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Abstract: The main protease enzyme (Mpro) of SARS-CoV-2 is one of the most promising targets for
COVID-19 treatment. Accordingly, in this work, a structure-based virtual screening of 3.8 million
ligand libraries was carried out. After rigorous filtering, docking, and post screening assessments,
78 compounds were selected for biological evaluation, 3 of which showed promising inhibition of
the Mpro enzyme. The obtained hits (CB03, GR04, and GR20) had reasonable potencies with Ki

values in the medium to high micromolar range. Interestingly, while our most potent hit, GR20,
was suggested to act via a reversible covalent mechanism, GR04 was confirmed as a noncompetitive
inhibitor that seems to be one of a kind when compared to the other allosteric inhibitors discovered
so far. Moreover, all three compounds have small sizes (~300 Da) with interesting fittings in their
relevant binding sites, and they possess lead-like characteristics that can introduce them as very
attractive candidates for the future development of COVID-19 treatments.

Keywords: SARS-CoV-2; Mpro; structure-based virtual screening; docking; aryl nitrile; allosteric
inhibitor

1. Introduction

Triggering one of the most cataclysmic events in history due to its highly infectious
nature, coronavirus disease 2019 (COVID-19) was declared a pandemic by the World
Health Organization (WHO) on the 11 March 2020 [1]. Belonging to the large family of
coronaviruses (CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the
causative agent behind the outbreak of the novel COVID-19. SARS-CoV-2 was preceded
by the severe acute respiratory syndrome coronavirus and the Middle East respiratory
syndrome coronavirus, which caused the SARS and MERS outbreaks in China in 2003
and the Middle East in 2012, respectively [2,3]. However, the rapid worldwide spread of
COVID-19 has imposed a serious challenge on global public health, urging researchers in
different sectors all around the globe to pursue the worldwide quest of searching for novel
antivirals and vaccinations for combating the virus. In fact, as of 10 May 2022, the number
of confirmed cases, as reported by the WHO, has exceeded 500 million, including more
than 6 million deaths [4].

One of the most promising key targets of SARS-CoV-2, which was identified early
on, is the main protease enzyme (Mpro), also referred to as 3-chymotrypsin-like cysteine
protease (3CLpro) [5]. Mpro plays a key role in the virus’s replication and transcription
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by cleaving its 1a/1ab polyproteins at multiple sites to produce 16 mature nonstructural
proteins essential for replication [6]. This cleavage occurs exclusively after a glutamine
residue in the polypeptide sequences, which is a specificity feature not seen in any known
human protease [7]. This, coupled with the highly conserved nature of its active site among
other coronaviruses (82% and 50% structural similarities with SARS-CoV and MERS-
CoV. respectively), has defined Mpro as a viable target in drug design and repurposing
studies, especially with the continuous and highly paced emergence of new variants of
SARS-CoV-2 [8].

Naturally occurring as a homodimer, SARS-CoV-2 Mpro is composed of two promotors,
each made up of three domains: I (residues 10–99), II (residues 100–182), and III (residues
198–303) [9]. Domains I and II are responsible for active site formation, while domain III
plays a vital role in regulating dimerization [10]. The active site is divided into four main
subsites: S1, S2, S4, and S1′ [11]. The S1′ subsite contains the catalytic dyad, made up of the
active residue, cysteine 145 and histidine 41 [12].

In this study, we utilized structure-based virtual screening to discover small drug-
like compounds that can act as inhibitors of the Mpro enzyme. Accordingly, we screened
a number of commercially available libraries with around 3.8 million ligands in an attempt
to find potential Mpro inhibitors with small sizes and lead-like characteristics. The inhibi-
tion activity of such compounds was evaluated in-vitro using simple enzyme assays and
kinetics studies.

2. Results and Discussion
2.1. Structure-Based Virtual Screening

Figure 1 illustrates the virtual screening protocol that was followed to screen a huge
ligand database of more than 3.8 million ligands against the SARS-CoV-2 Mpro enzyme.
Four commercially available libraries were filtered based on the drug-likeness rules [13,14],
and the resulting datasets were then filtered via a PAINS filter using an online open-access
server to minimize the possibility of false positives throughout the in-vitro evaluation
process. This effectively reduced our collective library size from 3,824,977 ligands to
2,472,261 ligands that were docked stepwise into the Mpro active site using three subsequent
stages where precision and accuracy increased at the cost of computational time: GLIDE-
HTVS, GLID-SP, and GLID-XP. The top-scoring ligands from each library were visually
inspected inside the active site of the protein (Mpro) to shortlist compounds based on their
fitting inside the binding site and their interactions with the surrounding residues. The
shortlisted compounds were checked for similarity with known aggregators using the
online tool Aggregator Advisor. Compounds that came back with no alerts for known
aggregate scaffolds were then re-evaluated using MD simulation and MM-GBSA scoring.
A total of 178 compounds from all the screened libraries (i.e., TimTec: 59, ChEMBL: 48, and
ChemDiv: 60) were further investigated using MD simulation and MM-GBSA scoring.

