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Abstract 

Background:  Segmentation of nuclei in cervical cytology pap smear images is a crucial stage in automated cervical 
cancer screening. The task itself is challenging due to the presence of cervical cells with spurious edges, overlapping 
cells, neutrophils, and artifacts.

Methods:  After the initial preprocessing steps of adaptive thresholding, in our approach, the image passes through 
a convolution filter to filter out some noise. Then, contours from the resultant image are filtered by their distinctive 
contour properties followed by a nucleus size recovery procedure based on contour average intensity value.

Results:  We evaluate our method on a public (benchmark) dataset collected from ISBI and also a private real dataset. 
The results show that our algorithm outperforms other state-of-the-art methods in nucleus segmentation on the ISBI 
dataset with a precision of 0.978 and recall of 0.933. A promising precision of 0.770 and a formidable recall of 0.886 on 
the private real dataset indicate that our algorithm can effectively detect and segment nuclei on real cervical cytology 
images. Tuning various parameters, the precision could be increased to as high as 0.949 with an acceptable decrease 
of recall to 0.759. Our method also managed an Aggregated Jaccard Index of 0.681 outperforming other state-of-the-
art methods on the real dataset.

Conclusion:  We have proposed a contour property-based approach for segmentation of nuclei. Our algorithm has 
several tunable parameters and is flexible enough to adapt to real practical scenarios and requirements.
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Background
Cervical cancer is the fourth most frequent cancer in 
women, affecting 490,000 new women each year, with 
more than 270,000 deaths [1]. With the introduction of 
simplified Papanicolaou (Pap) smear in 1957, Cervical 
cytology became the standard screening test for cervical 
cancer and premalignant cervical lesions. A Pap test, also 
called a Pap smear, is a medical examination that a doc-
tor uses to detect potentially precancerous and cancerous 
processes in the cervix. Conventionally, the slides con-
taining the Pap smear are examined under a microscope 
by a cytologist or pathologist. This manual procedure not 

only is very time and labor-intensive, but also is prone 
to error, intra-observer, and inter-observer variability. 
Such errors, which mainly concern false-negatives, used 
to be as high as 30% before the introduction of newer 
preparation techniques (e.g., SurePath [2], Thinprep [3]). 
These new preparation methods facilitate a reduction 
of the presence of cell clumps and elimination of blood, 
mucus and inflammatory cells in cytology specimens [4]. 
They also open up a whole new avenue in cervical cancer 
screening, namely, the automated screening with com-
puter-based systems. However, the remaining presence 
of artifacts, superficial cells, and overlapping nuclei and 
cytoplasm remains as a critical obstacle for fully auto-
matic cervical cancer screening.

The first stage of a computer-automated cervical can-
cer screening process is the segmentation of cervical cells. 
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To do so, we first need to detect and identify the nucleus 
of a cervical cell, which is a segmentation task itself. Later 
stages use the detected nucleus to segment different 
overlapping and non-overlapping cell cytoplasm. Because 
each segmented nucleus indicates a cell, the result of this 
step (i.e., the efficacy thereof ) directly affects the outcome 
of the final cytoplasm segmentation.

Techniques for nucleus segmentation in cervical cells 
have been well studied in the literature. An increasing 
number of studies have focused on this important prob-
lem owing to the event titled “Segmentation of Over-
lapping Cervical Cells from Extended Depth of Field 
Cytology Image Challenge” held during 2014 and 2015 
under the auspices of the IEEE International Sympo-
sium on Biomedical Imaging (ISBI 2014, 2015) [5, 6]. The 
datasets for both challenges are publicly available, mak-
ing the evaluation and comparison of different meth-
ods feasible. While a few of these methods are Machine 
Learning based, most have relied on Computer Vision 
techniques. Jung et  al. [7] proposed a Bayesian Classi-
fier based method. They used a distance transform and 
the EM (Expectation-Maximization) algorithm followed 
by Bayesian classification to segment overlapping nuclei. 
Keenan et  al. [8] applied grey-level thresholding fol-
lowed by contour following algorithms and morphologi-
cal operations to segment and grade nuclei. Plissiti et al. 
[9] proposed a method based on a physical deformable 
model to do the same. Ushizima et al. [10] used a modi-
fied version of the local thresholding method proposed 
by Phansalkar et al. [11] to segment nuclei. Lu et al. [12] 
segmented nuclei by finding the Maximally Stable Extre-
mal Regions (MSER) [13]. Lee et  al. [14] segmented 
nuclei by performing local thresholding and by removing 
outliers based on features, such as, mean intensity, circu-
larity, and size.

