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Abstract: Aedes aegypti L. (Diptera: Culicidae) is an important transmitter of diseases in tropical
countries and controlling the larvae of this mosquito helps to reduce cases of diseases such as
dengue, zika and chikungunya. Thus, the present study aimed to evaluate the larvicidal potential
of the essential oil (EO) of Ocimum basilicum var. minimum (L.) Alef. The EO was extracted by
stem distillation and the chemical composition was characterized by gas chromatography coupled
with mass spectrometry (GC/MS and GC-FID). The larvicidal activity of EO was evaluated against
third instar Ae. aegypti following World Health Organization (WHO) standard protocol and the
interaction of the major compounds with the acetylcholinesterase (AChE) was evaluated by molecular
docking. The predominant class was oxygenated monoterpenes with a concentration of 81.69% and
the major compounds were limonene (9.5%), 1,8-cineole (14.23%), linalool (24.51%) and methyl
chavicol (37.41%). The O. basilicum var. minimum EO showed unprecedented activity against third
instar Ae. aegypti larvae at a dose-dependent relationship with LC50 of 69.91 (µg/mL) and LC90 of
200.62 (µg/mL), and the major compounds were able to interact with AChE in the Molecular Docking
assay, indicating an ecological alternative for mosquito larvae control.

Keywords: natural products; Ocimum; larvae; mosquito; acetylcholinesterase; ecological

1. Introduction

Aedes aegypti L. (Diptera: Culicidae) is the vector responsible for the transmission of
infectious diseases such as dengue, yellow fever, zika and chikungunya and has caused
serious public health problems, especially in tropical regions [1]; these problems are related
to the accelerated rate of proliferation of this mosquito, which has strong resistance to
insecticides and commercial repellents. Thus, controlling the proliferation of this vector
remains the main tool to eradicate or reduce the harmful effects of Ae. aegypti [2].

Natural products from plants are promising in controlling this proliferation due to
their biological properties, as well as essential oils, which are defined as volatile substances
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of natural origin and diversified chemical composition [3,4]. The chemical nature of these
volatile compounds consists mainly of molecules with low molecular weight that may be
related to biological activities in essential oils with antimicrobial, anti-inflammatory and
larvicidal effects; it is important to mention that essential oils have gained prominence as
an alternative source in the control and combat of vectors such as Ae. aegypti [5,6].

There are studies regarding the Lamiaceae family that prove the effectiveness of
essential oils with larvicidal potential against some vectors, as in the study [7], in which
the essential oil of Ocimum campechianum Mill. showed high larvicidal effects against
Ae. aegypti. In the study carried out [8], testing the essential oil of Thymus vulgaris L. and
Origanum majorana L. against larvae of Anopheles labranchiae (Diptera: Culicidae), both
essential oils had strong larvicidal potential. Likewise, the essential oil of Origanum vulgare
L. showed activity against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus
and Culex tritaeniorhynchus. In addition, it is important to know the molecular interaction
mechanisms, through in silico studies of compounds present in essential oils with potential
larvicidal activity, this may be a viable strategy for the development of new technical to
combat mosquito larvae that are vectors of tropical diseases and authors have reported
that acetylcholinesterase (AChE) is an important molecular target for understanding the
larvicidal activity [9,10], demonstrated by several authors in studies of the larvicidal
potential of essential oils from different plants [11–14].

In this context, Ocimum basilicum var. minimum (L.) Alef. may be a source of bioactive
compounds with larvicidal potential [15], is a species of herb or shrub belonging to the
Lamiaceae family, terrestrial type, popularly known as Bush Basil. Regarding the com-
position of the essential oils of O. basilicum var. minimum, studies report the presence of
the monoterpenic compound linalool as one of the main compounds [16,17]. In another
study, the essential oil of O. basilicum var. minimum was characterized by the major com-
pounds linalool (52.7%), eugenol (9.1%) and bornyl acetate (1.9%), while in another species
of the same genus, the methyl eugenol (78.02%), α-cubebene (6.17%) and nerol (0.83%)
compounds characterized the chemical profile of O. basilicum essential oil [18].

Therefore, the objective of this study was to carry out the chemical characterization of
O. basilicum var. minimum essential oil collected in the Brazilian Amazon and to evaluate
the larvicidal potential against third instar larvae of Ae. aegypti for application in the control
of diseases transmitted by this mosquito.

