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ABSTRACT
Forest soil carbon (C) sequestration has an important effect on global C dynamics
and is regulated by various environmental factors. Mixed and pure plantations are
common afforestation choices in north China, but how forest type and
environmental factors interact to affect soil C stock remains unclear. We hypothesize
that forest type changes soil physicochemical properties and surface biological
factors, and further contributes to soil active C components, which together affect
soil C sequestration capacity and C dynamic processes. Three 46-year-old 25 m
× 25 m pure Pinus tabulaeformis forests (PF) and three 47-year-old 25 m × 25 m
mixed coniferous-broadleaf (Pinus tabulaeformis-Quercus liaotungensis) forests
(MF) were selected as the two treatments and sampled in August 2016. In 2017,
soil temperature (ST) at 10 cm were measured every 30 min for the entire vegetation
season. Across 0–50 cm (five soil layers, 10 cm per layer), we also measured C
components and environmental factors which may affect soil C sequestration,
including soil organic carbon (SOC), soil total nitrogen (STN), dissolved organic
carbon (DOC), microbial biomass carbon (MBC), soil moisture (SM) and soil pH.
We then incubated samples for 56 days at 25 �C to monitor the C loss through
CO2 release, characterized as cumulative mineralization carbon (CMC) and
mineralized carbon (MC). Our results indicate that ST, pH, SM and litter thickness
were affected by forest type. Average SOC stock in MF was 20% higher than in
PF (MF: 11.29 kg m−2; PF: 13.52 kg m−2). Higher CMC under PF caused more soil C
lost, and CMC increased 14.5% in PF (4.67 g kg−1 soil) compared to MF (4.04 g kg−1

soil) plots over the two-month incubation period. SOC stock was significantly
positively correlated with SM (p < 0.001, R2 = 0.43), DOC (p < 0.001, R2 = 0.47) and
CMC (p < 0.001, R2 = 0.33), and significantly negatively correlated with pH
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(p < 0.001, R2 = −0.37) and MC (p < 0.001, R2 = −0.32). SOC stock and litter
thickness may have contributed to more DOC leaching in MF, which may also
provide more C source for microbial decomposition. Conversely, lower SM and pH
in MF may inhibit microbial activity, which ultimately makes higher MC and lower
CMC under MF and promotes C accumulation. Soil mineralized C drives more C
stock in coniferous-broadleaf mixed plantations compared to pure plantations, and
CMC and MC should be considered when soil C balance is assessed.

Subjects Plant Science, Soil Science, Climate Change Biology, Biogeochemistry, Forestry
Keywords Soil mineralized carbon, Environmental factors, Soil organic carbon, Soil carbon stock,
Mixed forest

INTRODUCTION
The turnover of soil carbon (C) and C processes have been changed by forest ecosystem
structure and functional dynamic, which may play an important role in global climate
change (Wang et al., 2022;Ma et al., 2022). Half of the global forest C is stored in soils (Pan
et al., 2011) with soil organic carbon (SOC) stock estimated to be over three times the size
of atmospheric stock and four times that of biotic stock (Lal, 2004). SOC stock in forests
may influence atmospheric CO2 concentrations and regulate the greenhouse effect
(Amundson, 2001). In addition, the large soil reservoir is not permanent, but result from a
dynamic equilibrium between organic and inorganic matter entering and leaving the soil
(Soucémarianadin et al., 2018; Tian et al., 2016). Accurate determination of changes in
SOC stocks and response analysis of dominant environmental factors are prerequisite to
understand the role of soils in the global C cycling and to verify changes in stocks due to
management.

Afforestation has been the most influential human activity in altering forest ecosystem
structure and function that has been implemented worldwide (IPCC, 2022). Forest
management has received increasing attention because of its predictable effects on
ecosystems, specifically through C sequestration (Fang et al., 2001; Richter et al., 1999).
Research indicates that the C sequestration capacity of soil is influenced by forest
management, which differs depending on tree species composition (Galka et al., 2014),
forest stand age (Lucas-Borja et al., 2016), forest density (Ma et al., 2018; Segura et al.,
2017) and other forest variables (Verkerk, de Arano & Palahí, 2018; Li et al., 2018; Chen &
Shrestha, 2012). The afforestation method of transitioning from pure forest to mixed forest
is widely used and has garnered increasing attention (Bravooviedo et al., 2014; Pretzsch,
Schütze & Uhl, 2013). Although soil C sequestration capacity between mixed and pure
forests has been studied (Cremer, Kern & Prietzel, 2016; Wang et al., 2014), the
mechanisms to explain the differences still need to be further explored because many
environmental factors are involved in these dynamic processes.