2.2. MD Simulation and MM-GBSA Scoring

Besides the poor estimation of binding affinities being a major drawback of docking,
structure-based VS continues to be biased towards the selection of ligands with high
molecular weights, regardless of their fitting and binding modes [15]. Hence, a more
accurate scoring method such as MM-GBSA is needed to rescore the docked ligands.
Accordingly, we conducted MD simulation for 20 ns on the shortlisted compounds for
rescoring with MM-GBSA calculations (a total of 178 compounds from all screened libraries).
Compared to docking-associated scoring, MM-GBSA has been reported to have a better
correlation between the predicted scores and the actual inhibition constant (Ki) or IC50 [16].
As the MM-GBSA scores for all the compounds were very close to one another and all
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appeared to be low and favorable scores, we calculated the ligand efficiency using the
formula below:

Ligand Efficiency
(

kcal mol−1
)
=

MMGBSA
(

kcal mol−1
)

Number of Heavy Atoms
(1)

This allowed us to overcome the size-related biases of these scoring methods. Table 1
lists examples of hits selected for the in-vitro evaluation, as they showed the best profiles
in terms of ligand efficiency, lead-like and drug-like characteristics, and ADMET profile (as
shown below).
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Figure 1. Docking-based virtual screening conducted against the SARS-CoV-2 Mpro active site.

2.3. ADME Profile of Top Hits

A pharmacokinetics and drug-like property assessment was carried out to help us
shortlist compounds for in-vitro evaluation. Table 1 showcases the ADME assessment
of our top hits. Interestingly, all four top hits were predicted to have high GI absorption
rates. CD06 and GR04 were predicted to have the ability to cross the blood–brain barrier
(BBB), unlike CB03 and GR20. However, GR04 was also predicted to be a P-gp substrate,
which is a transmembrane efflux pump that is highly expressed at the BBB, preventing
the accumulation of this potential substrate in the brain [17], hence protecting the brain
from any possible side effects attributed to the compound; this was not the case for CD06.
All four compounds were predicted to have potential drug–drug interactions, as they all
showed the potential to bind to at least three enzymes from the cytochrome P450 family.
Our top hits were successful in fulfilling all the drug-like rules depicted in Table 1, with
the exception of CD06. Additionally, unlike the others, CD06 did not fulfill the lead-like
characteristics, as both its molecular weight and LogP violate the lead-like boundaries. It
was also the only compound to come back with a PAINS alert, as it has a Mannich core in
its structure, which is a known PAINS-related structure [18]. To sum up, all assessed hits
appear to bear drug-like characteristics and can act as good leads for future development,
with the exception of CD06, which was predicted to violate a number of rules, and hence
its lead candidacy shall be considered with high caution.
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Table 1. Pharmacokinetics, drug-like, and lead-like characteristics of selected hits predicted
by SwissADME.

CB03 CD06 GR04 GR20

Pharmacokinetics

GI absorption High High High High
BBB permeant No Yes Yes No
P-gp substrate No No Yes Yes

CYP1A2 inhibitor Yes No Yes Yes
CYP2C19 inhibitor Yes Yes No Yes
CYP2C9 inhibitor Yes Yes Yes Yes
CYP2D6 inhibitor Yes Yes Yes No
CYP3A4 inhibitor Yes No Yes Yes

Bioavailability score 0.55 0.55 0.55 0.55

Drug-likeness

Lipinski Yes Yes Yes Yes
Ghose Yes Yes Yes Yes
Veber Yes Yes Yes Yes
Egan Yes Yes Yes Yes

Muegge Yes No Yes Yes
LogP > 3.5

Medicinal
Chemistry

PAINS
0 1 alert 0 0

Mannich in
structure

Brenk 0 0 0 0

Lead-likeness Yes LogP > 3.5
MW > 350 Yes Yes

2.4. Enzyme Assay and IC50 Determination

A total of 78 compounds from four different libraries were tested at 100 µM for their
inhibition effect against the SARS-CoV-2 Mpro enzyme. Compounds that had an inhibition
percentage of >20% were further evaluated to find their IC50 values. Among all the tested
compounds, the IC50 values were identified for four compounds, as shown in Table 2
(the IC50 plots are shown in Figure S1 in the Supplementary Information). Starting with
CD06, which had the second best IC50 of 226.2 µM, this compound was not a good choice
to consider for lead optimization, considering its high molecular weight, complicated
structure, and synthetic feasibility. On the other hand, CB03 and GR04 both have rather
simple structures with a large space for derivatization. However, they possess IC50 values at
the high micromolar level (301 µM and 346 µM, respectively). Interestingly, GR20 showed
the best inhibition profile when compared to the previous two compounds, bringing the
potency down to the middle micromolar level with an IC50 value of 92 µM. The latter
compound as well as CB03 and GR04 are all worth further investigation, as they all possess
small structures along with lead-like characteristics and good ADMET profiles.

2.5. Promiscuity Tests

Hits obtained from screening may turn out to be promiscuous with peculiar properties
such as poor specificity, aggregate formation, and finally, poor correlation between structure
and activity. Accordingly, ruling out the possibility that our hits may be promiscuous
compounds exhibiting activity against our target enzyme via nonspecific mechanisms is
a crucial step before considering them as proper leads. A number of tests were employed
to ensure that our compounds are real inhibitors. The first test was the pre-incubation
test, as promiscuous compounds are known to exhibit a time-dependent inhibition, with
a decreased (improved) IC50 as a result. A competitive inhibitor, on the other hand, would
not exhibit the same behavior. The tested compounds were found to have the same
inhibition percentage at 100 µM with and without the pre-incubation step, as showcased in
Table 3.
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Table 2. IC50 values of virtual screening top hits.

Compound ID Structure Molecular
Weight

MM-GBSA
Score

(kcal mol−1)
IC50 (µM)

CB03
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Table 3. Promiscuity tests results (NT: not tested).