2. Results and Discussion
2.1. Essential Oil Yield

The essential oil (EO) of O. basilicum var. minimum leaves showed a yield of 1.57% (v/w);
this yield was higher than that found [19] in essential oils extracted from the dry leaves
of O. basilicum var. minimum by hydrodistillation, which showed yields of 1.20% (v/w),
1.06% (v/w) and 1.0% (v/w), respectively, in the years 2005, 2007 and 2008, and lower
when compared to the same study in the years 2003, 2004 and 2006, which showed yields
of 1.93% (v/w), 1.83% (v/w) and 1.78% (v/w). In another study carried out by Safari
Dolatabad et al. [20], the essential oil of O. basilicum var. minimum showed a yield of
0.5% (v/w), much lower than that found in this study.

2.2. Chemical Composition

Table 1 presents the data related to the chemical composition obtained by GC-MS
in ascending order of retention rates for each constituent, with 24 constituents identified
in the EO of O. basilicum var. minimum, representing 99.65% of the oil composition. The
chemical profile of the EO was characterized by the major compounds methyl chavicol
(37.41%), linalool (24.51%), 1,8-cineole (14.23%) and limonene (9.50%). The levels of methyl
chavicol and linalool were higher than that found by [21] in a study carried out in South
Africa with the essential oil of O. basilicum var. minimum, with methyl chavicol contents
of 34.3% and linalool of 17.8%. Linalool (25.6%) has also characterized the essential oil of
O. basilicum var. minimum, as well as the compound geranyl acetate (45.6%). The chemical
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composition of the EO of this species in collections carried out in Iran, during the years 2003
to 2008, demonstrated the strong presence of linalool with concentrations ranging from
40.2% to 88.34%, followed by 1,8-cineole (1.46% to 8.87%) and eugenol (0.28% to 7.23%) [19].
Ion-chromatogram of the essential oil is shown in Figure 1.
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Figure 1. Ion-chromatogram of essential oil of O. basilicum var. minimum.

Table 1. Chemical composition of O. basilicum var. minimum essential oil.

No. RIL RIC Compound Molecular Formula Concentration (%)

1 969 967 Sabinene
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Essential oils from species of the genus Ocimum have presented both linalool and
methyl chavicol; these compounds have characterized the essential oils of O. basilicum,
O. americanum, O. campechianum, O. kilimandscharicum [23], O. gratissimum and O. tenui-
florum [24]. Furthermore, studies report antioxidant activities that may be related to the
presence of linalool and methyl chavicol [25]. Linalool is described as having cytotoxic
activities against HeLa, HEp-2 and NIH 3T3 type cancer cells [26], and antibacterial activi-
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ties against Listeria monocytogenes, Enterobacter aerogenes, Escherichia coli and Pseudomonas
aeruginosa [27]. Methyl chavicol is reported for antimicrobial action in essential oils and
against phytopathogenic agents such as Brenneria nigrifluens [28]. Studies in silico have
indicated that this compound has antilipase biological action and may be a promising
molecular target for the treatment of diseases related to oxidative damage [29].

The monoterpenic compounds 1,8-cineole and limonene showed significant levels in
the composition of the essential oil of the species under study; these contents were higher
than those found in the essential oil of a sample collected in Gabon, Africa, which were
0.7% and 0.2%, respectively. Other species of the genus Ocimum of the aforementioned
study were also characterized by the respective compounds, as described in the essential oil
from O. basilicum, O. gratissimum, O. americanum and O. lamiifolium [21]. There are reports
showing that 1,8-cineole has biological properties with antibacterial, antifungal, anesthetic
and allelopathic potential [30].

Limonene naturally presents two enantiomeric forms: R-(+)- and S-(−)-. Among these
forms, the terpene R-(+)- limonene is the most common found in nature; this compound has
shown potential in activities with fumigant and repellent action, electroencephalographic,
cytotoxicity against tumor cells and antimicrobial activities against bacteria [31,32].

2.3. Larvicidal Activity

Mortality data for third instar Ae. aegypti larvae exposed to different concentrations
of O. basilicum var. minimum essential oil. demonstrate the efficacy of the larvicidal action
on mosquito larvae at a dose-dependent relationship with a LC50 value of 69.91 µg/mL
(CI = 61.89–78.58 µg/mL) and a LC90 value of 200.62 µg/mL (CI = 179.45–227.84 µg/mL).
There was no significant difference in mortality between the control groups of larvae
exposed to water and 2% DMSO, indicating that there is no influence of the diluent on the
mortality observed in the solutions of EO (p < 0.05).