The soil C dynamics of forests may be impacted by interacting environmental, and
physical factors such as soil temperature (ST) (Uvarov, Tiunov & Scheu, 2006), soil
moisture (SM) (Yoon et al., 2014), soil texture (Cai et al., 2016) and bulk density (Vos et al.,
2005); chemical factors such as soil pH (Motavalli et al., 1995) and elemental nitrogen and
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phosphorus (Liu et al., 2015); and bioenvironmental factors such as plant diversity (Chen
et al., 2018), tree age (Ma et al., 2018), litter (Tan & Chang, 2007) and root matter (Hertel
& Leuschner, 2002). The species composition of the aboveground vegetation will affect the
quantity and quality of surface litter and root exudates and the input processes of organic C
source (Chen & Xu, 2008; Tan & Chang, 2007). ST, SM and pH can affect the export
process of soil C, such as soil respiration, soil C transfer and loss (Uvarov, Tiunov & Scheu,
2006; Yoon et al., 2014). Simultaneously, Schrumpf et al. (2011) research shown that soil
SOC stocks were calculated based on SOC concentrations, bulk densities, and the fine earth
fractions, and in undisturbed forest soils with low stone contents, SOC concentrations
contributed most to SOC stock variability. We should fully consider the climatic, land-use,
and soil types of the study site, and then comprehensively select the formula for calculating
soil SOC stock to further analyze the response mechanisms of dynamic process of C
accumulation and loss to multiple environmental factors.

Soil active C refers to the part of SOC with poor stability, quick turnover, easy
mineralization and decomposition, and high activity to plants and soil microorganisms,
among which dissolved organic carbon (DOC), microbial biomass carbon (MBC) and
mineralized carbon (MC) are important indicators (Tian et al., 2015;Wang et al., 2014;Hu
et al., 1997). Studies have shown that active characteristics make soil-activated C
vulnerable to environmental factors (Zhang et al., 2015; Jiang et al., 2006), and active C can
reflect small changes in SOC caused by management measures or climate change (Leifeld
& Kögel-Knabner, 2005), which plays an important role in soil C sequestration capacity
and greenhouse gas emissions (Liang et al., 2012; Yang et al., 2009). DOC is an organic C
source that can be directly used by soil microorganisms and is active in the physical
movement and chemical transformation of soil (Chen et al., 2018). Meanwhile, DOC
leaching is also an important mechanism of SOC loss (Oliveira et al., 2016). MBC is the
most active component of SOC, revealing microbial activity and concentration in soil and
is an important indicator for measuring soil fertility (Xu, Inubushi & Sakamoto, 2006).
Above-ground vegetation type is generally considered to be an important factor affecting
microbial activity (Pötzelsberger & Hasenauer, 2015). CMC is the amount of CO2 released
after SOC was mineralized into inorganic C in a certain of time (measured by g kg−1 release
of CO2-C), and MC was the proportion of CO2-C content released by SOC mineralization
to soil total organic C content in a certain period of time (%) (Sanford & Kucharik, 2013).
The amount (CMC) and intensity (MC) of CO2 released from SOC mineralization by
microbial decomposition can reflect the amount, activity and species of microorganisms
and can be used to evaluate the influence of environmental factors or human factors on soil
(Paul, Morris & Bohm, 2001). When studying C sequestration in forest ecosystems,
individual C stocks in soil can provide insight into the mechanisms favoring soil C
turnover and persistence.

The objectives of this study are three-fold: (i) to determine C stock and active
components between PF and MF; (ii) to evaluate which forest type can maintain a better C
sequestration strategy and (iii) to reveal the potential mechanism of C dynamics between
the two forest types through variation in active C components and environmental factors.
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We hypothesized that MF soil have better C sequestration capacity and lower CO2 released
from the soil of MF derived by some active C components.

MATERIALS AND METHODS
Study site description and experimental design
We performed our study in August 2016 at the Taiyue Mountain Ecosystem Research
Station (CFERN) in a continental seasonal climate zone of Shanxi province, Taiyue
Mountain, North China (112�01′–112�15′E, 36�31′–36�43′N; elevation 1,607–1,906 m
above sea level). The mean monthly temperature of this region is highest in July (17.4 �C)
and lowest in January (−10.4 �C). Precipitation mostly falls from July to September, and
the mean annual precipitation ranges between 600 and 650 mm (Ma, Han & Cheng, 2020).

Two types of soil and their respective C stocks were measured. One treatment was the
pure forest (PF—Pinus tabulaeformis forest only), which was planted in 1970 and has
remained unchanged since. The other forest treatment was the mixed forest (MF—Pinus
tabulaeformis-Quercus liaotungensis mixed forest), which was planted in 1969.
We established three 25 m × 25 m plots in each of the PF and MF forests in August 2016.
We left 5-m gaps among three repeated plots, and plots of same treatment were located in
similar elevations, slopes, and aspects (Table 1).

Above-ground forest information, including dominant tree species, tree height, DBH
(diameter at 1.2 m breast height), living branch height, were also recorded and are
presented in Table 1. Basic soil characteristics were measured in August 2016, including
soil pH, bulk density (BD), SM, SOC, STN, DOC, DON, MBC, MBN, and mechanical
composition (clay, silt, sand).

Table 1 Basic characteristics of the plots.