Saha et al. [15, 16] used fuzzy c-means clustering con-
strained by a Circular Shape Function (CSF) to detect a 
nucleus. Later on, Saha et al. [17] also proposed a method 
of segmenting cervical nuclei by merging the over-
segmented SLIC superpixel regions based on pairwise 
regional contrast and image gradient contour evalua-
tions. Their more recent work [18] proposes to segment 
nuclei by merging superpixels generated by the statistical 
region merging (SRM) algorithm using pairwise regional 
contrasts and gradient boundaries. Braz and Lotufo [19] 
used a deep learning convolutional network to detect 
and segment nuclei from pap smear images. Tareef et al. 
[20] introduced a novel method based on local distinc-
tive features and guided shape deformation. In contrast, 
their more recent paper [21] introduced a multi-pass fast 
watershed-based method to segment nuclei and cyto-
plasms of a cervical cytology image. Although we focus in 
this paper only on cervical cytology images, we note that 

there exist notable researches on generic nuclei segmen-
tation methods on various types of medical images (e.g., 
[22–24]).

All of the studies mentioned above on the segmenta-
tion of nuclei on cervical cytology images perform rea-
sonably well on the ISBI datasets. However, since most of 
the studies were done based on the ISBI challenges, the 
performance of the respective methods on other inde-
pendent (real) datasets remains unexplored. And our 
preliminary experiments suggested that several of the 
methods mentioned above, while excel in ISBI datasets, 
perform below par in another real dataset that we had 
collected. This motivated us to develop a more robust 
algorithmic pipeline that would work well on a dataset 
containing real cervical images in addition to the ISBI 
datasets.

In light of the above, we propose a novel approach for 
nucleus segmentation of cervical cells, which performs 
well on real-life cervical cytology images and improves 
the state of the art on the ISBI dataset. In particular, 
on ISBI datasets, our approach achieves a precision of 
0.978 and recall of 0.933 with the F1-score being 0.955, 
the highest among all of the other state-of-the-art meth-
ods. On another dataset containing real cervical cytol-
ogy images (BSMMU dataset), our algorithm achieves a 
promising precision of 0.770 and a formidable recall of 
0.886 indicating that our algorithm can effectively detect 
and segment nuclei on real cervical cytology images. 
Moreover, through parameter tuning, we are able to 
increase the precision value to as high as 0.949 with an 
acceptable decrease of recall to 0.759. Our approach also 
managed a formidable Aggregate Jaccard Index of 0.681 
outperforming other state-of-the-art methods in both 
pixel and object level performance measures. Thus our 
approach shows the promise to adapt to real practical 
scenarios and requirements.

Methods
Every cervical cell contains a nucleus situated centrally 
within it. In many, if not most methods, segmentation of 
these nuclei is a prerequisite for cervical cell segmenta-
tion [4, 10, 12, 14]. The higher the accuracy of the nucleus 
segmentation, the better the cell segmentation will be 
as the presence of a nucleus confirms the existence of a 
cell around it. We describe our datasets, our nucleus seg-
mentation algorithm, and the various tunable parameters 
thereof in the following subsections. We start with a brief 
description of some relevant notions and notations.

Definitions
We define some terms here, most of which are related to 
the various contour properties we used in our algorithm. 
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These definitions will facilitate a better understanding of 
our algorithm.

Contour size
Contour size is defined as the total number of pixels the 
contour is spanned throughout. It can also be defined in 
terms of the total area covered by the contour, but in our 
case, we have used the pixel count.

Solidity
Solidity is the ratio of contour area to its convex hull area 
as defined in the following equation.

Inertia ratio
Inertia Ratio is defined as the ratio of the length of the 
minor axis of an elliptical object to the length of the 
major axis.

