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Abstract: Scalarane-type sesterterpenoids are known for their therapeutic potential in cancer
treatments. However, the anti-inflammatory properties of this class of metabolites remain elusive.
Our current work aimed to investigate the anti-inflammatory scalaranes from marine sponge
Lendenfeldia sp., resulting in the isolation of six new 24-homoscalaranes, lendenfeldaranes E–J (1–6).
The structures of the new metabolites were determined by extensive spectroscopic analyses, and the
absolute configuration of 1 was established by electronic circular dichroism (ECD) calculations.
Compounds 2 and 3 were discovered to individually reduce the generation of superoxide anions,
and compound 1 displayed an inhibitor effect on the release of elastase. These three compounds were
proven to be the first anti-neutrophilic scalaranes.

Keywords: 24-homoscalarane; sesterterpenoid; lendenfeldarane; Lendenfeldia; anti-neutrophilic
inflammation; superoxide anion; NADPH oxidase; elastase release

1. Introduction

The marine sponges of genus Lendenfeldia have been studied for decades since first being reported
in 1982 [1]. Further investigation of this genus revealed more than 50 compounds categorized
into scalarane-type sesterterpenoids [1–5], other types of sesterterpenoids [4], amino acids [6],

Mar. Drugs 2020, 18, 434; doi:10.3390/md18090434 www.mdpi.com/journal/marinedrugs

http://www.mdpi.com/journal/marinedrugs
http://www.mdpi.com
https://orcid.org/0000-0001-7220-6356
https://orcid.org/0000-0002-7849-8254
https://orcid.org/0000-0002-6644-9236
http://dx.doi.org/10.3390/md18090434
http://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com/1660-3397/18/9/434?type=check_update&version=2


Mar. Drugs 2020, 18, 434 2 of 12

steroids [7,8], iminosugars [9], naphthalenes [10], lipid [10,11], and diphenyl ethers [12]. Our group
has extensively studied scalarane-type sesterterpenoids over the past few years and has found
that they demonstrate a wide structural diversity [5,13–16]. This class of compounds possesses a
pentamethyl-D-homoandrostane skeleton. Alkylated scalaranes are usually known as homoscalarane,
exhibiting methylation at C-20 or C-24. In the current report, we summarize a series of structural
classification for scalaranes from the Lendenfeldia sp. sponge. In detail, a normal 25-carbon scalarane
represents the basic type of scalarane, while the 26-carbon ones can be further sorted into tetra- and
pentacyclic homoscalarane groups. Nor-homoscalaranes were characterized with a missing methyl
at position 18 and bishomoscalaranes are defined for the scalaranes with a pair of methylations at
both C-20 and C-24. Additionally, it is noteworthy that most of them present a different oxidation
in positions C-12, C-16, C-22, C-24, and C-25 [17]. The biological properties of scalarane-type
sesterterpenoids were extensively studied with special emphasis on cytotoxic and anti-proliferative
properties [5]. For instance, the scalaranes isolated from sponges of Hyrtios, Hippospongia, Lendenfeldia,
Phyllospongia, and Psammocinia genus were examined to show potent cytotoxicity against A498,
ACHN, MIA-paca, PANC-1, CV-1, molt-4, K562, DLD-1, HCT-116, and T-47D cancer cell lines at
low concentrations (< 4 µM) [5,15,18]. The previous pharmacological studies on scalaranes have
also revealed several possible anti-proliferative mechanisms, including the inhibition of Hsp90 and
topoisomerase II [16], and the binding of DNA [19]. In addition, these sesterterpenoids were also
reported to exhibit other pharmacological activities, such as anti-microbial, anti-fungal, anti-viral,
and so on [16]. However, only few studies have explored the anti-inflammatory activity of this class
of metabolites. A sponge-derived scalarane, named deacetylphylloketa, was reported to exhibit
anti-inflammatory activity by regulating the expression levels of pro-inflammatory factors (TNF-α, IL-6,
and IL-1β) and anti-inflammatory factors (Nrf-2 and HO-1). It could downregulate the expressions
of iNOS and COX-2, as well as attenuate nuclear translocation of NF-κB [20]. Recently, we focused
our ongoing studies on a marine sponge identified as Lendenfeldia sp. From the result of our studies
on this species, we report herein the isolation, structural determination, and bioactivity of six new
24-homoscalaranes, lendenfeldaranes E–J (1–6) (Figure 1). Moreover, the extensive biological screening
suggested the isolates significantly inhibited superoxide anion generation and elastase release in
neutrophils responding to N-formyl-methionyl-leucyl-phenylalanine (fMLF).
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Figure 1. Structures of lendenfeldaranes E–J (1–6) and felixin E (7) and a picture of Lendenfeldia sp.
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2. Results and Discussion

Specimens of the marine sponge Lendenfeldia sp. were collected by hand by self-contained underwater
breathing apparatus (scuba) diving off the coast of Southern Taiwan in 2012, and stored frozen at −20 ◦C
until extraction. The frozen sponge was minced and extracted with ethyl acetate (EtOAc). The fractionation
of the EtOAc-soluble extract led to the production of 11 fractions A–K. Fractions I and J were further
purified by normal-phase and reversed-phase HPLC to afford scalaranes 1–6.