Treatment Plot Dominant tree species Age Elevation Slope Aspect Tree height DBH
years m � m cm

PF NO. 1 Pinus tabuliformis 46 1,906 ± 21 24.5� Nothwest 14.91 ± 3.80 19.53 ± 7.90

NO. 2 Pinus tabuliformis 46 1,869 ± 21 23.5� Nothwest 16.21 ± 4.00 19.21 ± 6.60

NO. 3 Pinus tabuliformis 46 1,853 ± 9 22� Nothwest 16.85 ± 3.90 19.70 ± 6.00

MF NO. 4 Pinus tabuliformis Quercus wutaishansea Mary 47 1,628 ± 8 28.8� Nothwest 14.31 ± 5.50 16.12 ± 7.90

NO. 5 Pinus tabuliformis Quercus wutaishansea Mary 47 1,607 ± 20 28.5� Nothwest 15.46 ± 10.10 13.76 ± 6.10

NO. 6 Pinus tabuliformis Quercus wutaishansea Mary 47 1,647 ± 11 25.5� Nothwest 15.77 ± 5.40 16.37 ± 4.70

Living branch height BD Mechanical composition (%)

m g cm−3 <0.002 mm 0.002–0.05 mm 0.05–2.00 mm

7.81 ± 3.20 1.17 ± 0.11 22.83 37.04 40.13

8.70 ± 2.20 1.24 ± 0.09 19.13 32.37 48.5

9.39 ± 2.40 1.37 ± 0.03 25.23 28.19 46.58

6.27 ± 4.10 1.27 ± 0.11 16.26 29.34 54.4

6.14 ± 3.90 1.26 ± 0.10 21.45 33.93 44.62

10.15 ± 3.30 1.34 ± 0.11 18.32 32.64 49.04

Note:
Soil characteristics of the studied stands represent the average values for soil depth of 0–50 cm, with standard error. DBH, diameter at 1.2 m breast height; BD, bulk
density. All the basic information was measured in August of 2016 (means ± SD, n = 3).
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Plant species diversity indexes
Biodiversity indexes and litter thickness of arbor, shrubbery and grass vegetation
communities are shown in Table 2. Three general diversity indexes are selected for
calculation and analysis of plant diversity (Zhou et al., 2021; Li et al., 2019): Species
Richness (S) (1), Shannon-Wiener Index (H0) and Pielou Evenness Index (J) (3).
The calculation formulas are:

S ¼ plant species in the sample plot (1)

H
0 ¼ �

XS

i¼1
Pi ln Pi (2)

J ¼ H0=lnS (3)

where, Pi is the ratio of the importance value of the i-th species to the total importance
value of all species in the sample plot, importance value of shrub layer = (relative
significance + relative density + relative frequency)/3, and importance value of herb
layer = (relative height + relative density + relative frequency)/3.

Soil sampling and physicochemical analyses
Soil samples (0–50 cm depth) were collected with an auger (10 cm) on April 20, June 20,
August 20 and October 20 of 2017 (i.e., the second year since the beginning of the
experiment). Nine soil cores for each 10 cm (0–50 cm, 10 cm per layer) soil samples were
randomly taken from each plot, and all nine samples from the same depth were mixed
into one composite sample, and 30 (2 treatments � 3 repeats � 5 soil layers) soil samples
were collected in each season. Samples were stored at 4 �C in plastic bags for a few
days after collection. To homogenize the soil material, the humus samples were sieved
through a 2-mm sieve. This method also removes live roots, mycorrhizal mycelia and
coarse plant remnants. Then, within 72 h, the soil samples were taken to the laboratory and

Table 2 Plant species diversity in arborous, shrub and herbaceous layer of the plots and litter thickness across sampling seasons in 2017.

Treatments Arborous layer Shrub layer

Species richness Shannon-Wiener
index

Pielou evenness index Species richness Shannon-Wiener
index

Pielou evenness index

PF 3.33 ± 0.47a 0.33 ± 0.13a 0.27 ± 0.09a 12.00 ± 0.82a 2.34 ± 0.05a 0.87 ± 0.03a

MF 6.67 ± 2.49b 0.93 ± 0.34a 0.49 ± 0.1a 11.67 ± 2.49a 2.30 ± 0.23a 0.94 ± 0.01a

Herbaceous layer Litter thickness across sampling seasons (cm)

Species Richness Shannon-Wiener index Pielou evenness index April June August October

22.33 ± 2.87a 1.91 ± 0.10a 0.89 ± 0.03a 5.59 ± 0.33a 4.7 ± 0.24a 6.5 ± 0.14a 7.67 ± 0.25a

7.67 ± 1.25b 0.76 ± 0.20a 0.55 ± 0.20a 7.07 ± 0.11b 6.29 ± 0.22b 7.75 ± 0.2b 11.12 ± 0.7b

Note:
Different lowercase letters indicate significant differences between the two forest types (p < 0.05).
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divided into three parts. One part, for chemical analysis, was air dried through a 0.149 mm
sieve and stored at room temperature before chemical analyses for SOC and STN, and
then a 2 mm sieve for pH analysis. Another part was stored at 4 �C until determination of
DOC and MBC content determination and 60-day cumulative C mineralization.
The remaining part was frozen at −80 �C.

Soil moisture was determined after being oven-dried at 105 �C for over 24 h. Air-dried
soil samples that had been passed through a 2 mm sieve were used for soil pH
determination, using a pH meter (Sartorius PB-10) and a 1:2.5 soil-water mixture. In each
plot, a HOBO UTBI-001 waterproof temperature data logger (Onset Computer Corp.,
Bourne, MA, USA) was embedded 10 cm underground in the soil. Plant litter was removed
before the UTBI-001 was placed, and then the logger was covered with the same litter.
Temperature was logged automatically every hour from April 20, 2017 to October 20, 2017
with over 9,000 soil temperatures collected for each plot.