Datasets
We use two different datasets to train and evaluate our 
nucleus segmentation method respectively. The first 
dataset we use is publicly available (referred to as ISBI 
dataset henceforth) which was provided by ISBI in 2014 
[5] containing 45 synthetic images for training along with 
900 synthetic images and 16 real cervical cytology EDF 
(Extended Depth of Field) images for testing purposes. 
The synthetic images in the ISBI dataset were created 
by mirror transformations of background, and random 
rigid geometric and random linear brightness transforms 
of different annotated isolate cells in real EDF images 
[12]. The synthetic images have size 512× 512 , and 
each of them contains 2–10 different cells, while the real 
EDF images have size 1024 × 1024 . All of the 45 train-
ing images and the 900 testing images are accompanied 
by their nuclei annotations for quantitative evaluation, 
whereas the EDF images are to be used for qualitative 
evaluation.

The second dataset we use is a private dataset (referred 
to as BSMMU dataset henceforth) collected from the 
Department of Pathology of Bangabandhu Sheikh Mujib 
Medical University (BSMMU), Dhaka, Bangladesh [25]. 
Ten cytology slides of cervical pap smear which did 
not have any diagnosed abnormality were randomly 
selected from the archive of the Department of Pathol-
ogy, BSMMU. The slides were taken anonymously with-
out any identifiable information about the patients, and 

(1)Solidity =
Contour Area

Convex Hull Area

(2)Inertia Ratio =
Length of the minor axis

Length of the major axis

therefore ethical approval was not required. These slides 
were prepared using BD SurePathTM Liquid-Based Pap 
Test technology according to manufacturer’s instructions 
[26]. Papanicolaou staining procedure was used [27]. 
Each of the slides contained about 5000 epithelial cells, 
yielding approximately 50000 epithelial cells in total from 
all ten slides. All the slides were scanned using Hama-
matsu NanoZoomer-SQ Digital Slide Scanner C13140-01 
at the highest resolution (0.23 micrometer/pixel) under 
manual settings [28]. The images were saved in NDPI 
format with JPEG compression. We manually annotated 
25 250× 250 sized real cervical cytology images among 
which 10 have been randomly selected to train the dif-
ferent tunable parameters of our algorithm while the rest 
15 have been used for quantitative and qualitative evalu-
ation. No validation set was used. The images contained 
10–23 different cells along with their respective nuclei.

Nucleus segmentation
In a cervical cytology image, nuclei are the most promi-
nently visible regions. Commonly, they are relatively 
dark, uniformly shaped convex regions. Generally, they 
are circular or have an elliptical shape [4] except for some 
rare cases in the real cervical images, where, due to the 
2D image being scanned from different depths, they 
may be somewhat irregularly shaped. We develop our 
algorithmic approach around four of the most visually 
distinctive properties of a nucleus: size, solidity, inertia 
ratio, and average intensity.

Before starting the actual nuclei segmentation pro-
cedure, a preprocessing step may be need to convert an 
RGB image into grayscale. The ISBI dataset is already in 
grayscale, so that doesn’t need further processing. The 
BSMMU dataset is in RGB. We have explored various 
ways to convert the images to grayscale. Firstly, we tried 
averaging the intensity values of 3 channels. Although 
this is the most rudimentary method of converting RGB 
to grayscale, it didn’t work well in keeping enough fea-
tures for the nucleus segmentation to work properly. 
Secondly, we tried taking each channel separately. We 
also tried averaging two channels together, excluding the 
third one. Through careful observation, it became appar-
ent that for the BSMMU dataset, the green channel of the 
RGB image contains the most amount of information, 
and so the best way to convert to grayscale is to take the 
green channel only. Thus, we converted the RGB images 
of the BSMMU dataset to grayscale by taking the green 
channel’s intensity value only. Notably, similar findings 
about the green channel have been reported in the litera-
ture as well (e.g., [29, 30]).

The cervical image is first smoothed using a Gauss-
ian blur filter. Then adaptive thresholding is used since a 
nucleus is the darkest visible region within its cytoplasm. 