Lendenfeldarane E (1), isolated as an amorphous powder, has a molecular formula of C27H44O4

as determined from its (+)-HRESIMS at m/z 455.31340 (calcd. for C27H44O4 + Na, 455.31318) implying
6 degrees of unsaturation. The IR spectrum showed absorptions for OH (3438 cm−1) and C=O
(1701 cm−1) functionalities. The 1H NMR data (Table 1) demonstrated five tertiary methyls at δH 0.82,
0.85, 0.86, 1.07, and 1.36 (each 3H × s); one secondary methyl at δH 1.40 (3H, d, J = 6.0 Hz); one methoxy
at δH 3.30 (3H, s); as well as three oxymethine protons at 3.43 (1H, ddd, J = 10.4, 10.4, 4.4 Hz), 3.84 (1H,
qd, J = 6.0, 2.4 Hz), and 5.35 (1H, d, J = 4.0 Hz). The 13C NMR (Table 1), heteronuclear single quantum
correlation (HSQC), and distortionless enhancement by polarization transfer (DEPT) spectra revealed
in total 27 carbon signals including a few oxygenated ones, such as a ketone (δC 215.3), a ketal carbon
(δC 104.8), and two oxymethine carbons (δC 74.8 and 78.7).

Table 1. 1H (400 MHz, CDCl3) and 13C (100 MHz, CDCl3) NMR data for 24-homoscalaranes 1 and 2.

1 2

C/H δH (J in Hz) δC Mult. δH (J in Hz) δC Mult.

1 1.59 m; 0.80 m 39.4, CH2 1.99 m; 0.77 m 34.3, CH2
2 1.43 m; 1.58 m 18.1, CH2 1.46 m; 1.58 m 17.9, CH2
3 1.10 m; 1.36 m 41.8, CH2 1.14 m; 1.43 m 41.4, CH2
4 33.3, C 33.0, C
5 0.81 m 56.6, CH 0.97 m 56.9, CH
6 1.43 m 18.4, CH2 1.46 m 18.1, CH2
7 0.92 ddd (12.8, 12.8, 4.0) 41.9, CH2 0.98 m; 1.90 m 42.2, CH2

1.82 ddd (12.8, 2.8, 2.8)
8 37.8, C 37.7, C
9 1.15 m 61.3, CH 1.26 m 61.1, CH
10 38.1, C 41.2, C
11 2.66 dd (14.4, 13.6) 35.1, CH2 2.99 dd (14.8, 13.6) 37.9, CH2

2.24 dd (13.6, 2.0) 2.43 dd (13.6, 2.4)
12 215.3, C 214.8, C
13 51.8, C 51.9, C
14 1.13 m 59.6, CH 1.13 m 59.7, CH
15 1.52 m; 1.90 m 30.8, CH2 1.56 m; 1.92 m 31.0, CH2
16 3.43 ddd (10.4, 10.4, 4.4) 74.8, CH 3.43 ddd (10.0, 10.0, 4.4) 74.6, CH
17 1.89 m 49.6, CH 1.91 m 49.5, CH
18 1.62 m 53.0, CH 1.60 m 52.8, CH
19 0.82 s 21.3, CH3 0.84 s 21.8, CH3
20 0.85 s 33.2, CH3 0.87 s 33.7, CH3
21 1.07 s 17.1, CH3 1.15 s 16.5, CH3
22 0.86 s 15.7, CH3 4.19 dd (12.4, 1.6); 4.65 d (12.4) 64.6, CH2
23 1.36 s 15.3, CH3 1.37 s 15.4, CH3
24 3.84 qd (6.0, 2.4) 78.7, CH 3.83 qd (6.0, 2.0) 78.8, CH
25 5.35 d (4.0) 104.8, CH 5.33 d (4.4) 104.7, CH
26 1.40 d (6.0) 23.5, CH3 1.40 d (6.0) 23.5, CH3