Soil C and N analyses
Total SOC and total N concentrations in the samples were measured directly by an
elemental analyzer (Thermo Scientific FLASH 2000 CHNS/O; Thermo Fisher Scientific,
Waltham, MA, USA) from a subset of air-dried samples which were passed through a
0.149 mm soil sieve. Data for active C components were collected as previously described
in Ma et al. (2022). Specifically, MBC concentration was measured using a
CHCl3–fumigation extraction technique: 10 ± 0.5 g of fresh soil was fumigated with
CHCl3, extracted with 40 mL of 0.5 mol L−1 K2SO4, shaken for 1 h at 350 r min−1, and then
filtered through a 0.45 µm membrane after centrifugation for 5 min at 3,000 r min−1.
The concentration of the filtrate was quantified using a total organic C analyzer (Multi N/C
3000; Analytik Jena, Jena, Germany). DOC concentration was measured as the C
concentration of non-fumigated soil samples (Boyer & Groffman, 1996). MBC was
calculated as MBC = EC/kEc, where EC represents the difference between fumigated and
unfumigated soils extractable organic C and kEc = 0.45.

Total stocks of N and C, as well as active C and N component stocks, were calculated
using the formula:

Stock ðkg m�2Þ ¼¼
Xn

i¼1
Concentration� BDi � hi � 0:01 (4)

Where concentration (g kg−1) is the total stock of N and C, as well as active C and N
stock in layer i. BDi (g cm−3) is the soil bulk density in layer. hi (cm) is the soil layer
thickness, and n is the number of soil layers (Schrumpf et al., 2011).

Soil C incubation
SOC mineralization was measured by the lye absorption method (Zhen et al., 2019). Fifty
grams of fresh soil were incubated in a 300 mL sealed the container in a dark incubator
at 25 ± 1 �C. The CO2-C emitted from soils over the incubation period (7, 14, 21, 28, 35, 42,
49 and 56 days) was trapped in 0.1 mol L−1 NaOH. The molarity of the resulting
NaOH was determined by titration with 0.05 mol L−1 HCl after carbonate was precipitated
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with 1 mL of 1 mol L−1 BaCl2. The cumulative CO2-C was calculated based on the
cumulative production of CO2 from the soils during the 56-day incubation period and was
expressed as milligrams of CO2-C per kilogram of dry soil. The 56-day cumulative C
mineralization (mg C kg−1; CMC) represents the cumulative amount of C mineralized at
the end of the incubation. Mineralized carbon (MC) is expressed on a per kg soil C basis
rather than per kg soil, which is intended to normalize C across soil type (total C)
differences between the two forest types. Soil mineralized C at each time point is given by
the equation:

Mineralized C ðmg kg�1Þ ¼ CHCI � ðV0–V1Þ � 22=0:03: (5)

where C is the SOC content (g kg−1). CHCI is the concentration of HCI (mol L−1). V0 is the
volume of the blank titration (mL), and V1 is the volume of HCI consumed (mL).

Statistical analysis
SPSS 20.0 (IBM, Chicago, IL, USA) was used for statistical analyses. Each plot was
considered as an experimental unit, and the replicated data (5 soil layers � 3 replicated
plots) were averaged by plots for each analysis. Prior to conducting ANOVA, all variables
were checked for normal distributions (Kolmogorov-Smirnov test) and homogeneity
(Levene’s test). Then, to test the effects of forest type, sampling season, soil depth, and their
interactions on SOC, STN, DOC, DON, MBC, MBN, SM, and soil pH, we ran a three-way
analysis of variance (ANOVA) for each response variable. Significant models were then
examined with a post hoc Tukey’s test. To explore the effects of forest type on C
components and environmental factors in certain season, comparisons of the soil factors,
including C and N components, pH, and SM, in the same season, were compared via by
one-way ANOVA. All results are represented as mean values ± standard error, with the
statistical significance calculated at the p < 0.05 level. We tested for the impact of forest
type within a season with a student’s t-test. To examine the relationships between soil
chemical variables, the collected data were pooled from five soil depths among five
sampling seasons and six independent plots (n = 150). Pearson relationships were
examined using the “Performance Analytics” package in R (R Core Team, 2020) for
visualization.

RESULTS
Bioenvironmental factors
Generally, the sites were similar in elevation, slope, aspect and bulk density (Table 1). Tree
age and height (PF: 15.99 ± 0.81 m; MF: 15.18 ± 0.63 m) were similar in both forest types,
but the difference in DBH was significantly greater (26%) in PF (19.48 ± 0.20 cm) than MF
(15.12 ± 1.17 cm) (Table 1).

As shown in Table 2, in the arborous layer, plant diversity indexes of MF, i.e., species
richness (PF: 3.33 ± 0.47; MF: 6.67 ± 2.49), Shannon-Wiener index (PF: 0.33 ± 0.13;
MF: 0.93 ± 0.34) and Pielou evenness index (PF: 0.27 ± 0.09; MF: 0.49 ± 0.10), were greater
than that of PF. In the herbaceous layer, plant diversity indexes of MF, i.e., species richness
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(PF: 22.33 ± 2.87; MF: 7.67 ± 1.25), Shannon-Wiener index (PF: 1.91 ± 0.10; MF: 0.76
± 0.20) and Pielou evenness index (PF: 0.89 ± 0.03; MF: 0.55 ± 0.20), were smaller than that
of PF. Both species richness significantly differed (p < 0.001) between the PF and MF.
In addition, three plant diversity indexes of the shrub layer did not differ significantly
(Table 2).

