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Novel insight on marker
genes and pathogenic
peripheral neutrophil
subtypes in acute pancreatitis

Deyu Zhang1†, Meiqi Wang1†, Yang Zhang1†, Chuanchao Xia1†,
Lisi Peng1, Keliang Li2, Hua Yin1, Shiyu Li1, Xiaoli Yang1,
Xiaoju Su1*‡ and Haojie Huang1*‡

1Department of gastroenterology, First Affiliated Hospital, Naval Medical University, Shanghai, China,
2Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
Acute pancreatitis is a common critical and acute gastrointestinal disease

worldwide, with an increasing percentage of morbidity. However, the gene

expression pattern in peripheral blood has not been fully analyzed. In addition,

the mechanism of coronavirus disease 2019 (COVID-19)-induced acute

pancreatitis has not been investigated. Here, after bioinformatic analysis with

machine-learning methods of the expression data of peripheral blood cells and

validation in local patients, two functional gene modules in peripheral blood

cells of acute pancreatitis were identified, and S100A6, S100A9, and S100A12

were validated as predictors of severe pancreatitis. Additionally, through a

combination analysis of bulk sequencing and single-cell sequencing data of

COVID-19 patients, a pivotal subtype of neutrophils with strong activation of

the interferon-related pathway was identified as a pivotal peripheral blood cell

subtype for COVID-19-induced acute pancreatitis. These results could

facilitate the prognostic prediction of acute pancreatitis and research on

COVID-19-induced acute pancreatitis.

KEYWORDS
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Introduction

Acute pancreatitis (AP) is a clinically common critical and acute disease that occurs

in approximately 13 million people worldwide every year (1). With the exacerbation of

alcohol abuse and obesity worldwide, the morbidity of AP has surged in recent years.

According to the Atlanta criteria for the classification of AP, AP can be divided into three

subtypes based on the degree of illness, including mild acute pancreatitis (MAP),
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moderate severe acute pancreatitis (MSAP), and severe acute

pancreatitis (SAP). The key differentiator among these three

types is AP with or without transient organ failure or persistent

organ failure (2). In general, 20% of patients have SAP, and the

mortality rate is as high as 20%–40%. However, reliable

diagnostic and prognostic predictors of AP in the

transcriptome of peripheral blood cells have yet to be clarified.

Additionally, a great number of reports indicate that

coronavirus disease 2019 (COVID-19) infection can

potentially result in AP (3, 4). Some single-center studies have

confirmed this relationship between COVID-19 and AP (5, 6).

Some literature reviews have suggested that there is an increased

prevalence of AP in patients infected with COVID-19 and that

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

might itself cause AP in some patients (7, 8). However, the

pathogenesis of AP concomitance with COVID-19 infection

remains unclear.

Neutrophils are a type of immune cell enriched in peripheral

blood that originate and differentiate in bone marrow and are

then released from bone marrow into blood (9). In blood,

neutrophils can monitor antigens, pathogens, and tissue

inflammation. Once inflammation or antigen signals are

detected, inactivated neutrophils can transition to various

activated phenotypes. Most of the activated neutrophils are

proinflammatory. However, the characteristics of activated

neutrophils vary depending on the immunogenicity of

pathogens (10). Neutrophils play an important role in AP. A

previous study proved that neutrophils mediate further

activation of trypsinogen by-products of Dihydronicotinamide

adenine dinucleotide phosphate (NADPH) oxidase, exacerbate

pancreatic injury, and even cause lung injury (11). Interestingly,

neutrophils are also an important pathogenic factor in COVID-

19 infection. COVID-19 triggers a severe pandemic with a

multisystem inflammatory disorder. The characteristic of this

disease is an acute syndrome in the respiratory system with

cytokine-dr iven hyper inflammat ion and extens ive

transcriptional changes in leukocytes. Among them,

neutrophils have been proven to be linked to COVID-19

immunopathogenesis, including a dysfunctional interferon

(IFN) response and myeloid inflammation. However, the

relationship between neutrophils and these two diseases has

not been fully clarified.