22-OAc 170.7, C
2.04 s 21.1, CH3

25-OMe 3.30 s 54.4, CH3 3.28 s 54.4, CH3

After the detailed analysis of above NMR data, one degree of unsaturation (ketone) was found to
form a part of total. Then the rest of the five unsaturated degrees obscured a pentacyclic homoscalarane.
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This inference can be further confirmed from the heteronuclear multiple bond correlation (HMBC)
(Figure 2) of H3-19 to C-3, C-4, C-5, and C-20; H3-21 to C-7, C-8, C-9, and C-14; H3-22 to C-1, C-5,
C-9, and C-10; H3-23 to C-12, C-13, C-14, and C-18; H-24 to C-16, C-17, C-18, and C-25; H3-26 to
C-17 and C-24; 25-methoxy to C-25, and further confirmed by the 1H–1H correlation spectroscopy
(COSY) (Figure 2). Thus, it indicated that compound 1 is a 6/6/6/6/5 pentacyclic scalarane sesterterpene,
having a 2-methoxy-5-methyltetrahydrofuran. A detailed analysis of these NMR data with those
of a known metabolite, felixin E (7) [14], suggested that the structure of 1 is closely related to that
of 7, with the only difference being an α-hydroxy group at C-25 in 7 replaced by an α-methoxy
group in 1 [14]. All naturally occurring scalarane sesterterpenoids displayed the H-5 trans to Me-22,
assigned as α- and β-orientation, respectively [17]. Then, the relative stereochemistry of 1 was
established by nuclear Overhauser effect spectroscopy (NOESY) spectral analysis. The NOESY
experimental data (Figure 3) demonstrated the correlations H3-22/H3-20, H3-22/H3-21, H3-21/ H3-23,
H3-23/H-17, H3-23/H-25, H-5/H-9, H-9/H-14, H-14/16, H-14/H-18, and H-16/H-24, supporting the
β-Me-20, β-Me-21, β-Me-23, β-H-17, α-OMe-25, α-H-9, α-H-14, β-OH-16, α-H-18, and β-Me-26
assignments. The aforementioned results enabled the establishment of the relative configuration of 1.
Based on the above findings; the configurations of stereogenic carbons of 1 were determined as 5S*,
8R*,9S*,10R*,13S*,14S*,16S*,17S*,18S*,24S*, and 25R*. To further determine the absolute configuration
of 1, the electronic circular dichroism (ECD) calculations for the enantiomers of 1, including 1a
(5S,8R,9S,10R,13S,14S,16S,17S,18S,24S, and 25R) and 1b (5R,8S,9R,10S,13R,14R,16R,17R, 18R,24R,
and 25S) were performed using the method at the B3LYP/6-31þG* level with Gaussian 9.0 software
(Figure 4). By comparison of the experimental and calculated ECD spectra, the result of compound 1
was in good agreement with that of 1a, inferring the 5S,8R,9S,10R,13S,14S,16S,17S,18S, 24S, and 25R
configurations. Hence, the structure, including the absolute configuration of lendenfeldarane E (1) was
unambiguously assigned as shown in Figures 1 and 3 (Supplementary Materials, Figures S1–S8).
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Lendenfeldarane F (2), an amorphous powder, showed the molecular formula C29H46O6

determined by (+)-HRESIMS and 13C NMR data, implying seven unsaturated degrees. The IR spectra
indicated the presence of OH (3451 cm−1), ester carbonyl (1731 cm−1), and C=O (1700 cm−1) functional
groups. The 1H, 13C, DEPT, and HSQC spectra (Table 1) displayed seven methyls, one oxymethylene,
two oxymethines, one ester carbonyl, one ketone, and one ketal carbon, representing two unsaturated
calculations. Thus, the above NMR data and the rest of the five unsaturated degrees of 2 implied a
pentacyclic homoscalarane. The NMR data of 2 resembled those of 1 with the exception of an additional
oxymethylene signal (δC 64.6; δH 4.19, 1H, dd, J = 12.4, 1.6 Hz; 4.65, 1H, d, J = 12.4 Hz, CH2-22),
and an acetoxy group (δH 2.04, 3H, s; δC 170.7, C; 21.1, CH3). An ethyl acetate substitution at position
10 can be deduced by HMBC cross-peaks from H2-22 to C-1, C-5, C-9, C-10, and acetate carbonyl.
The stereochemical configuration was identical to that of other scalarane sesterterpenes based on the
NOESY cross-correlations at H3-22/H3-20, H2-22/H3-21, H3-21/H3-23, H3-23/H-25, H-5/H-9, H-9/H-14,
H-14/16, H-14/H-18, and H-16/H-24 (Figure 3). Based on the above findings, the configurations of
stereogenic carbons of 2 were determined to be 5S*,8R*,9S*,10R*,13S*,14S*,16S*, 17S*,18S*,24S*, and 25R*.
As 24-homoscalaranes 2–6 were isolated along with 1 from the same target organism, it is reasonable
on biogenetic grounds to assume that 2–6 have the same absolute configurations as that of 1. Therefore,
the configurations of stereogenic centers of 2 were determined as 5S,8R,9S,10R,13S,14S,16S,17S,18S,24S,
and 25R (Supplementary Materials, Figures S9–S16).