Page 4 of 12Hoque et al. BMC Med Imaging           (2021) 21:15 

We use the built-in adaptive threshold function of 
OpenCV [31]. For this function, two parameters need 
to be carefully tuned, namely, the window size and the 
constant “C” (more details on these and other tunable 
parameters are presented in section  "Tunable param-
eters"). The window size should be larger (smaller) for a 
dataset like the ISBI (BSMMU) dataset where nuclei are 
more zoomed in (out). The second parameter, i.e., the 
constant “C” gets subtracted from the mean or weighted 
mean calculated within the window. This constant needs 
to be smaller (larger) for an image where the contrast 
between the nucleus and the rest of the image is higher 
(lower). Due to overlapping cells, superficial noises, and 
artifacts, the thresholded image still contains various 
degrees of unwanted regions, more so in the real cervi-
cal images (i.e., BSMMU dataset). In the second stage, to 
reduce the number of unwanted regions, a convolution 
filter, which was implemented by Li and Chutatape [32] 
using Kirsch’s Method [33], is used. This filter computes 
the gradient of eight different directions by convolving 
the image with eight different template response arrays as 
shown in Fig. 1. The final gradient is set to the largest gra-
dient. After that, a threshold is set to determine whether 
a pixel belongs to an edge or not. The final response 
contains various edges detected in the image [32]. Now, 
we do not actually need the edges detected here. But by 
subtracting this final response image from the previously 

global thresholded image, we can eliminate a large num-
ber of noises as follows. This filter’s response on the uni-
form, dense, and convex region is weaker than on the 
irregularly shaped non-convex regions. Thus, by sub-
tracting this filter’s response from our thresholded image, 
we can remove many unwanted noises due to irregular 
shapes from the image. But this step has the undesirable 
side effect of reducing the size of the regions containing 
the actual nucleus, which we address in the later part of 
our algorithm.

In the next stage, we get all the contours detected from 
the thresholded image using the built-in contour detec-
tion function of OpenCV [31] and examine them one 
by one for contour properties. We calculate their size, 
solidity, and inertia ratio. Since the nuclei are uniformly 
shaped solid convex regions [4], they have pretty high 
solidity, always above 8.0 and most of the time above 9.0. 
So any contour with solidity lower than a preset mini-
mum solidity value is rejected and removed from the 
image during this step. This minimum solidity is a tun-
able parameter as described in section  "Tunable param-
eters". We also remove contours that are too small or too 
big in this step. The acceptable size can differ from data-
set to dataset depending on the image’s zoom level and 
thus kept as a tunable parameter. We also reject regions 
with a low inertia ratio. Any region with a low inertia 
ratio is too elongated to be a proper nucleus; hence they 

Fig. 1  Impulse response arrays of Kirsch’s method
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are rejected. This minimum size, maximum size, and 
inertia ratio are also tunable parameters of the algorithm, 
which are described in section "Tunable parameters".

In the fourth and final stage, we recover the size of the 
nucleus regions, which were reduced during the second 
stage. This is an iterative procedure where the immediate 
neighborhood pixels of the nucleus region are checked 
one by one to see if they also belong in that region. The 
measure that determines the validity of the points is 
the intensity level. For a certain nucleus region, first, 
we compute the average intensity of all the pixels that 
already belong to that region. If a neighboring pixel of 
that nucleus region has an intensity value within a certain 
range of the average intensity of the nucleus region, then 
that pixel is deemed as a valid pixel, and subsequently, it 
is allowed to be part of that region thereby extending the 
nucleus region. This allowable average intensity range is 
also a tunable parameter of this algorithm (section "Tun-
able parameters"). During the parameter tuning stage 
(section  "Tunable parameters") it was revealed that this 
range should be smaller (higher) for a dataset with low 
(high) contrast between a nucleus and outer cytoplasm. 
This iterative procedure continues until one of the three 
conditions is met: 

1	 No more valid pixel can be found from the immedi-
ate neighborhood of the contour boundaries.

2	 The overall size of the contour (nucleus region) has 
become larger than the predetermined maximum 
size of a nucleus.

3	 The solidity of the overall contour (nucleus region) 
has become smaller than a preset solidity value. This 
solidity value is set a bit lower than the usual solidity 
of a valid nucleus, which, from observation, is 0.8. A 
value of 0.75 works well here.