Some case reports have shown that IFN has a strong

relationship with AP (12). Additionally, IFN-g could promote

AP in a rat model (13). A meta-analysis systematically reviewed

the literature related to the occurrence of AP after IFN treatment

(AP-IFN), and the results indicated that AP and IFN have a

probable or definite causal relationship (14). However, few

studies have aimed to identify the potential pathogenic roles of

IFN and clarify the pathogenic roles of neutrophils in COVID-

19-induced AP.
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Bioinformatic analysis of high-throughput sequencing data

plays an important role in medical research. In fact, there are

some studies based on bioinformatic analysis in AP (15–18).

However, all of these analyses are based on the identification of

differentially expressed genes (DEGs), and this method could

result in the omission of large-scale information from

unrecognized genes. Additionally, most of the studies are

based on bulk sequencing data from the mouse pancreas, and

studies based on human blood are rare. Weighted gene

coexpression network analysis (WGCNA) is a novel

bioinformatic method used to identify gene sets (gene

modules) with similar expression patterns and to analyze the

connection between gene sets and sample phenotypes. WGCNA

can map the regulatory network among genes in gene sets and

identify key regulatory genes without using differential gene

analysis. Suitable for complex transcriptome data, WGCNA can

be used to study developmental regulation at different stages and

response mechanisms at different time points of biological and

abiotic stresses. Single-cell sequencing is another novel

bioinformatic analysis procedure. Traditional bulk sequencing

examines the genome of a population of cells, such as cell

cultures, tissues, organs, or entire organisms. Its output is the

average genome of a cell population, whereas single-cell

sequencing measures the genome of a single cell in a cell

population (19). Using single-cell sequencing, we can identify

new subpopulations, or cellular states, in a seemingly

homogeneous population of cells.

In our current analysis, we performed WGCNA of

sequencing data from more than 100 human blood samples

divided into a healthy group, MAP group, MSAP group, and

SAP group for the first time and identified functional gene

modules. Then, we identified the pivotal genes in the

functional gene modules with significant diagnostic value

through a machine-learning method. Finally, we investigated

the potential mechanism and pathogenic neutrophil subtype in

COVID-19-induced AP.
Materials and methods

Data screening

High-throughput bulk sequencing datasets related to

peripheral blood of AP and COVID-19 infection were

screened in the Gene Expression Omnibus (GEO) database

(http://www.ncbi.nlm.nih.gov/geo/). The GSE194331 dataset,

which includes peripheral blood gene expression data from 87

patients with AP of varying severity (mild = 57, moderate to

severe = 20, and severe = 10) within 24 h of presentation to the

hospital and peripheral blood gene expression data from 32

healthy controls, was used in this study (18). Additionally, to
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explore the common biological mechanism between AP and

COVID-19, the GSE152418 dataset was used in the following

analysis as the COVID group, including 17 COVID-19 subjects

and 17 healthy controls (20). Then, to identify the

transcriptional change in neutrophils between COVID-19 and

normal sepsis, the single-cell sequencing dataset GSE157789,

which includes 14 samples of COVID-19-induced sepsis after

72 h, three samples of bacteria-induced sepsis after 72 h, seven

samples of COVID-19-induced sepsis after 7 days, and two

samples of bacteria-induced sepsis after 7 days, was analyzed.

Five healthy controls in single-cell sequencing datasets were

excluded from this study (21).
Identification of differentially
expressed genes

The raw gene count tables from the GSE194331 dataset were

acquired, and ensemble gene names were converted into gene

symbols using the org.Hs.eg.db package in R software. Then, the

sum of each gene count number in each dataset was calculated,

and low expression genes were excluded in the following

research (sum of gene count number <100). Additionally, each

table was subjected to differential expression analysis to compare

COVID-19 vs. healthy controls using the DESeq2 package in R

software (3). The criteria for differential expression analysis were

|logFC| >1 and P value <0.05.
Gene ontology and pathway
enrichment analysis

Gene Ontology analysis, pathway enrichment, and hub

pathway identification were executed using the Metascape

online tool (https://metascape.org/) (22). Hub genes were

identified through the STRING database (https://cn.string-db.

org/) with a threshold score of 0.7, and protein−protein

interactions (PPIs) were visualized using Cytoscape software.