Compound 3 (lendenfeldarane G) was obtained as an amorphous powder. Its molecular formula
was determined to be C29H48O6 by (+)-HRESIMS with six degrees of unsaturation. The IR spectra
indicated the presence of OH (3462 cm−1) and ester carbonyl (1729 cm−1) functionalities. 1D and 2D
NMR data disclosed a 6/6/6/6/5 pentacyclic skeleton, which was closely related to compound 2. The only
difference between these two compounds was a reductive substitution at C-12 in 3. Comparing the 1H
and 13C NMR data (Table 2) of 3 with those of 2 showed an extra oxymethine signal (δC 72.0; δH 3.57, 1H,
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br s, CH-12) and the 12-ketonic group was absent in 3. Moreover, the substitution with -OH at position
12 can also be confirmed by HMBC (Figure 2) from H3-23 (δH 0.93, 3H, s) to C-12 (δC 72.0), as well the
COSY correlation (Figure 2) H2-11/H-12. The configuration of 3 was confirmed to be unanimous as that
of 2. The NOESY correlations from H3-23 to H-12 supported an S assignment of oxymethine carbon
at C-12, then established the structure illumination of lendenfeldarane G (Supplementary Materials,
Figures S17–S24).

Table 2. 1H (400 MHz, CDCl3) and 13C (100 MHz, CDCl3) NMR data for 24-homoscalaranes 3 and 4.

3 4

C/H δH (J in Hz) δC Mult. δH (J in Hz) δC Mult.

1 2.04 m; 0.82 m 34.5, CH2 2.03 m; 0.84 m 34.6, CH2
2 1.45 m; 1.56 m 18.4, CH2 1.45 m; 1.56 m 18.4, CH2
3 1.18 m; 1.43 m 41.5, CH2 1.17 br d (3.6); 1.42 m 41.5, CH2
4 32.9, C 33.0, C
5 1.10 m 56.6, CH 1.09 m 56.6, CH
6 1.56 m 18.1, CH2 1.56 m 18.1, CH2
7 1.09 m; 1.78 ddd (12.8, 3.2, 3.2) 42.0, CH2 1.08 m; 1.79 ddd (12.4, 3.2, 3.2) 42.1, CH2
8 37.6, C 37.6, C
9 1.57 m 52.0, CH 1.58 m 52.1, CH
10 40.1, C 40.2, C
11 1.89 m; 1.29 m 31.3, CH2 1.90 m; 1.29 m 31.3, CH2
12 3.57 br s 72.0, CH 3.67 ddd (3.2, 3.2, 3.2) 72.1, CH
13 39.0, C 39.0, C
14 1.38 m 52.2, CH 1.40 m 52.2, CH
15 1.86–1.98 m 25.9 CH2 1.91 m, 2.00 m 26.1 CH2
16 3.55 ddd (10.0, 10.0, 4.8) 72.9, CH 3.58 ddd (10.0, 10.0, 4.8) 73.0, CH
17 1.57 m 51.7, CH 1.58 m 52.1, CH
18 1.92 m 55.8, CH 1.94 m 56.7, CH
19 0.82 s 21.8, CH3 0.82 s 21.8, CH3
20 0.86 s 33.7, CH3 0.87 s 33.7, CH3
21 0.90 s 16.1, CH3 0.91 s 16.1, CH3
22 4.17 d (11.6); 4.56 d (11.6) 65.0, CH2 4.18 dd (12.0, 0.8); 4.57 d (12.0) 65.0, CH2
23 0.93 s 16.3, CH3 0.94 s 16.2, CH3
24 3.98 qd (6.0, 3.2) 79.5, CH 4.09 qd (6.0, 3.2) 79.7, CH
25 4.85 d (6.4) 103.9, CH 5.35 dd (6.8, 3.2) 96.5, CH
26 1.37 d (6.0) 20.3, CH3 1.36 d (6.0) 20.5, CH3

22-OAc 171.0, C 171.0, C
2.05 s 21.2, CH3 2.06 s 21.2, CH3

25-OMe 3.45 s 56.6, CH3

Lendenfeldarane H (4) was also obtained as an amorphous powder. The (+)-HRESIMS (m/z
501.31879, calculated for C28H46O6 + Na, 501.31866) and NMR data of 4 indicated a molecular formula
C28H46O6 with six degrees of unsaturation. The IR spectra revealed the presence of OH (3292 cm−1)
and ester carbonyl (1740 cm−1) groups. Based on the analysis of the NMR spectra between 3 and 4
(Table 2), a missing methoxy group signal was found, together with different assignments at position
25 (4: δH 5.35, 1H, dd, J = 6.8, 3.2 Hz/δC 96.5; 3: δH 4.85, 1H, d, J = 6.4 Hz/δC 103.9). The HMBC cross
peak (Figure 2) further revealed the replacement of an α-hydroxy group in 4. The configuration of 4
was confirmed to be identical to that of 3 by NOESY experiment (Figure 5). Compound 4 was finally
assigned, as shown in Figure 1 (Supplementary Materials, Figures S25–S32).