Pre-Incubation Test

Inhibition % at 100 µM
without pre-incubation

Inhibition % at 100 µM
with 15 min pre-incubation

CB03 15.1 14.2
GR04 35.4 34.3
GR20 NT NT

10-Fold Enzyme Concentration Increase

Inhibition % at 100 µM at
4.6 µM enzyme concentration

Inhibition % at 100 µM at
46 µM enzyme concentration

CB03 15.0 13.1
GR04 33.5 33.9
GR20 48.6 48.0

BSA Buffer

Inhibition % at 100 µM
without BSA in assay buffer

Inhibition % at 100 µM
with 1g/mL BSA in assay buffer

CB03 15.5 17.3
GR04 33.0 35.0
GR20 50.0 51.4

The second test employed involved increasing the enzyme concentration 10-fold
(46 µM). A nonspecific inhibitor would be attenuated by the presence of excess enzyme.
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However, the inhibitory effects of CB03, GR04, and GR20 remained unaffected by the
increase in the enzyme concentration (Table 3).

The final test was conducted using the detergent bovine serum albumin (BSA) pre-
pared at 1 mg/mL as part of the 20 mM HEPES (pH 6.5) assay buffer. This test could
rule out the possibility of the tested compounds forming aggregates within the enzymatic
reaction, as an aggregator’s activity would considerably drop in the presence of a detergent
because it is unable to form a colloid in the enzyme assay. The inhibition percentage
exhibited by the three tested compounds at 100 µM remained the same in the presence and
absence of BSA, suggesting that they are, in fact, true inhibitors (Table 3).

2.6. Inhibition Kinetic Study of CB03, GR04, and GR20

In order to understand the mechanism of inhibition adopted by our compounds,
inhibition kinetics studies were performed for the three best compounds before considering
them as lead compounds for future lead optimization. With this information, we can
conclude with some degree of certainty where our compounds’ binding sites are (active
site or allosteric site). This will, in turn, shape our derivatization process, as it will be in
line with the binding sites size (and other known characteristics), making the proposed
derivatives optimized for their proposed binding sites. Accordingly, the substrate and
compound concentrations were varied, and the data generated from the kinetic study
assays were plotted using the Lineweaver–Burk plot and the GraphPad prism tool to plot
and evaluate the inhibition mechanism for each of the examined compounds (Figure 2).
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Figure 2. (a) The Lineweaver–Burk plot (1/substrate concentration (1/[S]) vs. 1/velocity (1/V)) of
CB03, GR04, and GR20, which show competitive, noncompetitive, and mixed inhibition mechanisms,
respectively. (b) The inhibition constant plots (slope from Lineweaver–Burk linear curves vs. inhibitor
concentration [I]) of CB03, GR04, and GR20, where the Ki values = −y-intercept.

CB03 showed no observable change in the measured Vmax, while the Km value in-
creased with the addition of the inhibitor. These findings indicated a competitive mecha-
nism adopted by CB03 to inhibit the Mpro active site, as shown in Figure 2a, with a Ki of
255.6 µM (Figure 2b). On the other hand, GR04 was shown to fit the noncompetitive model
best since the apparent Km remained the same and the Vmax value was shown to decrease,
as shown in the Lineweaver–Burk plot (Figure 2a). Although GR04 turned out to have
a high micromolar Ki value (Figure 2b), this interestingly suggests that GR04 inhibits the
Mpro enzyme via binding to an allosteric site rather than the active site (discussed further
in latter sections).
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In line with the IC50 findings, GR20 attained the best Ki value (89 µM) among all tested
hits, and in terms of mechanism it was shown to fit the mix inhibition model best, as shown
in the Lineweaver–Burk plot (Figure 2a). Having said that, competitive behavior cannot
be completely ruled out. In fact, GR20 might act with a different mode of inhibition, as
the apparent Km and Vmax parameters were shown to change, and that could be evidence
of a nonconventional mechanism, such as covalent inhibition, where the affinity of the
substrate decreases if measured at certain timing of the reaction, while the maximum
velocity cannot be reached as many enzyme molecules are permanently damaged [19,20].
This argument can be somewhat justified by the presence of the aryl nitrile functionality on
the GR20 structure, which is known for its reactivity towards the cysteine residue (that is
present in many proteases) [21–23]. In fact, many previous studies suggested that the nitrile
group has a varied strength of reactivity, which can lead to forming a thioimidate ester
adduct with a varied degree of reversibility. Hence, besides being suggested as an allosteric
inhibitor, GR20 also seems to have the potential to bind with the Mpro catalytic site with
an irreversible mechanism [24]. Both proposed mechanisms were further investigated via
computational means, as illustrated in the next sections.

2.6.1. CB03 as a Competitive Inhibitor

Molecular docking study: Guided by the kinetics study, we concluded that CB03
occupies the active site (Figure 3a) and exerts its inhibition via a competitive mechanism.
Its binding mode was rather interesting (Figure 3b), as it fits snuggly into the subpockets of
Mpro, placing its cyclopentane side chain deep into the S2 subpocket and forming a strong
hydrogen bond interaction with the key residue, GLN189, through its carbonyl [8]. The
nitrogen atom of the side chain also forms a strong hydrogen bond with HIS164. The bicyclic
region of the small compound spans over the S1′ and S1 regions in the pocket, forming
a strong hydrogen bond with another key residue, GLY143, through the heteronitrogen in
the ring [8]. The benzene ring fits deep into the S1′ pocket to form a stacking interaction
with LEU27. A weak interaction is also formed by the carbon atoms in the side chain
and another key residue, CYS145 [8]. All in all, CB03 is a weak inhibitor, yet it can be
a promising lead for the future development of clinically useful Mpro inhibitors, as it is
small in size and seems to have a very satisfactory fitting within the targeted active site.