The cytoHubba plug-in was used to identify hub genes with their

ranks (23).
Weighted gene coexpression
network analysis

To cluster the common modules among different subtypes

of AP, WGCNA was executed on the GSE194331 dataset using

the WGCNA package in R software. The significant advantage

of WGCNA is grouping DEGs in modules by coexpression

analysis and screening and identifying specific coexpression

gene modules with significant correlations among different
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subtypes of AP. During the analysis, first, an outlier

specimen was identified and excluded. Second, the

coexpression network with soft thresholding power was

constructed to obtain a higher level of scale-free R2 and

mean connectivity (24). In the dynamic tree cut and module

identification section, we chose 17 as the minimum number of

gene modules. Clinical characteristic data of BD samples and

COVID-19 samples from the GSE198533 and GSE152418

datasets were acquired, and then we calculated the gene

significance (GS) and module membership (MM) through

WGCNA. Then, the relationship between gene modules and

clinical traits was represented in the form of a heatmap. After

that, the module with coexpression patterns and significance

was identified.
Random forest algorithm manipulation

Random forest is a robust clustering supervised machine-

learning algorithm for hub gene identification, and it can be used

to calculate the significance of predictive variables distinguished

from background noise (25). In the current study, a random

forest algorithm was used to identify hub genes of two identified

modules based on WGCNA through the randomForest package

in R software (ntree = 1,500), grouping by healthy control, MAP,

and MSAP&SAP.
Immune infiltration estimation and
receiver operating characteristic
curve analysis

To estimate the immune subtype changes between the

peripheral blood of AP patients and the peripheral blood of

healthy controls, Immune Cell Abundance Identifier

(ImmuCellAI) (http://bioinfo.life.hust.edu.cn/ImmuCellAI/)

was used. ImmuCellAI is a tool to estimate the abundance of

24 immune cells from gene expression datasets, including RNA-

Seq and microarray data, in which the 24 immune cells comprise

18 T-cell subtypes and 6 other immune cells: B cells, natural

killer cells (NK cells), monocytes, macrophages, neutrophils, and

dendritic cells (DCs) (26). Receiver operating characteristic

(ROC) curves were rendered on DEGs using the R

package pROC.
Patient sample enrollment

Peripheral blood was obtained from AP patients within 24 h

of admission to Changhai Hospital from 2017 to 2020. Ethics

approval was obtained from the Shanghai Changhai Hospital
frontiersin.org
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Ethics Committee. AP diagnosis was made at the time of

presentation to the emergency department. Severity was

defined according to the Revised Atlanta classification.

Specifically, patients were defined as having SAP if they

developed persistent organ failure beyond 48 h. Patients were

defined as havingMSAP if they developed transient organ failure

and/or local or systemic complications. Finally, 28 samples were

included in our PCR analysis, including 14 MAP, 8 MSAP, and 6

SAP samples. These samples are divided into two groups,

including the MAP and MSAP&SAP groups. The details of the

patients are listed in Table S1.
Polymerase chain reaction

Then, peripheral blood mononuclear cells (PBMCs) were

isolated from peripheral blood by Ficoll density gradient

centrifugation. RNA from PBMCs was isolated with TRIzol

reagent (Invitrogen, USA). The concentration of the RNA was

analyzed using a Nanodrop 1000 spectrophotometer (Thermo

Fisher, USA) and then transcribed into cDNA using a high-

capacity cDNA reverse transcription kit (Life Technology

cooperation, USA) and amplified. The primer sequences,

number of cycles, and annealing temperature are listed in

Table S2. The expression levels were transformed into

standard b-actin content and calculated by the 2-DDCt method.

Then, GraphPad Prism 8 software was used to visualize the

expression data, and a paired t test was executed to identify the

paired groups with significance.
Analysis of single-cell sequencing data

The single-cell transcriptome matrix dataset GSE157789 was

acquired from the GEO database. The number of genes detected

in each cell was limited from 0 to 8,000. Then, ribosome Unique

Molecular Identifiers (UMI) rates below 60% and mitochondrial

UMI rates below 20% passed cell quality filtering and were

considered mitochondrial genes (Figure S2). The Seurat software

package (version: 3.1.4, https://satijalab.org/seurat/) was used to

perform cell normalization and regression to obtain scaled data.

The standard for PCA construction was the top 2,000 highly

variable genes, and the basis for the construction of t-distributed

Stochastic Neighbor Embedding (tSNE) and Uniform Manifold

Approximation and Projection (UMAP) was the top 10 PCA.