Litter thickness in MF was 31.8% thicker than that of PF throughout the 2017 growing
season. Further, the litter thickness of MF was significantly thicker than that of PF in four
sampling seasons, especially in October 2017, when litter was 45.1% thicker in MF plots
(11.12 ± 0.7 cm) than PF (7.67 ± 0.25 cm) (Table 2).

Physicochemical environmental factors
Soil temperature (ST) across the growing season averaged 11.88 ± 0.05 �C (STD from three
plot repeats) in PF plots, which was significantly higher (p < 0.05) than in MF (averaged
10.87 ± 0.36 �C) (Fig. 1). From April to August, ST of the two forest types generally
rose, reaching a peak value on July 24 (PF: 19.21 �C, MF: 18.3 �C). From May 20 to
October 03, ST did not differ significantly between the two types (PF: 13.81 ± 0.16 �C;
MF: 13.04 ± 0.16 �C) (Fig. 1). From October 03 to 22, ST differed significantly in the two
types with PF (8.68 ± 0.29 �C) > MF (7.79 ± 0.11 �C).

Across the five sampling seasons, soil pH value in PF (7.00 ± 0.18) was 9% higher than
in MF (6.4 ± 0.24) (Fig. 2A). ANOVA indicated that pH differed significantly between the
two forest types (p < 0.001), among the seasons (p < 0.001) and at various soil depths
(p < 0.001) (Table 3). When analyzed separately in each sampling season, pH was

Figure 1 Soil temperatures at 10 cm depth in plots of pure forest (PF) and mixed forest (MF) across
the growing season in 2017. Full-size DOI: 10.7717/peerj.13542/fig-1
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significantly lower in MF during four out of the five sampling seasons (p < 0.05). October
2017 was the exception (p = 0.078, Fig. 2A).

Generally, the average soil moisture (SM) was 24.80 ± 3.30% and 23.31 ± 7.19% in PF
and MF plots, respectively (Fig. 2B). The sampling seasons and soil depths significantly
affected SM (p < 0.001), while forest type had no significant effect on SM (p = 0.051)
(Table 3). When analyzed separately in each sampling season, SM of PF was higher than

Figure 2 Variation in soil pH (A) and soil moisture (B) in pure forest (PF) and mixed forests (MF)
across the growing season in 2017 and August 2016. Each value in the figure represents the average
value of three plot replicates from five soil depths. The error bars represent the standard error and �

indicate significant differences among treatments. ns p > 0.05; �p < 0.05; ��p < 0.01.
Full-size DOI: 10.7717/peerj.13542/fig-2

Table 3 Results of the three-way ANOVA for the soil active carbon and the soil properties among forest type, sampling season and soil depth
in 2017.

Factors MS pH SOC stock STN stock SOC/STN DOC stock

F p F p F p F p F p F p

Tr 3.907 0.051 195.864 <0.001 31.867 <0.001 18.638 <0.001 0.113 0.738 47.163 <0.001

Sea 80.423 <0.001 17.063 <0.001 4.043 0.004 4.619 0.002 13.962 <0.001 115.907 <0.001

Dep 40.072 <0.001 25.354 <0.001 48.073 <0.001 45.782 <0.001 1.896 0.117 8.612 <0.001

Sea * Tr 12.244 <0.001 9.809 <0.001 1.501 0.208 0.405 0.804 3.899 0.006 3.233 0.015

Tr * Dep 0.708 0.588 3.107 0.019 2.331 0.061 1.673 0.162 1.938 0.110 0.569 0.686

Seas * Dep 1.642 0.072 0.875 0.599 0.874 0.601 1.488 0.119 0.916 0.554 1.017 0.446

Seas * Tr * Dep 0.374 0.986 1.341 0.188 1.201 0.281 0.557 0.908 1.001 0.462 0.214 0.999

DON stock DOC/DON MBC stock MBN stock MBC/MBN MC CMC

F p F p F p F P F p F p F p

3.909 0.051 69.799 <0.001 0.573 0.451 0.409 0.524 3.162 0.078 56.782 <0.001 119.997 <0.001

395.827 <0.001 199.267 <0.001 78.175 <0.001 25.126 <0.001 31.445 <0.001 90.412 <0.001 506.965 <0.001

13.253 <0.001 1.622 0.175 3.116 0.018 11.410 <0.001 4.415 0.003 13.460 <0.001 155.475 <0.001

2.656 0.037 3.577 0.009 3.916 0.005 1.053 0.384 3.904 0.005 0.553 0.648 1.577 0.201

1.134 0.345 1.752 0.145 3.776 0.007 0.534 0.711 1.334 0.263 8.196 <0.001 3.592 0.010

2.588 0.002 1.465 0.128 1.020 0.442 1.520 0.108 1.803 0.041 1.192 0.303 3.279 0.001

0.638 0.845 0.659 0.827 0.488 0.948 0.729 0.759 2.293 0.007 1.886 0.049 0.859 0.591

Note:
Tre, two forest treatments; Sea, five sampling seasons; Dep, five soil depths, 10 cm per soil layer.
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that of MF except October 2017, with a significant difference (p = 0.038) only in August
2017 (Fig. 2b). Soil bulk density and mechanical composition were not found to differ
significantly between the two forest types (Table 1).