Pairwise energy decomposition analysis of CB03: Further investigation of the in-
teractions between protein residues and CB03 was conducted using a pairwise energy
decomposition analysis to calculate the energetic contributions of pairs of residues and
ligands to the binding free energy of the complex. Figure 3b presents the energy decompo-
sition for the key residues in the active site with CB03. The top three residues that made
significant contributions to the binding affinity are MET165, GLU166, and GLN189. These
residues have been identified as key bioactive residues [25]. MET165 and GLN189 form
rather strong van der Waals (vdW) and electrostatic interactions, while GLU166 makes a sig-
nificant contribution to the binding affinity through polar solvation. HIS41 is another key
residue that also considerably contributes to the binding affinity through vdW interactions.
Other key residues also contribute to the binding affinity but with weaker interactions,
such as GLY143 and HIS163.

CB03 has a quinoxaline scaffold, which has previously been investigated for antitumor
and antiviral potential against different targets. In fact, quinoxaline derivatives have gained
the attention of medicinal chemists in recent years due to their rather interesting biological
properties. Quinoxaline-bearing compounds were found to exhibit activity against DNA
and RNA viruses [26]. They have also previously been identified as effective potential ther-
apeutic candidates against other viruses, such as HIV-1 [27]. Accordingly, CB03 provides
a promising candidate for future development as an antiviral agent against SARS-CoV-2.
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2.6.2. GR04 as a Noncompetitive Inhibitor

Through our virtual screening protocol, we aimed to identify reversible inhibitors of
the active site of Mpro. One of the top candidates, GR04, exhibited an excellent fit in the
active site in molecular docking and molecular simulations; nevertheless, the kinetics study
indicated that GR04 does not bind to the active site. Hence, it appears that GR04 binds to
allosteric sites on the molecular surface of Mpro.

To determine where GR04 binds, we must examine all allosteric sites on the Mpro

molecular surface. So far, six cavities have been described in the literature to bind fragments
or ligands [28,29]. Some are found in distal areas from the main catalytic pocket, and others
have been identified on the dimerization interface, a site vital to enzyme activation [30,31].
Given the number of allosteric sites, it was essential to perform a brief druggability assess-
ment to determine their druggability or likelihood of binding drug-like ligands. Then, the
molecular docking of GR04 was performed to understand the in-depth interaction of these
compounds with the protease’s allosteric sites. Finally, to confirm the binding mode of
GR04, MD simulations were carried out, and the ligand stability within the allosteric site
was assessed and analyzed.

Druggability assessment: Using the SiteMap [32] module, we identified the cocrystal-
lized ligand as the core of the pocket that had to be assessed. Druggability scores (Dscores)
were then calculated for each of these pockets; the higher the score, the better the drugga-
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bility (pockets with a Dscore ≥ 1.0 are considered very druggable, while sites with a Dscore
of less than 0.8 are classified as difficult nondrug binding sites) [33]. This type of rating is
based on three primary factors: pocket size, hydrophobicity, and enclosure [33].

Table 4 shows that, of the six allosteric sites, one had extremely druggable pockets
(site #2), one had a druggable pocket (site #5), and one had poor druggability (site #3).
Meanwhile, the three remaining sites could not be detected by SiteMap (sites #1, #4, and #6)
due to their shallow nature.

Table 4. The Dscore values of the putative Mpro allosteric sites along with the docking scores of GR04
obtained for each of the tested pockets (ND: not detected).

Allosteric
Site Number

PDB
Code

Dscore
(Site Map)

GR04
Docking Score
(kcal mol−1)

GR20
Docking Score
(kcal mol−1)

Site #1 5REC [29] ND −3.76 −3.55

Site #2 7AGA [28] 1.02 −5.31 −5.53

Site #3 7AXM [28] 0.49 −3.68 −2.90

Site #4 5RGJ [29] ND ND −1.94

Site #5 5RFA [29] 0.83 −4.72 −4.90

Site #6 5RF0 [29] ND ND −2.94

Molecular docking study: Molecular docking was carried out for GR04 in both sites
#2 and #5, as their Dscores fell within the druggable range (Figure 4a). The docking of
GR04 into site #2 resulted in a docking score of −5.44 kcal mol−1 (Table 4), the highest
docking energy among all allosteric sites. In terms of binding, GR04 showed good fitting
inside site #2 (Figure 4b). Next, GR04 was docked into site #5, located directly at the
dimerization site, which yielded a docking score of−4.76 kcal mol−1. However, the smaller
size and enclosure of the pocket resulted in a clash between the propanol side chain of
GR04 and the protein backbone, diminishing the final docking score (Figure 4c). The
docking GR04 into the shallow interfaces of sites #1 and #3 resulted in docking scores of
−3.44 and −3.72 kcal mol−1, respectively, as well as poor fitting into the allosteric binding
site. Similarly, sites #4 and #6 are very shallow. Thus, docking GR04 into these sites was
not possible. When the druggability, docking score, and fitting of GR04 are compared
across all reported sites, it seems sensible to conclude that GR04 is most likely exerting its
noncompetitive inhibition on the Mpro enzyme through binding to allosteric site #2.