Lendenfeldarane I (5) was isolated as a white powder. The (+)-HRESIMS at m/z 497.28757 (calculated
for C28H42O6 + Na, 497.28736) indicated a molecular formula of C28H42O6. The IR spectra showed
absorptions for OH (3460 cm−1), C=O (1701 cm−1), and ester carbonyl (1745 cm−1) functionalities.
The 13C NMR data (Table 3) revealed 28 carbons signals stored by HSQC and DEPT, including a ketone
at δC 211.9 and two ester carbonyls at δC 170.7 and 172.3. Therefore, three degrees of unsaturation
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were built up, then the rest of the five unsaturated degrees were speculated to come from a pentacyclic
homoscalarane. The 1D and 2D NMR data disclosed the existence of a compound 5-like 6/6/6/6/5
pentacyclic skeleton. The only found divergence was located at E-ring, the disappearance of the
ketal carbon in 2 was replaced by an ester carbonyl in 5. Then the HMBC (Figure 2) cross-peak from
H-24 to C-17, C-18, and C-25 allowed the establishment of a γ-valerolactone. The stereochemical
configuration was identical to that of other scalarane sesterterpenes [5] based on the NOESY (Figure 6)
correlations at H3-22/H3-20, H2-22/H3-21, H3-21/H3-23, H-5/H-9, H-9/H-14, H-14/16, H-14/H-18, and
H-16/H-24. Consequently, compound 5 was assigned as shown in Figure 1 (Supplementary Materials,
Figures S33–S40).
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24 3.98 qd (6.0, 3.2) 79.5, CH 4.09 qd (6.0, 3.2) 79.7, CH 
25 4.85 d (6.4) 103.9, CH 5.35 dd (6.8, 3.2) 96.5, CH 
26 1.37 d (6.0) 20.3, CH3 1.36 d (6.0) 20.5, CH3 

22-OAc 171.0, C 171.0, C 
2.05 s 21.2, CH3 2.06 s 21.2, CH3 
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Table 3. 1H and 13C NMR data for 24-homoscalaranes 5 and 6.

5 6

C/H δH (J in Hz) a δC Mult. b δH (J in Hz) c δC Mult. d

1 1.99 m; 0.80 m 34.4, CH2 2.10 m; 0.51 ddd (12.6, 12.6, 3.6) 34.3, CH2
2 1.49 m; 1.64 m 18.0, CH2 1.43 m; 1.56 m 18.1, CH2
3 1.15 m; 1.45 m 41.4, CH2 1.13 m; 1.44 m 41.7, CH2
4 33.0, C 33.0, C
5 0.97 m 57.0, CH 0.98 dd (12.6, 2.4) 57.0, CH
6 1.50 m; 1.60 m 18.1, CH2 1.42 m; 1.57 m 17.9, CH2
7 0.99 m; 1.87 m 41.9, CH2 1.12 m, 1.90 m 42.0, CH2
8 38.5, C 37.0, C
9 1.28 br d (14.0) 63.3, CH 1.31 dd (7.2, 7.2) 53.5, CH

10 41.6, C 41.8, C
11 3.15 dd (14.0, 12.4); 2.51 dd (12.4, 2.4) 37.6, CH2 1.87–1.95 m 27.9, CH2
12 211.9, C 5.51 t (3.0) 73.8, CH
13 50.0, C 39.0, C
14 0.95 m 59.3, CH 1.79 dd (12.6, 2.4) 46.2, CH
15 1.50 m; 1.97 m 31.1, CH2 2.21 m 23.9 CH2
16 3.61 ddd (9.6, 9.6, 4.4) 72.0, CH 4.46 dd (5.4, 5.4) 61.7, CH
17 1.92 m 51.4, CH 161.3, C
18 2.58 d (14.4) 49.7, CH 135.7, C
19 0.84 s 21.8, CH3 0.77 s 21.8, CH3
20 0.87 s 33.7, CH3 0.87 s 33.8, CH3
21 1.18 s 16.6, CH3 1.10 s 16.3, CH3
22 4.17 dd (11.6, 1.6); 4.67 d (11.6) 64.6, CH2 3.88 dd (11.4, 4.8); 4.04 d (11.4) 62.8, CH2
23 1.38 s 14.7, CH3 1.16 s 19.4, CH3
24 4.30 qd (6.0, 2.4) 79.5, CH 5.07 q (6.6) 76.5, CH
25 172.3, C 170.5, C
26 1.53 d (6.0) 20.1, CH3 1.41 d (6.6) 18.3, CH3

12-OAc 169.8, C
1.98 s 21.2, CH3

22-OAc 170.7, C
2.06 s 21.1, CH3

a 400 MHz, CDCl3. b 100 MHz, CDCl3. c 600 MHz, CDCl3. d 150 MHz, CDCl3.
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) of 5 and 6.

