. The same arginine does not make such

favorable contact with RALGDS or PLCε, contributing to lower affinities. Its interaction with

counter residues in PI3K is loose in all analyzed complexes corresponding to higher Kd values

for this effector. Interaction at this spot may determine effector selectivity between these iso-

forms, as confirmed for ERAS that has a tryptophan (Trp-79) at the corresponding position of

Arg-41 in HRAS and has exhibited a higher selectivity for PI3K than CRAF [61]. Another cru-

cial hotspot at position 64 of the RAS proteins very likely also plays an important role in the

interaction with effectors. In accordance with the interaction matrix, it is in the vicinity of

residues at effector positions 57 and 71, respectively. The mode of interaction between these

residues, however, is not pronounced as in the case of Arg-41. Substitution of Tyr-64 for Phe-

nylalanine may have very diverse impacts on the binding affinity.

The RB and RA domains share higher sequence homologies if they are aligned individually.

However, there is no common consensus sequence for RAS binding if they are aligned

together, particularly in the RAS binding regions R1 to R5 (S2 Fig; see arrowheads). Previous

studies dealing with the interaction of small GTPases with their regulators have shown that

there are patches of identical or highly homologous hotspots on both sides of protein surfaces

that interact with each other [62,63,64]. Such interaction is evolutionary conserved and

responsible for the recognition of counter proteins. Our finding that there is no patch of

Effector Selectivity of RAS Proteins

PLOS ONE | DOI:10.1371/journal.pone.0167145 December 9, 2016 10 / 20



identical amino acids in RAS effector proteins (Fig 4 and S2 Fig) seemed to break this rule.

However, intermolecular β-sheet interactions between RAS proteins and their effectors are

conserved and seem to supply the role of such critical patch (or in this special case, a stretch)

of homologous amino acid residues. The analysis of complex structures showed that these

interactions, covered by the recognition region R1 in the interaction matrix, are prevalent and

occur in almost all structures. A β-sheet homodimer interface has been recently reported for

the structures of KRAS-GTP that overlaps the binding site of the effectors within R1 [65].

Therefore, we have analyzed the proximity of effector binding residues in different RAS iso-

forms in the same way as of residues involved in β-sheet interactions and summarized the

results as matrices (Fig 4A and S5 Fig). Introduction of four different interaction types in the

matrix with high scores that separated main-chain and side-chain RAS-effector interactions

allowed a detailed inspection of the central R1 region. Strikingly, there are three hotspots,

which largely undergo main-chain/main-chain interactions (Glu-37 of RAS proteins with

effector residues at position 68 and 69, respectively Asp-38 with residues at position 67; S5

Fig). These observations confirm the central role of R1 in the association of RAS proteins with

their effectors and strongly suggest that the main-chain/main-chain interactions within this

region are crucial for the recognition of these classes of proteins. Finally, we note that interac-

tions in R1 also dependent, to a certain extent, on side chains of accompanying amino acids.

They indirectly support the formation of β-sheet on both sides of complexes. However, they

also utilize their side chains in another intramolecular interactions significantly contributing

to the complex formation. In this way, Asp-38 interacts via its side chain exclusively with the

effector residues at positions 68 and 69 within R1. Side chains of Glu-37 and Ile-37 undergo

contacts with residues at positions 57 and 59 outside of the effector β-strand within the region

R3. On the effector side of complexes, there are only two positions that contain identical or

highly homologous amino acids, namely the position 59 and 84 (Fig 4A). In both cases they

are populated by positively charged residues, with exception of PLCε that has a Gln at position

59. These residues interact with negatively charged residues on RAS proteins (Glu-37 and

Asp-33) and strongly contribute to the formation of complexes. However, no unique and/or

particular residue of effectors can be considered to cause the overall differences observed for

their association with RAS proteins. Effector interacting residues are so variable at almost all

interacting spots that only their concerted action is likely to explain the observed diversity.

Previous studies have shown that RAS variants (at residues Thr-35, Glu-37, Asp-38 and

Tyr-40 and including also residues mentioned above) preferentially interact with some effec-

tors but not others [39,40,41,42]. However, to date there is no clear explanation for the variable

selections of these mutants of RAS by specific effectors. The invariant Thr-35 of RAS was not

located in one of the three main regions in the matrix as it is mainly involved in RAS structure

and does not directly interact with RAF1. However, Spoerner and colleagues have shown that

T35S mutation drastically reduces HRAS affinity for effectors, including CRAF-RB (60-fold)

and RALGDS-RA (>100-fold) [66]. They suggest that minor changes, such as truncating Thr-

35 by a methyl group, strongly affect dynamic behavior of the switch 1 region and, in turn, its

interaction with effectors. However, an early cell-based study has shown that HRAS T35S

mutant interacts only with CRAF but not PI3K, BYR2, RALGDS or RASSF5, and activates the

MAPK pathway [39]. One explanation may be that Gal1 scaffolds the HRAST35S-CRAF [67].

On the other hand, the E37G mutation results in loss of PI3K and CRAF binding, but is able

to interact with RA domain-containing effectors, such as RALGDS, RASSF5 and BYR2 [39].