Molecular dynamics study: In order to predict the binding mode of GR04 with higher
accuracy, we ran MD simulations for the (GR04 site #2, PDB: 7AGA [28] and GR04 site #5,
PDB: 5RFA [29]) ligand–protein complex resulting from docking for a further 200 ns, where
RMSD measurements were observed for both the ligand molecule and the protein backbone
atoms. Additionally, the resulting MD simulations of GR04 were compared to that of the
cocrystallized ligand, AT7519. As shown in Figure 5, both compounds seemed fairly stable
in site #2, with RMSD values that are less than 2 Å, and the protein backbone also showed
a relatively stable structure (1.0–2.5 Å) throughout the 200 ns MD simulations. Despite its
fluctuations, the binding of GR04 at site #2 appeared to be more stable compared to site
#5, with average RMSD values of 1.5 Å and 2 Å, respectively (Figure 5a). Moreover, the
RMSD plots indicate a more stable binding mode of GR04 at site #2 than site #5, as the latter
site’s RMSD curve took around 120 ns to converge compared to only a few nanoseconds at
site #2. In terms of binding free energy, GR04 seemed to exhibit greater binding energy at
site #5 than site #2, as shown by their respective MM-GBSA scores of−26.57 kcal mol−1 and
−20.44 kcal mol−1. These results were comparable to AT7519, which had an MM-GBSA
score of −22.50 kcal mol−1 (Figure 5b).
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sites #2 and #5. (b) The predicted binding mode of GR04 in allosteric site #2. (c) The predicted binding
mode of GR04 in allosteric site #5. For clarity, superimposition on the dimer form of Mpro (PDB:
7CAM [34]) was performed to demonstrate binding onto the dimerization site.
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Furthermore, for comparison purposes, both compounds were experimentally tested
for their inhibition activity at 200 µM, where GR04, interestingly, showed 61% inhibition
compared to only 18% shown by AT7519. Future lead optimization efforts can improve
the binding free energy by rigidifying the flexible propanol side chain. Such changes
would result in a decrease in the loss of entropy and would allow GR04 to form additional
interactions with neighboring residues such as PHE294 (Figure 4).

Pairwise energy decomposition analysis of GR04: As we concluded from the previous
analysis, GR04 appears to behave similarly to AT7519 in terms of binding stability and
affinity but with higher inhibitory efficacy. The next step was to investigate the interactions
between protein residues and GR04 in site #2. Using pairwise energy decomposition
analysis, we can calculate the energetic contributions of pairs of residues and ligands to
the binding free energy of the complex. Figure 6 depicts the energy decomposition of the
key residues in the allosteric binding pocket with GR04. The pairwise interactions of the



Molecules 2022, 27, 6710 11 of 20

ligand with key residues such as HIS246, GLN107, PRO108, GLN110, ILE249, and PHE294,
LYS88, and LYS90 made significant contributions to the binding affinity of the complexes,
specifically electrostatic and vdW interactions. Interestingly, the ligand interaction diagram
of AT7519 shows that it interacts with GLN110, a residue that contributes to the vdW
interactions of GR04. This indicates that GR04 binds in a comparable manner to AT7519.
Figure 4b shows a snapshot most representative of the pairwise energy distribution of GR04
within allosteric site #2. It is worth noting that the GR04 binding pocket (Figure 4a,b) is near
the dimerization interface, and because Mpro is active in its dimeric state, interfering with
dimerization limits its catalytic activity. The ligand, GR04, fills up the pocket quite nicely,
and its ligand interaction diagram shows several interactions, including a hydrogen bond
interaction with HIS246 and two arene-H interactions with GLN107 and ILE249. Hence,
the antiviral activity exhibited by GR04 might be attributed to the dimerization-based
allosteric mechanism.
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Figure 6. Pairwise energy decomposition graph illustrating residue contributions in site #2 to protein–
ligand (GR04) complex.

Although nothing has been reported regarding the antiviral potential of the main
scaffold of GR04 (7H-naphtho[1,2,3-de]quinolin-7-one), benzanthrone has been previously
investigated as an antiviral agent. In fact, benzanthrone derivatives have been found to be
particularly useful against respiratory syncytial virus (RSV) infections [35,36]. Accordingly,
it would be interesting to further evaluate GR04 and its derivatives for their cellular antiviral
effect against SARS-CoV-2.

2.6.3. GR20 as an Irreversible vs. Noncompetitive Inhibitor

As discussed above, GR20 could exhibit its inhibition via a noncompetitive mechanism,
as suggested by the kinetics study, by binding to an allosteric site, or it could also be
a catalytic site binder that is reactive due to its aryl nitrile group. Accordingly, GR20 was
further studied in these respective sites to further investigate the likelihood of these two
scenarios occurring (Figure 7a).

Molecular docking of GR20: GR20 was redocked into all previously discussed allosteric
sites, and as shown previously in the GR04 section, the best docking score and fitting
occurred in site #2, which happens to have the best Dscore, as shown in Table 4. Figure 7b
shows GR20 in allosteric site #2, where the bicyclic portion of the structure fits snuggly into
the allosteric site with the phenol group sticking out of the site. A number of interactions
with key residues are formed, including an arene–hydrogen interaction with GLN110 and
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an arene–arene stacking interaction with PHE294. Two other hydrogen bonds could be
seen with ASN151 and THR111.
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Figure 7. (a) Two potential binding sites for GR20, (b) GR20 docked in allosteric site #2, and (c) GR20
covalently docked in the catalytic site of Mpro.

Since we already established that an irreversible mechanism of action cannot be ruled
out because of the possible reactivity of the compound due to its aryl nitrile, GR20 was
covalently docked into the Mpro catalytic site. The Mpro active site is divided into four main
subsites: S1, S2, S4, and S1′ [8]. The S1′ subsite contains the catalytic dyad, made up of
the active residue CYS145 and HIS41 [9]. Accordingly, GR20 should be able to position its
potentially reactive aryl nitrile group in the S1′ subsite to be in close proximity with the
CYS145 in order to successfully form a covalent bond with the sulfur in the CYS145.