The molecular formula of lendenfeldarane J (6) was determined as C28H42O6 from an [M + Na]+

sodiated adduct ion at m/z 497.28729 (calcd. for C28H42O6 + Na, 497.28736) and NMR data, revealing
eight degrees of unsaturation. The 1H NMR data (Table 3) of 6 showed the five uncoupled (singlet)
methyls at δH 0.77, 0.87, 1.10, 1.16, and 1.98; one doublet coupled methyl at δH 1.41 (J = 6.6 Hz);
and two oxymethines at δH 5.51(1H, t, J = 3.0 Hz) and 4.46 (1H, dd, J = 5.4, 5.4 Hz). The diastereotopic
geminal proton at δH 3.88 (1H, dd, J = 11.4, 4.8 Hz) and 4.04 (1H, d, J = 11.4 Hz) were assumed to
be an oxymethylene group. Based on the 13C spectrum, 6 was found to possess an oxymethylene
(δC 62.8), two oxymethines (δC 61.7 and 75.5), two ester carbonyls (δC 170.5 and 169.8), as well as a
tetra-substituted olefin (δC 135.7 and 161.3) that accounted for an unsaturated degree. Thus, the above
NMR data and the remaining five unsaturated degrees of 6 required a pentacyclic analogue. Based on
the COSY and HMBC correlations (Figure 2), the planer structure of 6 was determined as shown in
Figure 1. Compound 6 held a methylfuran-2(5H)-one moiety determined by HMBC cross-correlations
from H-24 to C-17, C-18, and C-25. Furthermore, the relative configuration was confirmed by NOESY
(Figure 6) correlations (H-12/H3-23, H-16/H-14, and H-16/H-24) and the comparison with related
compounds [5,21] (Supplementary Materials, Figures S41–S47).

Several lines of scientific and clinical evidences indicated that neutrophil oxidants and elastase
secreted by inflammatory cells play critical roles in the pathogenesis of several inflammation-related
disorders, such as psoriasis, arthritis, acute respiratory distress syndrome, and systemic lupus
erythematos [22]. NADPH oxidase type 2 (NOX2) is an important enzyme that causes superoxide
generation during respiratory burst, a predominant neutrophil function against foreign pathogens.
An excessive amount of superoxide release can damage host tissues and lead to neutrophilic
inflammation. Besides, another critical role, elastase, can contribute to neutrophil migration toward the
inflammatory site, and activates neutrophil degranulation that causes the release of more elastolytic
proteases to degrade the proteins from invading pathogens. Many recent studies have revealed that
the pharmacological inhibition of NOX2 and elastase can restrict inflammatory responses, indicating
the promising therapeutic potential of NOX2 and elastase inhibitors for treating neutrophil-dominant
inflammatory disorders [23].

In the current study, the inhibition of fMLF-activated superoxide anion generation and elastase
release were evaluated on metabolites 1–6 to characterize their property of anti-neutrophilic
inflammation (Table 4). From these results, compound 1 showed the most potent inhibitory effect
independently against elastase release, as well as a slight enhancing property in superoxide generation.
With an additional acetyl functionality at C-22, compounds 2 and 3 both displayed activity of superoxide
inhibition, but not elastase inhibition. These results suggest a crucial role of C-22-acetylation of
homoscalarane on specifically affecting neutrophilic targets, such as NOX2 and elastase.
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Table 4. Inhibitory effects of 24-homoscalaranes 1–6 on superoxide anion generation and elastase
release by human neutrophils in response to fMLF.

Compound
Superoxide Anions Elastase Release

IC50 (µM) a Inh (Enh) b % IC50 (µM) a Inh %

1 (11.35 ± 3.65) * 1.74 ± 0.08 82.80 ± 3.91 ***
2 6.17 ± 0.16 70.68 ± 3.86 *** 26.15 ± 3.40 **
3 6.81 ± 0.52 62.92 ± 2.58 *** 25.19 ± 4.01 **
4 7.13 ± 3.69 2.97 ± 1.63
5 9.97 ± 4.38 6.81 ± 2.46
6 4.52 ± 2.91 1.16 ± 0.89

Percentage of inhibition (Inh %) at 10 µM. Results are presented as mean ± S.E.M. (n = 3~5). * p < 0.05,
** p < 0.01, *** p < 0.001 compared with the control (DMSO). a Concentration necessary for 50 % inhibition
(IC50). b Inh = inhibition, Enh = Enhancement.