Our interaction matrix shows contacts between E37G of HRAS and positively charged residues

61 and 69, and main-chain interactions with residue 69, and 70 of effectors. D38A mutation

has been shown to retain CRAF binding but to lose interaction with PI3K, RALGDS and

RASSF5 [42,68]. Among different effector binding mutants, Y40C selectively activates PI3K
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but is unable to activate other effectors, such as RAF1, RALGDS, RASSF5 and BYR2 [69].

HRASG12V/Y40C and HRASG12V/E37G have been reported to cooperatively induce cell transfor-

mation via PI3K and RALGDS, respectively, but not via CRAF [40]. Vandal and colleagues

have observed that KRASG12V/Y40C-PI3K has the largest impact on an increase in tumor size

whereas KRASG12V/E38G-CRAF resulted in a decrease in tumor size but an increase of the

number of tumors when combined with BRAFV600E [70]. Being central elements of R1, R3 and

R4, our analysis not only confirms a prominent role of Glu-37, Asp-38 and Tyr-40 in effector

binding but also gives hints for the mode of their interaction, which relies on the main-chain-

main-chain interaction. As this interaction is largely independent of associated side chains, it

can be considered as conserved in effectors. Consequently, it supplies the role of homologous

residues found to be essential for the recognition of regulator proteins by Rho GTPases.

Hence, we state that these RAS residues are responsible with their main-chain atoms for the

recognition of effectors. On the other hand, side chains of these residues are still influential on

the binding with effectors, either indirectly by affecting the structure of RAS switch I or

directly by interacting with effector residues within the regions R3 and R4 of our interaction

matrix.

In conclusion, our data collectively support previous observations that the specificity in the

signaling properties and biological functions of the various RAS proteins arises from the spe-

cific combination of effector pathways they regulate in each cell type. Considering the identity

of interacting residues of different types of isoforms, a uniform association of RAS isoforms or

rather RRAS isoforms can be expected with a particular effector. This raises the questions of

how does the cell selects between respective RAS proteins and maintains respective effector

activation. There are several review articles illustrating the current state of the art regarding

the activation mechanism of various effectors [9,11,12,13,21,71,72,73]. HRAS, KRAS and

NRAS exhibit remarkable differences beyond their common interaction interfaces for regula-

tors and effectors [74,75,76], especially at their C-terminal hypervariable region (S3 Fig),

which has different features, including protein-protein interaction [77,78]. An interesting

issue, which is increasingly appreciated, is a RAS-membrane interaction that appears to gener-

ate RAS isoform specificity with respect to effector interactions [79,80,81]. This is likely

achieved by RAS-specific scaffold proteins, including CaM, GAL1, GAL3, IQGAPs, NPM1,

NCL, SHOC2/SUR8 [78,82], which may modulate isoform specificity at specific site of the cell.

Hence, elucidation of the RAS signal transduction requires not only RAS-effector interactions

but also additional structures and interplay of multiprotein complexes [25]. Another critical

aspect is sorting/trafficking of the isoforms [83,84] that has recently been shown to be highly

specific for the respective RAS proteins and dependents on specific posttranslational modifica-

tions, including prenylation and acylation [85,86], phosphorylation [87,88], ubiquitination

[89,90,91,92] and acetylation [93,94,95]. Similar characteristics have been reported for the

RRAS isoforms, including protein-protein interaction required for subcellular localization,

e.g., at focal adhesion or recycling endosomes,[96,97], and posttranslational modifications

[98,99,100]. In addition, they contain extended N-termini (S3 Fig) that have been shown to be

critical for RRAS1 in cell migration [101]. The N-terminus of ERAS, which undergoes multiple

interaction with other proteins (Nakhaeizadeh et al., unpublished), contains (like RRAS1)

putative SH3-binding motifs. These motifs may provide additional mechanisms for sorting

and trafficking to specific subcellular sites.

An issue, that remained to be elucidated in more detail, is the mechanism of effector activa-

tion. Notably, identification of additional components of the RAS signal transduction is a criti-

cal step towards understanding the relationship between the RAS proteins and the selective

activation of respective effectors. Functional reconstitution of RAS interaction networks by

using appropriate liposomes and full-length effector proteins may eventually provide
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fundamental insights into the functional characterization of multiprotein complexes of RAS

and the complete identification of regulatory mechanisms.

Supporting Information

S1 Table. Published structures of the RAS and Effector protein complexes.

(DOCX)

S1 Fig. Equilibrium dissociation constants for RAS-effector interaction. Fluorescence

polarization experiments were conducted to determine the dissociation constants (Kd) by

titrating mGppNHp-bound, active forms of RAS proteins (1 μM, respectively) with increasing

concentrations of the respective effector domains, as indicated. The y-axis represents fluores-

cence polarization and the x-axis the concentration of the effector domain as MBP fusion

proteins in μM. Evaluated equilibrium Kd values are illustrated as bar charts in Fig 2 and sum-

marized in Table 2.