As seen in Figure 8, interestingly, the resulting pose from the covalent docking is
superposed to a great degree on the initial pose from the noncovalent classical docking. The
bicyclic portion of the compound spans the middle of the active site, with the amino group
pointing upwards, enabling it to form an interaction with the MET49 of the S2 subsite.
Meanwhile, the three-carbon-membered side chain is inserted into the S4 subsite and the
nitrile is positioned into the S1′ subsite. The hydroxyl group is inserted into the S1 subsite,
where it forms interactions with key residues. This adds confidence to the possibility of
binding to the catalytic pocket, as the compound was oriented in both docking modes in
the same manner, with the nitrile portion of the structure placed in the S1′ subsite, where
the CYS145 residue is found [37]. As for the interactions formed, a number of noncovalent
interactions were found in both docking modes, as shown in Figures 7c and 8, starting
with the hydrogen bond formed with key residue GLU166. Additionally, the hydrogen
bond formed by the ammonia and the MET49 residue was also present in both docking
modes. The hydroxyl formed a hydrogen bond in both the docking modes, once with
PHE140 and another time with ASN142 in the noncovalent docking and covalent docking
modes, respectively. The interactions formed by the nitrile with ASN142 and GLY143 in the
noncovalent binding mode were substituted by the covalent bond with the CYS145 in the
covalent docking mode.

Molecular dynamics study and pairwise energy decomposition analysis of GR20:
To ensure that the poses generated by both the noncovalent and covalent docking were
accurate, an MD simulation for 100 ns was performed on the noncovalent complex of
the compound in the active site, as we wanted to ensure the stability of GR20 within
the catalytic binding site. As depicted by the RMSD plot in Figure 9, GR20 appeared
to be stable throughout the 200 ns simulation, with its RMSD values around 1.5 Å. The
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protein backbone also showed relative stability throughout the simulation, with its RMSD
ranging from 1.5 to 3 Å. The results from the MD trajectories seem to suggest that the
poses predicted by docking are quite stable, meaning that the compound has the perfect
fitting within the active site, with its reactive warhead pointing towards CYS145, where the
covalent bond can be formed with ease.
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As for the interactions formed with residues in the active site, Figure 10 depicts the
energy decompositions for the key residues in the active site with GR20. MET165, GLU166,
HIS41, CYS145, GLY143, HIE163, PHE140, and SER144 are all previously identified key
bioactive residues [25] that are among the top 10 residues in our assessment that make
significant contributions to the binding affinity of the complex, especially through vdW
interactions in the case of MET165, GLU166, and HIS41 and electrostatic interactions in the
case of CYS145, GLY143, HIE163, PHE140, and SER144. To sum up, GR20 appears to be
a very promising lead candidate for future irreversible Mpro inhibitors, although additional
work has to be conducted in the future to confirm its exact mechanism.
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Figure 10. Pairwise energy decomposition graph illustrating residue contributions to protein-ligand
(GR20) complex.

To the best of our knowledge, the main scaffold of GR20 has not been tested for
biological activity against any known targets. Therefore, we believe that this novel ring
scaffold is worth testing for further evaluation of its cellular antiviral potential against the
Mpro of SARS-CoV-2.

3. Materials and Methods
3.1. Protein Preparation and Grid Generation

The Mpro crystal structure was obtained from the protein data bank (PDB: 6LU7 [5]).
Following the elimination of all solvent molecules, the MOE protein preparation module
was used to inspect the structure for any missing atoms or residues and correct them
accordingly [38]. The Protein Preparation Wizard of the Schrödinger modeling suite [39]
was then utilized to prepare the protein by adding hydrogen atoms to the protein structure
and assigning partial charges to each atom. Finally, the structure was minimized using the
OPLS-3e force field.

In the crystal structure of SARS-CoV-2 Mpro, a receptor grid was constructed at the
surrounding of the centroid of the bound ligand. The grid box was increased to 15 Å for
the inner box and 26 Å for the outside box, encompassing the entire binding site cavity.
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3.2. Ligand Filtration and Preparation

Four libraries were initially downloaded for virtual screening: NCI [40], TimTec [41],
ChEMBL [42], and ChemDiv [43]. All libraries were filtered according to the drug-like rules
of Lipinski’s rule of five [13] and Veber’s rules [14] (hydrogen bond donor ≤ 5, hydrogen
bond acceptor ≤ 10, molecular weight ≤ 500, LogP ≤ 5.0, rotatable bond ≤ 10, and polar
surface area (PSA) ≤ 140). We then used a pan-assay interference compounds (PAINS)
filter to further filter our libraries, using PAINS-Remover, an online open-access server [44].
The filtered databases were prepared using LigPrep, the ligand preparation module in
Schrödinger Maestro [45].

3.3. Structure-Based Virtual Screening

The filtered libraries containing PAINS-free drug-like small molecules were docked
into the Mpro active site using the docking module of the Schrödinger suite (grid-based
ligand docking with energetics) as part of the virtual screening (VS) protocol. The employed
VS workflow consisted of three subsequent docking steps with increasing levels of precision
and accuracy: high-throughput virtual screening (HTVS); standard precision (SP); and
extra precision (XP). Moving from one step to the other, the top 20% of the docked libraries
were redocked using the next higher mode of docking. Visualization of each library was
performed to inspect the binding of the best pose of the top-ranked docked compounds,
which were evaluated for their fitting in the active site and the interactions they form with
the surrounding residues. Accordingly, compounds from each of the screened libraries
were selected, and prior to moving to the next step of molecular dynamics (MD) simulations
and MM-GBSA scoring, the online tool Aggregator Advisor [46] was used to ensure that
the shortlisted compounds were not aggregators, promiscuous, or nonspecific binders.