The World Health Organization (WHO) does not establish a criterion for evaluating
the larvicidal potential of natural products, but some authors consider LC50 values between
50 and 100 µg/mL as active [33], moderately active [34] or with significant activity [35],
framing the EO of O. basilicum var. minimum in these categories (LC50 = 69.91 µg/mL);
this activity can be attributed mainly to the major compounds present in the EO, or even
the synergism between them and the other components. For instance, methyl chavicol
and limonene have already been shown to be highly active against third instar larvae of
Ae. aegypti with LC50 values of 46.40 µg/mL (CI = 42.50–50.00 µg/mL) and 13.0 µg/mL
(CI = 10.50–16.70 µg/mL), respectively [36].

These results are in line with those obtained for most species of the Lamiaceae family
that represent 10.5% of the active oils (LC50 < 100 µg/mL) against third instar larvae of Ae.
aegypti, behind only the Myrtaceae family with 13.5% [37]. Within the genus Ocimum, the
EO of O. basilicum var. minimum showed higher activity than the EOs of O. basilicum, O.
sanctun, O. campechianum and O. carnosum, but showed lower activity than the EOs of O.
suave, O. americanum and O. gratissimum (Table 2); these data reveal the similarity of the
larvicidal activity of the EO of O. basilicum var. minimum with other species of the genus,
mainly due to the presence of common constituents such as limonene, methyl chavicol,
linalool and 1,8-cineole.

Table 2. Larvicidal activity of some essential oils of the genus Ocimum against Ae. aegypti larvae.

Specie Plant Part Plant Origin LC50 (µg/mL) Reference

O. basilicum var. minimum Aerial Brazilian Amazon 69.91 (61.89–78.58) This work
O. americanum Leaves Northeast of Brazil 67.00 [38]

O. basilicum Leaves Pakistan 75.35 (53.21–108.08) [39]
O. campechianum Leaves Northeast of Brazil 81.45 [40]
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Table 2. Cont.

Specie Plant Part Plant Origin LC50 (µg/mL) Reference

O. carnosum Inflorescences Northeast of Brazil 109.49 [40]
O. gratissimum Aerial Northeast of Brazil 60.00 [38]

O. sanctun NM India 92.42 [41]
O. suave Leaves Ethiopia 29.80 (23.5–35.0) [42]

NM = Not mentioned.

The larvicidal activity observed for the EO was lower when compared to synthetic
larvicides [43]; this lower efficiency and the higher cost compared to synthetic compounds
is found for the vast majority of plant derivatives and makes their use much lower than
conventional larvicides [37]. suHowever, the increasing use of synthetic larvicides has led
to an increase in the resistance of these organisms [44]. Thus, the EO of O. basilicum var.
minimum becomes a relevant alternative to combat A. aegypti larvae or even to obtain highly
active substances (LC50 < 50.00 µg/mL) such as methyl chavicol and limonene.

2.4. Evaluation of the Interaction of EO Compounds with AChE

Molecular modeling approaches have been successfully used to evaluate the interac-
tion of major volatile compounds with molecular targets of pharmacological interest [45–47].
We used AChE as a molecular target because this enzyme is a promising molecular target
for essential oils with larvicidal activity [9]. Before starting the docking, MD simula-
tions and free energy analyzes, the crystallographic ligand was redocked. Redocking was
performed to assess whether the software was capable of simulating the experimental
binding mode found in the crystallographic of the AChE-tacrine derivative complex 9-(3-
iodobenzylamino)-1,2,3,4-tetrahydroacridine. According to the literature, for the docking
protocol used to be considered satisfactory, the RMSD found between the crystallographic
ligand and the redocked ligand must be equal to or less than 2 angstroms [48–50]. The
results of this study showed an RMSD value equal to 1.8 angstroms; thus, our docking pro-
tocol is suitable to evaluate the way of interaction of biomolecules with the AChE binding
cavity. Figure 2 shows the overlap between crystallographic and redocked ligands.
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Figure 2. Superposition of crystallographic (green) and redocked (yellow) ligands.

Docking analyzes have been used to evaluate the molecular binding mode of com-
pounds present in EO. Through these analyzes, it is possible to evaluate the interactions
established between the EO compounds and the molecular target under study. In Figure 3,
it is possible to visualize the interactions and the chemical nature of the bonds formed
between the compounds present in the EO and the AChE.
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Figure 3. Molecular interactions established between (A) methyl chavicol, (B) linalool, (C) 1,8-cineole
and (D) limonene with AChE pocket binding.

In the enzyme binding pocket, all ligands remained interacting throughout the simula-
tion. During the 100 ns of MD simulations, the ligands remained bound to the enzyme and
exhibited a low fluctuation profile, as can be seen in Figure 4A–D.