(DOCX)

S2 Fig. Sequence Alignment of the RAS effector domains. The overall amino acid alignment

of RB and RA domains (A) was adjusted with structure alignment to increase the identity

score. The latter was clearly increased when we separated RB domains of RAF isoforms (B)

and the catalytic subunits of PI3K isoforms (C) from the RA domains (D). The five regions,

described in Fig 3, are highlighted as arrowheads: R1 in red, R2 in green, R3 in blue, R4 in

orange and R5 in purple. The secondary structure elements, the α helices and β sheets, from

the RA domains were deduced from the crystal structures of HRAS complexes with RALGDS

(PDB code: 1LFD) [37], RASSF5 (PDB code: 3DDC) [117], PLCε (PDB code: 2C5L) [34], and

GRB14 (PDB code: 4K81) [118], respectively.

(DOCX)

S3 Fig. Overall sequence comparison of human RAS proteins. Multiple amino acid sequence

alignment of RAS proteins with high similarities has been determined by ClustalW. Interac-

tion regions, R1 to R5, at interface with the RB and RA effector domains are illustrated by

arrowhead (color-coding is the same as in Fig 4: R1 in red; R2 in green; R3 in blue; R4 in pur-

ple; R4 in orange). The secondary structure elements, the α helices and β sheets, of the G

domain were deduced from the HRAS crystal structure (PDB code: 5P21) [119]. G1 to G5

boxes indicate the presence of five essential GDP/GTP binding (G) motifs. The three amino

acid deviations between RAS and RRAS isoforms that are critical selectivity-determining resi-

dues for effector binding are highlighted in red.

(DOCX)

S4 Fig. Known structures of the RAS-effector complexes. Nine structures of RAS-effector

domain complexes were found in a PDB search, including HRAS-CRAF-RB (PDB code: 4g0n,

4G3X, 3kud), HRAS-BYR2-RB (PDB code: 1k8r), RAP1A-CRAF-RB (PDB code: 1GUA),

KRAS-ARAF-RB (PDB code: 2mse), HRAS-RALGDS (PDB code: 1lfd), HRAS-PI3Kγ (PDB

code: 1he8), HRAS-PLCε (PDB code: 2c5l), HRAS-RASSF (PDB code: 3ddc), HRAS-GRAB14

(PDB code: 4k81). An overlaid structure in ribbon presentation (central panel) illustrates the

overall contacts of these structures (see also Fig 3). The contact sites (with distances of 4 Å or

less) were calculated by Pymol and colored in white. RAS proteins are shown in orchid and the

effector domains in olive as indicated.

(DOCX)

S5 Fig. Intermolecular β sheet-β sheet interactions covered by the recognition region R1.

Intermolecular β sheet interactions between RAS proteins and their effectors is covered by the
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recognition region R1 in the interaction matrix, which is launched to demonstrate interaction

residues in all available structures. Left and upper panels comprises the amino acid sequence

alignment of RAS and effector proteins, respectively. Each element corresponds a possible

interaction of RAS (row) and effectors (column) residues. Besides, each element involves four

sub-elements, which show a combination of main-chain and side-chain interactions, as indi-

cated. Main-chain–main-chain contacts are shown in red.
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117. Stieglitz B, Bee C, Schwarz D, Yildiz Ö, Moshnikova A, Khokhlatchev A, et al. (2008) Novel type of

Ras effector interaction established between tumour suppressor NORE1A and Ras switch II. The

EMBO journal 27: 1995–2005. doi: 10.1038/emboj.2008.125 PMID: 18596699

118. Qamra R, Hubbard SR (2013) Structural Basis for the Interaction of the Adaptor Protein Grb14 with

Activated Ras. PLoS One 8: e72473. doi: 10.1371/journal.pone.0072473 PMID: 23967305

119. Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A (1989) Structure of the guanine-

nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation.

Nature 341: 209–214. doi: 10.1038/341209a0 PMID: 2476675

Effector Selectivity of RAS Proteins

PLOS ONE | DOI:10.1371/journal.pone.0167145 December 9, 2016 20 / 20

http://dx.doi.org/10.1074/jbc.M011600200
http://www.ncbi.nlm.nih.gov/pubmed/11292826
http://dx.doi.org/10.1016/j.str.2006.03.008
http://dx.doi.org/10.1016/j.str.2006.03.008
http://www.ncbi.nlm.nih.gov/pubmed/16698549
http://dx.doi.org/10.1158/1541-7786.MCR-15-0203
http://www.ncbi.nlm.nih.gov/pubmed/26037647
http://dx.doi.org/10.1093/hmg/ddu148
http://www.ncbi.nlm.nih.gov/pubmed/24705357
http://www.ncbi.nlm.nih.gov/pubmed/8636102
http://dx.doi.org/10.1038/emboj.2008.125
http://www.ncbi.nlm.nih.gov/pubmed/18596699
http://dx.doi.org/10.1371/journal.pone.0072473
http://www.ncbi.nlm.nih.gov/pubmed/23967305
http://dx.doi.org/10.1038/341209a0
http://www.ncbi.nlm.nih.gov/pubmed/2476675