We acquired the unsupervised cell cluster result based on the top

10 principal functions through the graph-based cluster method.

The FindAllMarkers function and the Wilcoxon rank sum test

algorithm were used to calculate the marker genes (logFC >0.25;

p-value <0.05; min.pct >0.1). Genes with the top 10 log fold

change (logFC) are visualized.
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Identification of significantly related
pathways in different neutrophil
cell types

To assess whether the gene set is enriched in a neutrophil cell

subpopulation, the “irGSEA” package (https://github.com/

chuiqin/irGSEA/) in R software was used. We used this

package to score individual cells using multiple gene set

enrichment methods and to generate a multiple gene set

enrichment score matrix. Then, we used the Wilcoxon test to

calculate the DEG sets of each cell subpopulation in the

enrichment fraction matrix of each gene set. Some specific

enriched pathways were marked and visualized in single plots.
Pseudotime analysis

Monocle2 (http://cole-trapnell-lab.github.io/monocle-

release) was used to execute the single-cell trajectory analysis

utilizing DDR-Tree and default parameters. We selected marker

genes of the Seurat (version: 3.1.4) clustering result and raw

expression counts of the cell passed filtering. On the basis of

pseudotemporal analysis, the branch expression analysis model

(BEAM Analysis) was used to analyze branch fate-

determining genes.
Identification of significant metabolic
pathways at the single-cell level

The “ScMetabolism” package in R software was used to

calculate the metabolism status among different cell types in

neutrophil datasets. “ScMetabolism” was designed to easily

quantify single-cell metabolic activity using a single-line

command and combining the published gene sets and

manually reviewed gene sets from the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database and the Reactome

database to generate the list of metabolic gene sets (27).
Subtypes from single-cell sequencing
estimation in bulk sequencing data from
peripheral blood of acute pancreatitis
patients and healthy controls

The downloaded bulk sequencing data (GSE194331) and

neutrophil subtype matrix acquired from Seurat analysis were

uploaded to cibersoftx (https://cibersortx.stanford.edu/

runcibersortx.php). The relative proportion of Group 0

subtypes in the GSE194331 dataset was acquired through

cibersoftx deconvolution analysis. Visualization of the
frontiersin.org
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proportion of the targeted subgroup in each group, including

healthy controls, patients with MAP, patients with MSAP, and

patients with SAP, was performed using GraphPad Prism 8. The

significance analysis between each group was performed using a

t test.
Results

Identification of differentially expressed
genes with significant pathways and
hub genes

The GSE194331 dataset, which includes mRNA expression

data from peripheral blood of AP patients as the disease group

(57 mild pancreatitis samples, 20 moderate severe pancreatitis

samples, and 10 severe pancreatitis samples) and healthy

volunteers as the healthy control group (32 samples), was

subjected to differential expression analysis through the

DEseq2 package (logFC >1, p < 0.05) (Figure 1A), and 1,064

DEGs were identified (Table S3). As shown in Figure 1B, the

transcriptional expression of the top 50 upregulated and

downregulated genes could distinguish most of the disease

samples, especially severe samples, from healthy samples

(Figure 1B). “Neutrophil degranulation” is a significant

pathway identified in the bar graph of enriched terms across

input gene lists (Figure 1C). “Response to stimulus” is the most

distinct term in Gene Ontology analysis (Figure 1D). These
Frontiers in Immunology 05
terms emphasize the pivotal value of neutrophils in the

occurrence of AP. PPI analysis indicated that there were some

modules with significant density, including a module with IL-

1R1, IL-1RN, IL-1R2, IL-10, and MMP1, a module with HIST

family genes, and another module with MAPK-related genes

(Figure 1E). IL-10, IL-6, OSM, MMP9, MMP1, LCN2, HGF,

TIMP1, IL1B, and HIST1H4F were identified as the top 10

enriched genes (Figures 1F, G).
Identification of pivotal gene modules in
acute pancreatitis through Weighted
Gene Co-Expression Network Analysis
(WGCNA)