3.4. MD Simulation and MM-GBSA Scoring

Needing a better understating of the ligands’ binding affinities towards the target
pocket, MD simulations were conducted on our shortlisted compounds (178 compounds
from all screened libraries). This was also useful to further investigate ligands fitting
into the target pocket. Accordingly, AMBER 18 software was used in all MD simulation
experiments for the chosen compounds. This was initially started by using the ff19SB and
generalized amber force field (GAFF) force fields to assign partial charges and bonding
parameters to the protein and ligand atoms, respectively. The ligand–protein complex
system was then built with AmberTools’ xleap module, neutralized with Na+ counter
ions, and solvated with a truncated octahedral box of TIP3P water. Subsequently, the
pmemd program in the AMBER 18 package was used to minimize the energy of the
whole system in two steps, which included restraining all the solute atoms using a force
constant of 500 kcal mol−1 Å−2 during the minimization of the system for 1000 cycles,
followed by minimizing the energy of the whole system for 1000 cycles without applying
any restraints. The system was then gradually heated via the NVT ensemble from 0 to 300 K
over 20 ps using MD simulation with a 10 kcal mol−1 Å−2 restraint on ligand atoms. For
all bonds involving hydrogen atoms, the SHAKE algorithm was employed. Finally, a 20 ns
production MD simulation was run under NPT parameters with a system temperature of
300 K and a pressure of 1.01 × 105 Pa. The ligand efficiency was then calculated for all the
compounds, and the top-ranking compounds from each library were then ordered from
their respective suppliers. Around 78 compounds were ordered for in-vitro evaluation.
The MD simulation was continued until 100 ns for compounds that would later show
interesting in-vitro results. In certain cases, the MD simulation was extended for a longer
period of time, and a pairwise decomposition analysis (idecomp = 4) was carried out using
the obtained MD trajectories to determine the key ligand–residue energetic contributors to
the complexes’ binding free energy [47].
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3.5. Covalent Docking of GR20

The covalent docking of GR20 was performed using CovDock of the Schrödinger suite
after the noncovalent docking protocol [48]. The previously prepared protein structure of
6LU7 was used for docking, and the CYS145 residue was selected in the workspace as the
reactive residue in the active site. Nucleophilic addition to a triple bond was selected as the
reaction type. All the previously generated ligands by LigPrep of GR20 were covalently
redocked using the thorough pose prediction mode, ensuring that the side-chain flexibility
was taken into account.

3.6. Expression and Purification of Mpro

The recombinant Mpro gene, encoding the WT enzyme, was introduced into the
pET28b (+) bacterial expression vector by GenScript Inc. (Piscataway, NJ, USA). The
Hisx6-tagged Mpro enzyme was expressed in E. coli BL21-CodonPlus-RIL (Stratagene).
The inoculated culture (2–6 L) was grown in Terrific Broth (TB) at 30 ◦C in the presence
of 100 mg/L kanamycin and 50 mg/L chloramphenicol until the A600 reached 0.8. The
temperature was then lowered to 15 ◦C, and expression was induced overnight with
0.5 mM IPTG. The cells were harvested by centrifugation at 12,000× g at 4 ◦C for 10 min
in an Avanti J26-XPI centrifuge (Beckman Coulter Inc.) and resuspended in lysis buffer
(20 mM pH 7.8 Tris, 150 mM NaCl, 5 mM imidazole, 3 mM βME, and 0.1% protease
inhibitor cocktail from Sigma-Aldrich: P8849). The cells were lysed by sonication on ice
and centrifuged at 40,000× g for 45 min at 4 ◦C. The supernatant was loaded on a ProBond
Nickel-Chelating Resin (Life Technologies) previously equilibrated with binding buffer
(20 mM pH 7.5 Tris, 150 mM NaCl, 5 mM imidazole, and 3 mM βME) at 4 ◦C. The resin
was washed with 10 column volumes (cv) of binding buffer, followed by 15 cv of washing
buffer (20 mM pH 7.5 Tris, 150 mM NaCl, 25 mM imidazole, and 3 mM βME). The His-
tagged Mpro enzyme was eluted from the column in 20 mM pH 7.5 Tris, 150 mM NaCl,
300 mM imidazole, and 3 mM βME and collected in 1 mL aliquots. Finally, the Ni column
fractions containing Mpro were loaded onto a HiLoad Superdex 200 size-exclusion column
(GE Healthcare) using an AKTA purifier core system (GE Healthcare). The column was
pre-equilibrated with filtration buffer (20 mM pH 7.5 HEPES, 150 mM NaCl, and 0.5 mM
TCEP). The final protein was collected and concentrated to ~150 µM based on the Bradford
assay, and the sample purity was assessed via SDS–PAGE.

3.7. ADME Screening

To aid us in shortlisting compounds for in-vitro evaluation, an assessment of the
compounds’ absorption, distribution, metabolism, and excretion (ADME) was carried out
using the SwissADME online server [49]. Information about the compounds’ lead-like and
drug-like properties were also provided by the server, along with other pharmacokinetic
parameters, such as gastrointestinal absorption, blood–brain barrier permeability, and
CYP450 inhibition. Alerts regarding PAINS and reactivity were also provided by the
comprehensive assessment carried out by the server.

3.8. Enzyme Assay and IC50 Determination

The peptide substrate used was a 13 amino acid sequence (KTSAVLQ↓SGFRKM)
(GL Biochem (Shanghai) Ltd.) with Dabcyl and Edans attached to its N and C terminals,
respectively, and the cleavage site indicated by the ↓ after the glutamine residue. The
reaction was performed in 20 mM HEPES (pH 6.5), 120 mM NaCl, 0.4 mM EDTA, 4 mM 1,
4-dithio-D-L-threitol (DTT), and 20% glycerol. All screening compounds were solubilized
in DMSO.