Soil organic carbon and nitrogen stocks
SOC stock ranged from 9.70 ± 0.64 kg C m−2 to 14.57 ± 0.60 kg C m−2 during the five
sampling seasons for PF and MF (Fig. 3A). Average SOC stock of MF was 20% higher
than that of PF (MF: 11.29 ± 1.18 kg C m−2; PF: 13.52 ± 0.88 kg C m−2) (Fig. 3A).
Three-way ANOVA analyses indicated that the forest type (p < 0.001), sampling season
(p < 0.01) and soil depth (p < 0.001) affected SOC stock stronger than their interactions
(Table 3). When analyzed separately within each sampling season, SOC stock in MF

Figure 3 Variation in SOC stock (A), STN stock (B), SOC/STN ratio (C), DOC stock (D), DON stock (E), DOC/DON ratio (F), MBC stock (G),
MBN stock (H), and MBC/MBN ratio (I) in pure forests (PF) and mixed forests (MF) across the 2017 growing season and August 2016. SOC,
soil organic carbon; STN, soil total nitrogen; DOC, dissolved organic carbon; DON, dissolved organic nitrogen; MBC, microbial biomass carbon;
MBN, microbial biomass nitrogen. Each value in the figure represents the average value of three plot replicates. The error bars represent the standard
error and � indicate significant differences among treatments, ns p > 0.05; �p < 0.05; ��p < 0.01. Full-size DOI: 10.7717/peerj.13542/fig-3
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was higher than that in PF, but not significantly throughout the five sampling seasons,
except for August 2016 (Fig. 3A). The tendency of soil total nitrogen (STN) stock
was similar to SOC stock. Average STN stock was 16.5% higher in MF than PF (MF:
0.85 ± 0.09 kg C m−2; PF: 0.99 ± 0.11 kg C m−2) (Fig. 3B).

Soil dissolved organic C and N stocks
DOC stock was affected by all three factors: forest type, sampling season and soil depth
(n = 150), though no interaction effects were found to affect DOC (p > 0.05) (Table 3).
DOC stock was significantly affected by the sampling season (p < 0.001), i.e., autumn (MF:
101.30 ± 6.17 g m−2; PF: 70.41 ± 18.40 g m−2) > spring (MF: 81.90 ± 9.79 g m−2; PF: 58.65 ±
14.13 g m−2) > summer (MF: 43.44 ± 6.21 g m−2; PF: 27.27 ± 12.21 g m−2) (Fig. 3D).
Averaged over the various sampling seasons at 0–50 cm soil depths, DOC stock of MF was
52.3% higher than that of PF (MF: 60.77 ± 29.86 g m−2; PF: 39.90 ± 24.62 g m−2) (Fig. 3D).
DOC stock in MF was higher than that of PF, but the difference was significant only in
August 2016 and August 2017 (Fig. 3D). DON stock was not affected by forest type, but
was affected by sampling season and soil depth (p < 0.001) (Table 3). DOC/DON were
affected by forest type and seasonal variation.

Soil microbe biomass C and N stocks
MBC and MBN stock were affected significantly by sampling season (p < 0.001) and soil
depth (p < 0.05), but not by forest type (p = 0.451 for MBC, p = 0.524 for MBN). A
significant interaction effect was found for MBC stock between treatments and both season
and depth (p < 0.01; Table 3). When the data were taken from all sampling seasons, MBC
stock of MF was only 2% higher than that of PF (PF: 288.80 ± 85.3 g m−2; MF: 295.99 ±
85.2 g m−2). In contrast, with the pattern of DOC stock, MBC stock had a maximum in
August 2017 (MF: 401.27 ± 31.69 g m−2; PF: 398.74 ± 48.76 g m−2) and a minimum in
October 2017 (MF: 157.28 ± 14.31 g m−2; PF: 188.16 ± 28.47 g m−2) (Fig. 3G). MBN stock
decreased gradually from the beginning (April) to the end (October) of the growing season
(Fig. 3H). The ratio continued to increase until August in both treatments, though the ratio
in MF was lower than PF during August and October (Fig. 3I).

Soil mineralization C
After incubation, CMC was found to differ significantly between the two forest types
(Figs. 4A–4D; Table 3; p < 0.05). In the two forests, CMC changed an average of 4.67 g C
kg−1 soil in PF and 4.04 g C kg−1 soil in MF over a two-month period (Fig. 4A), where
CMC changed 14.5%more in PF thanMF. Additionally, CMC differed by sampling season
(p < 0.001), similar to DOC stock, i.e., April (PF: 6.30 ± 0.14 g kg−1 soil, MF: 5.83 ± 0.15 g
kg−1 soil) > October (PF: 4.84 ± 0.04 g kg−1 soil, MF: 4.26 ± 0.04 g kg−1 soil) > June
(PF: 4.10 ± 0.18 g kg−1 soil, MF: 3.44 ± 0.05 g kg−1 soil) > August (PF: 3.45 ± 0.11 g kg−1

soil, MF: 2.64 ± 0.06 g kg−1 soil).
On average MC differed between PF sites and MF sites across sampling seasons in 2017

significantly (p < 0.001) (Table 3) with 29.73% more MC in PF (20.35%) than MF
(15.69%). Similar to CMC and DOC, MC was more abundant in the beginning (April: PF:
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29.09%; MF: 22.83%) and end (October: PF: 19.70%; MF: 16.28%) of the growing season,
reaching its lowest values in August (PF: 13.21%; MF: 8.97%) for both PF and MF
(Figs. 4E–4H).