To further clarify the potential mechanism and gene module

among normal peripheral blood and differential subtypes of AP

(MAP, MSAP, and SAP), WGCNA was executed on disease

samples of the two datasets after batch normalization

(Figure 2A). As shown in Figures 2B, C, all samples were

included, and the optimal vector power was set at 11. The

brown module and turquoise module are two significant gene

modules with negative and positive correlations with the severity

of AP, respectively (Figure 2D). Other gene modules had compact

gene regulatory networks (Figure 5C). The gene list of the brown

module and turquoise module is shown in Table S4. TheWGCNA

results suggest that genes in the brown module and turquoise

module manipulate common biological processes in AP.
B C

D E F

G

A

FIGURE 1

(A) Volcano plot of peripheral blood of acute pancreatitis datasets (logFC >1, p < 0.05). (B) Heatmap of the top 50 upregulated and
downregulated genes with unsupervised clustering analysis. (C) Bar graph of enriched terms across input gene lists, colored by p-values.
(D) Terms of the Gene Ontology list, colored by p-values. (E) Protein−protein interaction network of DEGs. (F) Network of the top 10 genes.
(G) Enriched score of the top 10 genes.
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Investigation of pivotal gene ontology
terms and pathways in screened
gene modules

To further investigate the gene functions and significant

KEGG pathways in the identified modules, the Metascape

database was used. “Metabolism of RNA” pathways related

to T-cell activation and virus infection were significantly
Frontiers in Immunology 06
enriched in the turquoise module. The pathway network

of the turquoise module revealed that these three aspects

of related pathways acted independently (Figure 3A).

Additionally, “Neutrophil degranulation,” “Inflammatory

response,” and “Response to bacterium” were significantly

enriched in the brown module. The pathway network of the

turquoise module reveals that these related pathways act

synergistically (Figure 3B).
B

A

FIGURE 3

(A) Gene Ontology analysis and KEGG pathway analysis with an interaction network in genes from the turquoise module. (B) Gene Ontology
analysis and KEGG pathway analysis with an interaction network in genes from the brown module.
B

C D

A

FIGURE 2

WGCNA results in different subtypes of acute pancreatitis. (A) Sample dendrogram. (B) The scale plot of WGCNA to identify optimal vector
power (cutoff value = 0.8). (C) Sample dendrogram and trait heatmap. (D) Module–trait relationships: every module has its correlation
coefficient and corresponding p-value.
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Identification of immune cell subtypes
and reliable biomarkers in
acute pancreatitis

During immune cell-type infiltration analysis, the results

indicated that with the progression of AP, peripheral blood DCs,

monocytes, macrophages, and neutrophils showed an increasing

tendency, and B cells, CD4 T cells, CD8 T cells, Treg cells, T

helper (Th) cells, Th1 cells, Th2 cells, and Tfh cells showed a

decreasing tendency (Figure 4A). Then, random forest analysis

was executed between the severe AP groups (MSAP&SAP) and

the control group (healthy control and MAP) (Figure 4B). The

top 30 genes are listed (Figure 4C). Among these genes, 10 genes,

including S100A6, S100A9, S100A12, CD63, ITK, CD5, ANXA3,

KLF12, TRABD2A, and CCR7, were identified with significant

diagnostic value (AUC >0.8) (Figure 4D).
Validation of reliable biomarkers to
monitor the severity of acute pancreatitis

As shown in Figure 5A, all eight genes showed significant

differences between the healthy control group, MAP group, and

MSAP&SAP group. Genes with higher expression are more

suitable for use as diagnostic factors because of the lower
Frontiers in Immunology 07
detection error rate. Following this criterion, three genes were

screened with significant value as diagnostic factors (minimum

relative expression >500), including S100A6, S100A9, and

S100A12. To test the robustness of these genes for the

identification of AP severity, 28 peripheral blood samples were

collected, and the relative expression of these genes was detected.

The details of the enrolled patients are listed in Table S1. The

patients were grouped by the severity of AP (MSAP&SAP group

and MAP group). Significant differences were identified between

these two groups in the expression value of all genes (Figure 5B).