The initial screening of the selected library compounds was performed in flat-bottom
Nunc black 96-well plates (Thermo scientific) using a fluorescence resonance energy transfer
(FRET)-based assay to identify potential inhibitors of Mpro. The compounds were tested at
100 µM, preceded by the addition of a 10 µM substrate with reaction buffer added up to
100 µL. The enzyme was finally added at a concentration of 4.6 µM to initiate the reaction.
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DMSO was kept at 10% V/V in all wells to enhance the solubility of the peptide substrate
and the catalytic function of the protease [50]. The plate was incubated at 37 ◦C for 1 h
prior to measuring the fluorescence intensity at 355 nM excitation and 538 nM emission.
The compound inhibition capacity was calculated as the percentage of untreated enzyme.
The assays were performed in duplicates and repeated three times, and the error bars in the
presented graphs indicate S.E.M. Graphs were generated via GraphPad prism 9.3 software.
Compounds with sizes suitable for lead optimization and inhibition percentages > 20%
were chosen for further evaluation. For IC50 measurements, the purified Mpro enzyme
at a 4.6 µM concentration was incubated with ascending concentrations of the selected
compounds in HEPES buffer (pH 6.5) prior to performing the enzymatic assay as previously
mentioned. The fluorescence intensities were plotted in reference to the untreated enzyme,
and the IC50 of each compound was calculated via GraphPad prism 9.3 software. In all
presented graphs, error bars indicate S.E.M, and all runs were performed in duplicates and
repeated three times.

3.9. Promiscuity Tests (BSA and Increasing Enzyme Concentration)

Three methods were used to ensure that our compounds were not peculiar in nature.
First, the ‘pre-incubation’ test was carried out, which included the same testing conditions
described above but included the addition of the enzyme prior to the substrate and pre-
incubating it with the compound for 15 min. The second strategy used was increasing the
enzyme concentration by 10-fold while keeping the rest of the assay conditions as they were.
The last test performed was the use of a detergent in the prepared buffered. Accordingly,
1 mg/1 mL bovine serum albumin (BSA) in 20 mM HEPES (pH 6.5) was prepared and used
to retest the investigated compounds.

3.10. Kinetic Study

To determine the method of inhibition exhibited by our compounds of interest, an
enzyme kinetics study was performed by varying both the substrate and compound
concentrations with a 4.6 µM enzyme concentration. A FRET assay was used in 20 mM
HEPES (pH 6.5) buffer. Incubation at 37 ◦C for 1 h was performed prior to measuring the
fluorescence intensity at 355 nM excitation and 538 nM emission. The enzyme concentration
was kept constant at 4.6 µM, and the range of the substrate concentration was varied (5 µM,
10 µM, 20 µM, and 40 µM). The compound concentration was also varied (100 µM, 200 µM,
and 300 µM).

The average of the generated data was analyzed using a computer-fit calculation
(Prism 9.3, GraphPad Software). A Michaelis–Menten graph was plotted in order to identify
the changes that occurred in the Vmax and Km values at each inhibitor concentration and
thus mathematically determine the most preferable mode of inhibition.

4. Conclusions

Employing structure-based virtual screening, four libraries with around 3.8 million
ligands were screened against the Mpro’s active site after a rigorous filtration protocol. Hits
from the multistep docking workflow were selected based on their fitting then rescored via
MM-GBSA. Accordingly, 78 compounds were shortlisted and ordered from their respective
vendors and were screened in-vitro against the Mpro enzyme. Hits that had >20% inhibition
were further evaluated in-vitro for their promiscuity and mechanism of inhibition. We
ended up with four interesting hits, starting with CD06, which was eliminated as a lead
candidate due to its unsatisfactory results in the lead-like/pharmacokinetics assessments.
The remaining three hits had rather clean pharmacokinetic-related results and had molecu-
lar weights around 300 Da, making them good candidates for a lead. After performing the
kinetics study, we could clearly conclude that CB03 exhibits its action via a competitive
mechanism, with a Ki of 255.6 µM. CB03 was found to have a rather remarkable fitting
within the catalytic site, filling the most important subsites in the active site despite its
small size. On the other hand, GR04 was found to exhibit a noncompetitive inhibition
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mechanism, with a Ki of 298.1 µM, pointing towards a binding site other than the catalytic
pocket. After performing a druggability assessment on Mpro, we concluded that it may bind
to allosteric site #2, as it has the best Dscore, docking score, and overall fitting compared
to the other investigated allosteric sites. Finally, we found our best hit, GR20, with a Ki of
89.02 µM, which showed a mixed inhibition mode. The presence of an aryl nitrile group on
its structure (a known reactive functionality with the ability to be reversible as per its degree
of reactivity) led us to propose GR20 as a covalent inhibitor. This is further supported by
the fact that the poses generated by the noncovalent docking and covalent docking appear
to be almost perfectly superposed. However, although we believe that GR20 is a promising
lead candidate, further investigation needs to be conducted using other biological assays
to gain a clear understanding of its inhibition mechanism, and thus its binding, before
proceeding with the lead optimization process. All in all, the hits discovered in this work
seem to be interesting, as they show varied types of inhibition along with small sizes and
lead-like characteristics. Hence, they can act as a promising starting point for the future
development of clinically useful antiviral agents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196710/s1. Figure S1: IC50 plots of top hits.
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