3. Material and Methods

3.1. General Experimental Procedures

Optical rotations spectra were recorded on a JASCO P-1010 polarimeter (cell length 10 mm) (JASCO,
Tokyo, Japan). IR spectra were obtained with a Thermo Scientific Nicolet iS5 FT-IR spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). ECD spectra were recorded on JASCO-815 CD
spectrometer. The NMR spectra were obtained on a JEOL ECZ 400S or an ECZ 600R NMR (JEOL,
Tokyo, Japan), using the residual CHCl3 signals (δH 7.26 ppm) and CDCl3 (δC 77.0 ppm) as the
internal standards for 1H and 13C NMR, respectively. The coupling constants (J) are presented in
Hz. ESIMS and HRESIMS data were collected on a Bruker 7 Tesla solariX FTMS system (Bruker,
Bremen, Germany). TLC was performed on Kieselgel 60 F254 (0.25 mm, Merck, Darmstadt, Germany)
and/or RP-18 F254S (0.25 mm, Merck, Darmstadt, Germany) coated plates and then visualized by
spraying with 10% H2SO4 and heating on a hot plate. Silica gel 60 (Merck, 40−63 and 63−200 µm)
were used for column chromatography. Normal-phase HPLC (NP-HPLC) was performed using a
system comprising a pump (L-7110; Hitachi, Tokyo, Japan), an injection port (Rheodyne, 7725; Rohnert
Park, CA, USA), and a semi-preparative normal-phase column (YMC-Pack SIL, SIL-06, 250 × 20 mm,
D. S-5 µm; Sigma-Aldrich, St. Louis, MO, USA). Reverse-phase HPLC (RP-HPLC) was performed
using a system comprising a pump (L-2130; Hitachi), a photodiode array detector (L-2455; Hitachi),
an injection port (Rheodyne; 7725), and a reverse-phase column (Luna 5 µm, C18(2) 100Å AXIA Packed,
250 × 21.2 mm; phenomenex, Torrance, CA, USA).

3.2. Animal Material

Specimen of the marine sponges Lendenfeldia sp. was collected by hand using self-contained
underwater breathing apparatus (scuba) diving off the coast of Southern Taiwan on September 5,
2012, and stored in a freezer until extraction. The specimen was identified by one of the authors
(Y.M. Huang). A voucher specimen (NMMBA-TWSP-12006) was deposited in the National Museum
of Marine Biology and Aquarium, Pingtung, Taiwan.

3.3. Extraction and Isolation

Sliced bodies of Lendenfeldia sp. (wet weight 1.21 kg) were extracted with ethyl acetate (EtOAc).
The EtOAc layer (5.09 g) was separated on silica gel and eluted using a mixture of hexanes and
EtOAc (stepwise, 100:1—pure EtOAc) to yield 11 fractions A–K. Fraction I was separated by NP-HPLC
using a mixture of dichloromethane and acetone (4:1, flow rate: 3.0 mL/min) to afford 22 fractions
I1–I22. Fraction I4 was separated by RP-HPLC using a mixture of MeOH and H2O (85:15, flow rate:
5.0 mL/min) to afford 5 (1.3 mg). Fraction I6 was separated by RP-HPLC using a mixture of MeOH
and H2O (8:2, flow rate: 5.0 mL/min) to afford 6 (0.2 mg). Fraction I17 was separated by RP-HPLC
using a mixture of MeOH and H2O (8:2, flow rate: 5.0 mL/min) to afford 4 (3.2 mg). Fraction J was
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separated by NP-HPLC using a mixture of n-hexane and acetone (2:1, flow rate: 2.0 mL/min) to afford
1 (0.2 mg), 2 (10.0 mg) and 3 (14.8 mg).