Methyl chavicol interacted with the amino acid residues of Trp83 and Tyr370 through
stacked π-π interactions formed mainly by the benzene ring of the molecule. Linalool
remained bound to the active site of the protein, forming mainly alkyl-type interactions
with residues of Trp427, Leu479, Tyr370, Trp83, Tyr71 and 374 and a hydrogen bond with
Glu80. The 1,8-cineole interacted with Trp472, Trp83 and Tyr370 through alkyl and π-
alkyl hydrophobic interactions and with the residues of Try374 and Tyr71 π-σ interactions.
Limonene has formed van der Waals interactions with Asn84, Glu80, Gly79, His480, Gly481
and Tyr73 and alkyl or π-alkyl interactions with Tyr71, Tyr374, Trp83, Tyr370, Trp472
and Leu479.

As observed in the MM/GBSA results (Figure 5), the complexes were spontaneously es-
tablished, since the ligands (A) methyl chavicol, (B) linalool, (C) 1,8-cineole and (D) limonene
obtained affinity energy of −13.65, −19.73, −20.29 and −21.80 kcal/mol, respectively.
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3. Materials and Methods
3.1. Plant Material

Leaves of O. basilicum var. minimum were collected in the municipality of Ananindeua,
Pará, Brazil. The specimen of the sample was identified and incorporated into the collection
of the João Murça Pires Herbarium (MG) of the Emílio Goeldi Museum of Pará, in the
collection of Aromatic Plants of the Amazon, Belém, Pará, under the registration MG167656.

3.2. Preparation of Botanical Material

The samples of O. basilicum var. minimum leaves were dried in an oven with air
circulation at a temperature of 35 ◦C for 5 days and then ground in a knife mill (Tecnal,
model TE-631/3, Brazil). The moisture content was analyzed using an infrared moisture
analyzer (ID50; GEHAKA, Duquesa de Góias, Real Parque, São Paulo, Brazil), in the
temperature range from 60 to 180 ◦C with increments of 1 ◦C and bidirectional output.

3.3. Essential Oil Extraction

The essential oil (EO) from the leaves of O. basilicum var. minimum was extracted using
130 g of dried material by stem distillation with a Clevenger-type apparatus for 3 h as
described by Oliveira et al. [51]. The EO obtained was dehydrated with anhydrous sodium
sulfate and centrifuged for 5 min at 3000 rpm.

3.4. Essential Oil Analysis

The chemical compositions of the EO of O. basilicum var. minimum were analyzed as
reported by our research group [52,53], using a Shimadzu QP-2010 (Kyoto, Japan) plus gas
chromatography system equipped with an Rtx-5MS capillary column (Restek Corporation,
Bellefonte, PA, USA) (30 m × 0.25 mm; 0.25 µm film thickness) coupled with a mass
spectrometer (GC/MS) (Shimadzu, Kyoto, Japan) and the components were quantified
using gas chromatography (CG) on a Shimadzu QP-2010 system (Kyoto, Japan), equipped
with a flame ionization detector (FID). The program temperature and injection were the
same operating conditions as described in the literature [54,55], except for the carrier
hydrogen gas, under the same operating conditions as before. The retention index for all
volatile constituents was calculated using a homologous series of n-alkanes (C8–C40) Sigma-
Aldrich (San Luis, CA, USA), according to van den Dool and Kratz [56]. The components
were identified by comparison of: (i) the experimental mass spectra with those compiled in
libraries, and (ii) their retention indices to those found in the literature [57].

3.5. Larvicidal Assay

The methodology adopted was the World Health Organization standard protocol [58].
To obtain the larvae, Ae. aegypti eggs were placed in a tray with 500 mL of distilled water
added to 1 g of rat chow. Hatching occurred within 24 h and larvae were allowed to grow.
Upon reaching the third instar, batches of 25 larvae were transferred by droppers to small
disposable test cups, each containing 100 mL of water, and added appropriate volume of
stock solution to obtain the desired target dosage.

The larvae were exposed to concentrations of 15.62, 31.25, 62.5, 125, 250 and 500 ppm
(v/v) of the oil diluted in 2% dimethyl sulfoxide aqueous solution (DMSO 2%) for 24 h.
The entire assay was performed in quadruplicate, with 25 larvae for each concentration,
at a temperature of 25 ◦C and a photoperiod of 12 h of light followed by 12 h in the dark.
Negative controls water (H2O) and DSMO 2% were evaluated under the same conditions
as the sample.