ROC analysis also verified these genes with significant diagnostic

value between SAP and MAP (Figure 5C).
Identification of common biological
processes and pivotal peripheral blood
cell types between acute pancreatitis
and COVID-19

To further explore common biological processes and

pivotal cell types in COVID-19-induced pancreatitis, the

GSE152418 dataset was used in the following study. A total

of 1,494 DEGs were identified through the DEseq2 package

(Figure S1; Table S5). A total of 161 common upregulated

genes and 12 downregulated genes were identified between the
B C D

A

FIGURE 4

(A) Estimation of immune cell subtype infiltration in all samples, divided into three groups (1 = healthy control group, 2 = MAP group, and 3 =
MSAP&SAP group). (B) Error plot of random forest analysis (Tree = 1,500). (C) Top 30 genes in random forest analysis. (D) ROC plot of genes
with significant diagnostic value (AUC >0.8). **P < 0.01, ***P < 0.001, ****P< 0.0001, ns, P > 0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.964622
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2022.964622
B

C D

A

FIGURE 6

(A) Common DEGs between the peripheral blood of acute pancreatitis and COVID-19 patients. (B) Gene Ontology and KEGG pathways in the
identified common DEGs. (C) Gene Ontology and KEGG pathway interaction network with each term. (D) Gene Ontology and KEGG pathway
interaction network with p-values.
B C

A

FIGURE 5

(A) Bar plot of 10 identified genes with prognostic value in the current datasets. (B) Expression of S100A6, S100A9, and S100A12 in the peripheral
blood of our local cohort. (C) ROC plot of S100A6, S100A9, and S100A12 based on the peripheral blood expression of our local cohort. ***P < 0.001.
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peripheral blood of AP and COVID-19 patients (Figure 6A).

“Neutrophil degranulation” was significantly enriched in the

KEGG pathway analysis of these common genes (Figure 6B).

The “neutrophil degranulation” pathway was identified in the

central roles of networks with the most significant value

(Figures 6C, D).
Identification of neutrophil cell types in
single-cell datasets

As mentioned in the introduction, a previous study showed

that COVID-19-induced sepsis can potentially induce and

accelerate AP (5–8). However, there is no report related to

bacteria-induced sepsis, another common cause of sepsis.

According to our analysis above, neutrophils could be an

important subtype as a common pathogenic factor between

COVID-19 infection and AP in peripheral blood. Hence, we

next investigated the change in neutrophils between bacteria-

induced sepsis and COVID-induced sepsis by analyzing single-

cell sequencing data to identify the pathogenic factor of

peripheral blood in COVID-19-induced AP. As shown in

Figure 7A, 0.05 was selected as the resolution in the following
Frontiers in Immunology 09
steps. Groups 1, 6, and 9 were identified as neutrophils

(Figures 7B–D).
Identification of different neutrophil
cell types

Then, the identified neutrophils were screened and extracted

into the following analysis. Five neutrophil subgroups were

identified (Figures 8A–C). As shown in Figure 8D, Group 0 was

significantly upregulated in the COVID-19 group, and Group 3

was significantly increased in bacteria-induced sepsis. The top 10

genes in each group were screened out (Figure 8E). Importantly,

the top genes in Group 0 were associated with the IFN-reactive

phenotype and inflammation. Groups 3 and 4 were more likely to

exhibit a proliferative phenotype. Neutrophil degranulation is

significantly related to the activation of neutrophils. The marker

genes of neutrophil degranulation are MPO, ELANE, CAMP,

CYBA, MMP8, and MMP25. As shown in Figure 8F, marker

genes of neutrophil degranulation were significantly upregulated

in Group 0. In summary, Group 0 represents a subtype of mature

activated neutrophils, mainly enriched in COVID-19-induced

sepsis, with high expression of IFN-related genes.
B

C D

A

FIGURE 7

(A) Cluster tree at different resolutions. (B) Neutrophil markers in different subtypes of peripheral blood. (C) Identified neutrophil subtypes in the
UMAP plot with subtypes. (D) Identified neutrophil subtypes in the UMAP plot with groups.
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Group 0 neutrophils are a potential
pathogenic subtype of acute pancreatitis
related to interferon secretion and are
upregulated in the peripheral blood of
patients with acute pancreatitis

Finally, after validation through single-cell pathway analysis,

Group 0 was identified as an IFN-related group (Figures 9A, B).
Frontiers in Immunology 10
Pseudotime locus analysis illustrated that Group 5 represents the

naive and inactivated phenotypes of neutrophils in sepsis, and the

evolutionary trajectory of Group 0 was different from that of other

mature neutrophils (Figures 9C, D). Then, some common

metabolism-related pathways were identified in Group 0,

including “fatty acid degradation,” “alpha-linolenic acid

metabolism,” “sulfur metabolism,” and “fatty acid biosynthesis”