Lendenfeldarane E (1): Amorphous powder; [α]25
D −94 (c 0.07, CHCl3); IR (ATR) νmax 3438, 1701 cm−1;

1H and 13C NMR spectroscopic data, see Table 1; ESIMS: m/z 455 [M + Na]+; HRESIMS: m/z 455.31340
(calcd. for C27H44O4 + Na, 455.31318).
Lendenfeldarane F (2): Amorphous powder; [α]25

D +38 (c 0.50, CHCl3); IR (ATR) νmax 3451, 1731,
1700 cm−1; 1H and 13C NMR spectroscopic data, see Table 1; ESIMS: m/z 513 [M + Na]+; HRESIMS: m/z
513.31878 (calcd. for C29H46O6 + Na, 513.31866).
Lendenfeldarane G (3): Amorphous powder; [α]25

D +59 (c 0.74, CHCl3); IR (ATR) νmax 3462, 1729 cm−1;
1H and 13C NMR spectroscopic data, see Table 2; ESIMS: m/z 515 [M + Na]+; HRESIMS: m/z 515.33437
(calcd. for C29H48O6 + Na, 515.33431).
Lendenfeldarane H (4): Amorphous powder; [α]25

D +73 (c 0.16, CHCl3); IR (ATR) νmax 3292, 1740 cm−1;
1H and 13C NMR spectroscopic data, see Table 2; ESIMS: m/z 501 [M + Na]+; HRESIMS: m/z 501.31879
(calcd. for C28H46O6 + Na, 501.31866).
Lendenfeldarane I (5): Amorphous powder; [α]25

D +20 (c 0.07, CHCl3); IR (ATR) νmax 3460, 1745,
1701 cm−1; 1H and 13C NMR spectroscopic data, see Table 3; ESIMS: m/z 497 [M + Na]+; HRESIMS: m/z
497.28757 (calcd. for C28H42O6 + Na, 497.28736).
Lendenfeldarane J (6): Amorphous powder; [α]25

D −25 (c 0.07, CHCl3); IR (ATR) νmax 3463, 1738 cm−1;
1H and 13C NMR spectroscopic data, see Table 3; ESIMS: m/z 497 [M + Na]+; HRESIMS: m/z 497.28729
(calcd. for C28H42O6 + Na, 497.28736).

3.4. ECD Calculations

The lowest energies of 1a (5S,8R,9S,10R,13S,14S,16S,17S,18S,24S, and 25R) and 1b (5R,8S,9R,10S,
13R,14R,16R,17R,18R,24R, and 25S) were calculated and the data were performed by the Gaussian
09 software (Gaussian Inc., Wallingford, CT, USA). The density functional theory (DFT) at the
B3LYP/6-31G(d) level in the gas phase were used to obtain the restricted conformation. The final ECD
files were generated by GaussSum 2.2.5 software with a bandwidth σ of 0.5 eV. The calculated ECD
and experimental ECD curves were drawn by Excel.

3.5. Superoxide Anion Generation and Elastase Release by Human Neutrophils

Human neutrophils were obtained from healthy human volunteers and were isolated by Ficoll
centrifugation and dextran sedimentation. Purified neutrophils were re-suspended in calcium (Ca2+)-free
Hank’s balanced salt solution (HBSS) buffer at pH 7.4 and were maintained at 4 ◦C before use. For the
superoxide anion generation assay, neutrophils (6 × 105 cell/mL) were equilibrated in ferricytochrome c
(0.6 mg/mL) and Ca2+ (1 mM) at 37 ◦C for 5 min and incubated with DMSO (0.1%) or tested compounds
for another 5 min [24]. Cells were activated with formyl-methionyl-leucyl-phenylalanine (fMLF, 0.1 µM)
for 10 min after priming with cytochalasin B (CB, 1 µg/mL) for 3 min. The change in absorbance
was monitored continuously at 550 nm with a spectrophotometer (Hitachi U-3010). For the elastase
release assay, neutrophils (6 × 105 cell/mL) were equilibrated in MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide
(100 µM) and Ca2+ (1 mM) at 37 ◦C for 5 min and incubated with dimethyl sulfoxide (DMSO) (0.1%) or
test compounds for another 5 min. The cells were activated with fMLF (0.1 µM) for 10 min after the
priming with CB (0.5 µg/mL) for 3 min. The change in absorbance was monitored continuously at 405 nm
with a spectrophotometer [24]. The results are recorded as the mean ± SEM of three measurements.
The inhibition % was measured at 10 µM concentration of each compound, and IC50 values were
estimated from dose-response curves. Statistical analysis was carried out using Student’s t-tests with
SigmaPlot (Systat Software, San Jose, CA, USA).
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4. Conclusions

The current work is the first to illustrate the anti-neutrophilic inflammatory properties
of scalarane-type sesterterpenoids, and reported a series of metabolites with novel structures,
lendenfeldaranes E–J (1–6). These results also suggested a structural dependent specificity of
C-22-acetylation in neutrophilic targets, which motivates future research to illustrate structural
dependent specificity as well as further clarify the corresponding molecular mechanisms of the
active leads.

Supplementary Materials: Supplementary Materials according to this article can be found online at http:
//www.mdpi.com/1660-3397/18/9/434/s1. HRESIMS, 1D and 2D NMR spectra of compounds 1–6.
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