DISCUSSION
Through monitoring the carbon (C) dynamics at five soil depths from 0–10 cm
to 40–50 cm (five soil layers) and over five sampling seasons, SOC stock in
coniferous-broadleaf mixed forests (MF) was found to be 20% higher than that of pure

Figure 4 Cumulative CO2 emissions from soils (0–50 cm depth) over time (A) and SOC mineralization rate (B) from pure forests (PF) and
mixed forests (MF) during the four sampling seasons every 56-day in April, June, August, and October 2017. Systems with � differ significantly
at ns p > 0.05; �p < 0.05; ��p < 0.01; ���p < 0.001. Full-size DOI: 10.7717/peerj.13542/fig-4
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forests (PF). To understand the mechanism driving the C dynamics, we considered soil
depth, sampling season, soil physicochemical properties and active C components.

Environmental factors drive C dynamics
Even though trees were taller in PF, we measured thicker litter throughout the growing
season in MF and higher SOC stock in MF. Compared with coniferous forests of Pinus
tabulaeformis, litters and fine roots of broad-leaved trees have lower C/N ratios, higher
initial N content and faster microbial utilization, which was conducive to the improvement
of soil active organic C, which partially explains our results (Silver & Miya, 2001).
The Species richness index of PF understory vegetation was greater than that of MF, which
may demonstrate tree species have a greater impact on soil C stock in forest ecosystems
than undergrowth types (Chen et al., 2005; Kraenzel et al., 2003).

The significant difference in soil temperature (ST) between PF and MF throughout all
sampling time suggested that this important environment factor (Ma et al., 2010) may
be directly affected by the forest type. One explanation for the higher ST of PF was that the
soil under MF receives less radiation than PF. Radiation, the main energy source, was also
obstructed by more leaf litter in MF plots. Of the physical environmental factors, ST
was the initial variable affecting both plant growth and soil C dynamics, and thus, C stock
(Todd-Brown et al., 2014; Falloon et al., 2011). Both ST and MBC showed a single peak
curve, because temperature can directly affect root respiration, microbial activity and
decomposition of organic matter.

When forests were converted from pure forests into coniferous-broadleaf mixed forests,
variation of soil moisture (SM) were influenced by many factors, including soil properties
(Gwak & Kim, 2017), vegetation type (Deng et al., 2016b) and seasons (Kumagai et al.,
2009). In this research, SM was significantly different with sampling season, soil depth and
the interaction between season and forest type (Table 3). Rainfall can be intercepted by
leaves, taken up by roots and lost in substantial amounts via evapotranspiration (Jiménez
et al., 2017; Jian et al., 2015; Yang et al., 2014). Thicker litter partly explains the
significantly lower moisture in MF, as SM in MF was measured to be significantly less than
PF at the 30-50 cm soil layer and less water reached the deeper soil layers in the MF plots.
Simultaneously, SM was strongly and positively correlated with DOC (Fig. 5), and DOC
peaked in the later plant growing season, while SOC stock was also higher in MF than
during the other three sampling seasons. Thicker litter accumulates in autumn and
stimulates DOC leaching into the soil, making C available to microorganisms, which can
effectively stimulate microorganisms involved in the mineralization of organic C and
increase the mineralization rate, and further affect soil C stock (Feng, Sun & Zhang, 2021;
Deng et al., 2016a).

Soil pH was one of the primary regulators of soil organic matter cycling (Cheng et al.,
2013). pH was lower in MF across sampling season, and here soil pH negatively correlated
with C and N (p < 0.001, n = 150, Fig. 5), suggesting than higher pH may decrease the
capacity for SOC stock and nutrient supply (Weil & Brady, 2016). Moreover, we measured
higher DOC stock in more acidic plots (lower soil pH) of MF, which may suggest high soil
acidity increased SOC accumulation by inhibiting micro-bioactivity and accelerating the
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leaching of DOC into subsoils (Funakawa et al., 2014). However, MBC which relates to
micro-bioactivity, did not differ significantly between PF and MF plots, probably because
of the lower acidity and thicker litter in MF alleviates the inhibitory effect on soil microbes
and thus achieves homeostasis.

Figure 5 Pearson relationships of different soil properties across both pure and mixed forests, sampling seasons and soil depths. n = 150, i.e.,
two forest type treatments × three repeats × five soil layers × five seasons. �p < 0.05; ��p < 0.01; ���p < 0.001.