(Figures 9E, F; Table S6). Finally, to further validate the identified
B C

D E F

A

FIGURE 8

(A) Neutrophil markers in different subtypes of peripheral blood. (B) Identified neutrophil subtypes in the UMAP plot with subtypes. (C) Cluster
tree at different resolutions. (D) Stacked plot of neutrophil subtypes. (E) Heatmap of the top 10 genes in each subtype. (F) Markers of neutrophil
degranulation in each subtype.
B C

D E F G

A

FIGURE 9

(A) Single-cell pathway analysis of the five subgroups. (B) The activated interferon-related pathway among all subgroups. (C) Pseudotime locus
analysis of the five subgroups sorted by pseudotime. (D) Pseudotime locus analysis of the five subgroups sorted by subgroup. (E) Single-cell
metabolism-related pathway analysis in Group 0 between the COVID-19-induced sepsis group and the bacteria-induced sepsis group. (F) The
common identified metabolism-related pathways in Group 0. (G) The proportion of the identified subtype from single-cell sequencing data in
all neutrophils among acute pancreatitis patients and healthy controls (based on the GSE194331 dataset) (*p < 0.05, ***p < 0.0001).
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IFN-related neutrophil pathogenic subtype, cibersoftx software was

used to estimate the proportion of the identified subtype from

single-cell sequencing data in all neutrophils among AP patients

and healthy controls (based on the former GEO bulk sequencing

dataset: GSE194331). The proportion of this subtype was nearly 0

in peripheral blood from healthy controls and was significantly

upregulated in peripheral blood of AP patients, rising with

increasing disease severity (Figure 9G).
Discussion

AP is a common clinical acute abdominal disease with

pancreatic inflammation, including pancreatic edema, bleeding,

and even necrosis. The clinical features of AP are acute epigastric

pain, nausea, vomiting, fever, and even slipping into shock (1).

The severity of pancreatitis is different, grouped intoMAP,MSAP,

and SAP according to the Atlanta classification (2). The key

differentiator among these three types is AP with or without

transient organ failure or persistent organ failure. In general, 20%

of patients have severe AP, and the mortality rate is as high as

20%–40%. The cause of AP varies, including gallstone obstruction

in the pancreatic duct (the most common cause of AP), alcohol

abuse, endoscopic retrograde cholangiopancreatography (ERCP),

and an imbalanced internal environment (28). Multiple

biomarkers have been reported to have significant diagnostic

value in AP. The types of these biomarkers vary, including

biochemical indices (such as amylase and lipase) and other

novel indicators (such as indicators from the metabolome,

genes, and miRNA). However, these novel indicators have not

been investigated (29). In our current research, we identified two

pivotal gene modules through WGCNA methods based on the

transcriptional expression data of peripheral blood from AP

patients and healthy controls. Genes in the two modules play

important roles in the exacerbation of AP. Then, 30 genes were

identified through machine-learning methods with significant

diagnostic value in AP. Additionally, we selected and verified

three key genes, S100A6, S100A9, and S100A12, with robust

diagnostic value for both the occurrence of AP and the severity

of AP. S100A6, S100A9, and S100A12 encode low-molecular

weight (9,000–14,000 Da) calcium-binding proteins with highly

conserved amino acid sequences. They are named S100 because

they can dissolve in 100% saturated ammonium sulfate solution.

Most of the proteins in the S100 family can be released to

intercellular substances, regulating different phenotypes of

recipient cells, including the activation and proliferation of

immune cells, with the acquisition of cytokine production

ability. Specifically, S100A6 promotes the proliferation and

motility of cancer cells and induces the activation of fibroblasts

(30, 31). In inflammation-related diseases, S100A6 induces a

sensational inflammatory response by directly combining heat

shock protein 70 (HSP70) with heat shock protein 90 (HSP90)

(32, 33). A study reported that S100A6 is elevated during the
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carcinogenesis of pancreatic cancer (34). S100A9 could serve as a

damage-associated molecular pattern (DAMP) to stimulate TLR4

and induce a sensational inflammatory response (35). Moreover, a

recent study reported that the upregulation of S100A9 induces

pancreatic injury and an AP response via NLRP3 activation by

targeting VNN1-mediated ROS release and that loss of S100A9

decreases AP injury (36). S100A12 is highly abundant in

neutrophils and has been identified as an activator of long-term

inflammation via the RAGE pathway (37). A previous animal

study reported the diagnostic value of S100A12 in AP in rats. To

the best of our knowledge, this is the first study to identify AP

biomarkers based on the transcriptional expression pattern of

peripheral blood through WGCNA and machine-learning

methods, and this is the first human study emphasizing that

S100A6, S100A9, and S100A12 have diagnostic value for the

severity of AP. These findings could increase the value of

our research.