3.6. In Silico Analysis
3.6.1. Molecular Docking

The compounds methyl chavicol, linalool, 1,8-cineole and limonene were drawn in
GaussView 6 and their structure were optimized via B3LYP/6-31G* using the Gaussian
quantum chemistry software 16 [59]. The software Molegro Virtual Docker [60] was then
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used to assess how these compounds are able to interact with the acetylcholinesterase
(AChE) binding cavity. For that, the crystal structure of the protein was collected in the
Protein Data Bank (www.rcsb.org, accessed on 5 March 2022) and located using the PDB
ID: 1QON. The MolDock Score (GRID) scoring function was used with a Grid resolution
of 0.30 Å and 5 Å radius encompassing the entire connection cavity. The MolDock SE
algorithm was used for the docking with a number of runs equal to 10, 1500 max interac-
tions, and max population size equal to 50. The maximum evaluation of 300 steps, with
neighbor distance factor of 1 and an energy threshold of 100, was used during the molecular
docking simulation.

3.6.2. MD Simulations

The charges of the methyl chavicol, linalool, 1,8-cineole and limonene atoms were
calculated HF/6-31G*. Ligand parameters were constructed using GAFF and the proteins
were described by the ff14SB force field in all simulations. The protonation of protein
residues was evaluated using PROPKA server.

Each system was solvated in an octahedron periodic box with a 12-Å cutting radius in
all directions from the solute (Waterp-TIP3P). An adequate number of counterions were
added to neutralize the partial charge of the systems.

The MD simulations were performed using the Amber 16 software [61]. The minimiza-
tion of system energy occurred in three steps. In the first step, 2000 cycles were executed
using the steepest descent method and conjugate gradient algorithm, applying a harmonic
force constant of 50 kcal·mol−1·Å−2 to the solute. In the second step, the harmonic force
constant applied to the solute was 25 kcal·mol−1·Å−2 and 1000 more cycles were run
using the steepest descent method and conjugate gradient algorithm. In the last step, the
constraints were removed and 1000 cycles were run using steepest descent method and
conjugate gradient algorithm.

To increase the system temperature from 0 to 300 k, 900 ps simulations were run.
Warming up was carried out in three steps. In the first step, the solute was constrained with
a harmonic force constant of 25 kcal·mol−1·Å−2, thus, only the solvent and counterions
were free to move. In the following two steps, the harmonic force constant was removed.
To balance the complexes, 2 ns simulations were run at constant temperature and with-
out restrictions. Then, for each complex, 100 ns of MD simulation with NVT ensemble
were generated.

3.6.3. Free Energy Calculations

The free energy calculations were performed using MM-GBSA method [62]. The free
energy was calculated as follows:

∆Gbind = ∆H − T∆S ≈ ∆EMM + ∆Gsolv − T∆S (1)

where ∆Gbind is the free energy of the complex, resulting from the sum of the molecular
mechanics energy (∆EMM), desolvation free energy (∆Gsolv), and entropy (−T∆S).

∆EMM = ∆Einternal + ∆Eelectrostatic + ∆EvdW (2)

The molecular mechanics energy of the gas phase (∆EMM) can be described by the sum
of the internal energy contributions (∆Einternal); sum of the connection, angle, and dihedral
energies; electrostatic contributions (∆Eelectrostatic); and van der Waals terms (∆EvdW).

∆Gsolv = ∆GGB + ∆Gnonpol (3)

The desolvation free energy (∆Gsolv) is the sum of the polar (∆GGB) and nonpolar
(∆Gnonpol) contributions. The polar desolvation term was calculated using the implicit
generalized born (GB) approach.

www.rcsb.org
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3.7. Statistical Analysis

Mortality data from replicates of each concentration were grouped and presented as
mean ± standard deviation. The values of LC50, LC90 and 95% confidence intervals (CI) of
upper and lower confidence levels were calculated from probit regression analysis using
the software GraphicPad Prism 8. Larval mortality was corrected using the formula by
Abbott [63], when mortality of the control group H2O varied between 5–20%. A one-way
ANOVA statistical test was also performed, followed by a Tukey post-test. The statistical
difference was considered significant when p < 0.05.

4. Conclusions

Chemical characterization of O. basilicum var. minimum essential oil extracted by stem
distillation revealed the presence of hydrocarbon monoterpenes, oxygenated monoter-
penes, hydrocarbon sesquiterpenes, oxygenated sesquiterpenes, with methyl chavicol,
linalool, 1,8-cineole and limonene as the major compounds. In addition, the essential
oil of O. basilicum var. minimum showed larvicidal action against Ae. aegypti larvae and
the major compounds were able to interact with the binding cavity of the target enzyme
acetylcholinesterase (AChE), indicating a potential ecological alternative for the control of
larvae of this mosquito.
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