Full-size DOI: 10.7717/peerj.13542/fig-5
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Activated soil C affects SOC stock
The active C stock was altered by either forest type or the interaction effect between soil
depth and sampling season (Table 3). Ecologists have previously recognized that the
quantity and quality of litter input has a significant impact on soil DOC accumulation
(Miao et al., 2019; Kalbitz et al., 2000), and MF in this study had more branch leaves, plant
residues, etc., and had a more proper conditions of C to leach into DOC stock. There was
a significant seasonal pattern of DOC stock, i.e., autumn > spring > summer, and the
average content of the summer was 21.5% of the autumn, which were consistent with the
findings of DOC fluxes during the growing season in a cool-temperature, broad-leaved
deciduous forest in central Japan (Chen et al., 2017). DOC was labile and rapidly used and
has been proposed to serve as an indicator of C availability for soil microorganisms (Boyer
& Groffman, 1996). In this article, DOC stock was correlated significantly negatively
with MBC stock (R2 = −0.49) and significantly positively with SOC stock (R2 = 0.44) and
CMC (R2 = 0.50) (p < 0.001; Fig. 5). When the biomass of microorganisms was large
and activity was high, the microorganism’s decomposition activity consumed more DOC,
and simultaneously, soil mineralization also released more CO2, which led to more SOC
loss (Iqbal et al., 2008; Lou et al., 2004).

Soil MBC and MBN can both reflect the biomass and activity of soil microorganisms.
Litter provided abundant C and nitrogen, which increased root growth and root exudates
and promoted microbial growth and reproduction (Miao et al., 2019; Tan & Chang, 2007;
Hertel & Leuschner, 2002). In this study, litter thickness in MF was significantly higher
than that in PF, but no significant difference was measured in MBC and MBN, which may
be related to the differences in understory vegetation and soil physicochemical properties
(Chen et al., 2005). Studies have shown that soil MBC stock was significantly positively
correlated with soil STN stock, indicating that the soil available nitrogen pool may be an
important driving factor regulating MBC growth (Wardle, 1992). MBC stock had obvious
seasonal changes, and the changes were characterized by a unimodal curve—an upward
trend from April to August, and a downward trend from August to October (Fig. 3G).
Studies have shown that seasonal changes in MBC stock of forests mostly depend on ST
and SM in the temperate forest ecosystem of Uttarakhand, India (Rawat, Arunachalam &
Arunachalam, 2021) and at the Guangxi Daguishan Forest station (Wang et al., 2020).
MBC stock had a significantly positive correlation with ST and negative correlation with
SM (Fig. 5).

Under identical temperature and water conditions in the laboratory, SOC
mineralization reflects soil C availability and the differences of soil environmental factors
in different forest types. Studies have shown that the main limiting factor affecting
mineralization of SOC was the amount of soil active C and N (Weintraub & Schimel, 2003;
Yakovchenko, Sikora & Millner, 1998). SOC stock was significantly and positively
correlated with CMC (R2 = 0.33, p < 0.001, n = 120), but was significantly and negatively
correlated with MC (R2 = −0.32, p < 0.001, n = 120) (Fig. 5), which showed that the more
abundant the nutrient supply, the higher the microbial activity and the greater the
potential mineralization capacity of the soil. Soil organic matter content was high, and the
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substrates available to microorganisms increased, so the CMC was also high (Davidson,
Janssens & Luo, 2010). Higher temperatures can promote SOC mineralization (Laudicina
et al., 2015; Xu, Inubushi & Sakamoto, 2006), and increasing temperatures directly
enhanced soil microbial activity and microbial respiratory entropy (Verburg, Loon &
Lükewille, 1999), thus increasing the amount of CO2 released (Mayor et al., 2017; Stark
et al., 2015; Fierer et al., 2005). Higher temperatures in PF at 10 cm soil may cause higher
MC, which increased C losses by CO2 release. CMC was significantly positively correlated
with SM (R2 = 0.51, p < 0.001), DOC stock (R2 = 0.50, p < 0.001), and significantly
negatively correlated with MBC stock (R2 = −0.29, p < 0.01). We also found that CMC was
more abundant in April and October 2017, similar to when DOC stock was at its highest,
but opposite to the seasonal trend of MBC stock. DOC consumption may be related to an
increase in CMC. MC was significantly positively correlated with pH (R2 = 0.32, p < 0.001),
and soil organic matter was oxidatively decomposed by microorganisms or inorganic
chemicals to generate CO2 and carbonate. The latter may increase soil pH, which can
partly explain the higher pH of PF. Mineralization is a biochemical process affected by the
microbiological environment, temperature, soil moisture and active C or N components.

CONCLUSION
In this study, we combined sampling plots and laboratory incubations to reveal SOC stock
changes and the key factors affecting SOC stock in response to different forest types (PF:
pure coniferous plantations vs MF: coniferous-broadleaf mixed plantations) on Taiyue
Mountain, North China. We conclude that MF is able to store soil C better than PF, while
the environmental factors and the active C stock, especially CMC, drives SOC stock
dynamics. Environmental factors partly explained the C dynamics in which thicker litter
may have contributed to more nutrient input, and lower soil temperature and pH may
inhibit microbial decomposition in MF. Other active C components, like DOC or MBC,
have opposite seasonal variation, with strong microbial activity and may make use of more
leached DOC while releasing more CO2. MBC was not enhanced in MF, and we suggest
microbial communities may be a potential driver of the differences in MC between the two
forest types, but that claim requires further study. Therefore, we recommend planning
coniferous-broadleaf mixed plantations in a continental seasonal climate zone in North
China to promote C retention and sequestration in response to climate change.
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