COVID-19, caused by SARS-CoV-2, is an epidemic disease

that poses a certain threat to humans (38). SARS-CoV-2

infection was first reported in Wuhan (China) in December

2019, and it has rapidly spread around the world, causing 524

million active cases with 6 million deaths as of May 2022. A great

number of reports indicate that COVID-19 infection can

potentially result in AP (3, 4). Some single-center studies have

confirmed the relationship between COVID-19 and AP (5, 6).

Some literature reviews have suggested that there is an increased

prevalence of AP in patients infected with COVID-19 and that

SARS-CoV-2 might itself cause AP in some patients (7, 8).

However, the pathogenesis of AP concomitance with COVID-19

infection remains unclear. In our current studies, by analyzing

bulk sequencing data from the peripheral blood of COVID-19

and AP patients, neutrophil-related pathways were identified as

the most significant pathways. The results emphasized the

potential roles of neutrophils in COVID-19-induced AP.

However, there is no report related to bacteria-induced sepsis,

another common cause of sepsis. Hence, the following analysis

focused on the identification of potential pathogenic subtypes of

neutrophils. During the analysis procedure, a subgroup of

neutrophils was identified as significantly expressed in

COVID-19-infected peripheral blood. The gene expression

characteristic of these neutrophils is high expression of IFN

with proinflammatory phenotypes. Additionally, the

differentiation of this group was significantly different from

that of the other groups. In fact, some clinical and basic

studies have focused on the potential role of IFN as a

promoter in AP. The pathogenesis of AP induced by an

imbalanced internal environment usually results from drug

mistakes. Among these drugs, there are some case reports that

IFN could result in AP (12). Additionally, IFN-g has been

reported to act as a promoter in a rat model of AP (13). A

meta-analysis systematically reviewed the literature related to

the occurrence of AP after IFN treatment (AP-IFN). After

reviewing 16 studies that reported AP-IFN in a total of 23
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patients, the results indicated that AP and IFN had a probable or

definite causal relationship according to the Naranjo scale (14).

Therefore, according to our results of pathogenic neutrophils

with high expression of IFN and proinflammatory phenotypes,

upregulation of this subgroup of neutrophils in patients may

stimulate the immune system, leading to pancreatic damage via

an autoimmune mechanism. Moreover, the basic mechanism of

this neutrophil subgroup in the progression of AP is currently

being researched and will be illustrated in our future reports.

In conclusion, we performed WGCNA of sequencing data

from more than 87 human blood samples divided into a healthy

group, MAP group, MSAP group, and SAP group for the first

time and identified two functional gene modules associated with

the severity of AP. Next, we identified and verified some pivotal

genes in functional gene modules with significant diagnostic

value, including S100A6, S100A9, and S100A12, through

machine-learning methods and experimental validation in

blood samples from AP patients. Then, through analysis of

single-cell sequencing data, we investigated the specific

changes in neutrophils in the peripheral blood of COVID-19

patients and identified one pathogenic neutrophil subgroup with

high expression of IFN and a proinflammatory phenotype in

COVID-19. Finally, we observed that the upregulation of the

pathogenic neutrophil subgroup was correlated with the severity

of AP in bulk sequencing data. To the best of our knowledge, this

is the first study to identify gene biomarkers in peripheral blood

of AP using WGCNA and to propose a potential pathogenesis of

COVID-19-induced pancreatitis through the identification of a

specific functional subgroup in neutrophils. These findings could

facilitate clinical severity diagnosis and basic research of AP.

However, this study has some shortcomings. First, the AP

high-throughput data are from a public database, and specific

clinical data of enrolled patients are difficult to collect. Second,

the potential mechanisms of the screened genes and functional

neutrophil subtypes in AP need to be further clarified in basic

research in further in vivo experiments.
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