Conditions 2 and 3 above act as checks against the uncon-
trollable growth of the regions in low contrast cervical 
cell images. Most cervical cell images have a high contrast 
between the nucleus and the cytoplasm and thus a care-
fully set acceptable average intensity range acts as the cri-
teria to end this nucleus recovery procedure. But some 
cells have very low contrast. This can either be the trait of 
these cells due to high overlapping area, or it can be due to 
the image scanner focusing on the wrong depth when tak-
ing the cervical cytology image. The high or low contrast 
mentioned here doesn’t refer to any objective measure 
of contrast; rather it refers to subjective human observa-
tion. The parameter tuning stage of our approach, which 
is described in section "Tunable parameters", doesn’t need 
the objective measure of contrast. In any case, Conditions 
2 and 3 essentially stop the overzealous growth of the 
regions. The steps of the algorithm are formally presented 
in Algorithm 1. Also, Fig. 2 shows our algorithm in action 
on some synthetic and real cervical cytology images. 

Fig. 2  Nucleus segmentation on ISBI dataset (above: a–e) and BSMMU dataset(below: e–h) along with their corresponding Nuclei Annotations
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Adaptive threshold offset (C): This offset value gets 
subtracted from the mean or the weighted mean cal-
culated within the window. The value of C needs to 
be smaller for a dataset where the contrast between 
the nucleus and the rest of the image is higher and 
larger otherwise.
Range of intensity (Irange): This value is defined as 
the intensity difference between the average inten-
sity of the contour and the intensity of the neigh-

Tunable Parameters
We have already briefly mentioned our tunable param-
eters while describing the algorithm in the previous sec-
tion. In this section, we elaborate on those.

Adaptive threshold window size (wsize): The window 
size is a tunable parameter because this needs to be 
larger (smaller) for the dataset where the nuclei are 
more zoomed in (out). Thus for the ISBI (BSMMU) 
dataset, wsize should be larger (smaller).
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borhood pixel being considered. The value of Irange 
should be smaller for a dataset where the contrast 
between the nucleus and outer cytoplasm is low and 
larger otherwise.
Minimum solidity (MinSolid): This is the minimum 
solidity value which the contours in Stage 3 must 
conform with to be considered a valid nucleus. 
Usually, a value around 0.8 guarantees a very low 
amount of false positives while lower values can be 
used to allow more contours with the risk of higher 
false positives.
Minimum and maximum size (MinSize and Max-
Size): These values are used in Stage 3 to filter out 
too small or too big contours, which are considered 
noises. Their values depend on the zoom level of the 
nuclei in the dataset.
Minimum inertia ratio (MinInertia): This is used in 
Stage 3 to filter out too elongated contours which are 
usually noises.

Our approach has seven tunable parameters. Manu-
ally tuning these parameters is undesirable and ineffi-
cient. This also makes the whole approach subjective to 
the dataset and hampers the generalizability. In order to 
circumvent this issue, we use a parameter tuning script 
on a small set (10 images are enough) of labeled train-
ing images to tune all of the parameters of our algorithm. 
This script runs a grid search on various combinations 
of all the parameters’ values and selects the combination 
that results in the highest value of the chosen perfor-
mance measure. The script can be used to select preci-
sion, recall, F1-score, or Aggregate Jaccard Index (AJI) 
[22] as the performance measure to tune the values for 
the parameters of our algorithm. The procedure of calcu-
lating the different performance measures are described 
in section  "Evaluation metrics". This parameter tuning 
script can be found in our online repository [34].

Results
Environments
We have conducted all our experiments using a single 
machine with Intel Core i3 CPU @ 3.6GHz (2 Cores, 4 
Threads), 32 GB RAM, running Windows 10 Professional 
Edition (64-bit). We have used Python language (version 
3.6.3 or above). The whole implementation was based 
on the OpenCV (version 3.4.7) library of Python. Helper 
libraries like Imutils (version 0.5.3) and Scikit-image (Skim-
age) (version 0.13.1) were used for utility functions to grab 
all contours from an image and get various contour prop-
erties like solidity, inertia ratio etc. from each contour. We 
also used the “signal” module of the Scipy (version 1.0) 

library for convolution of the images using 2D response fil-
ters during the noise removal stage.

Evaluation metrics
To evaluate the effectiveness of our nucleus segmentation 
algorithm, we first use pixel-level F-measure or Dice coef-
ficient to determine the validity of the detected regions. We 
then use the results to compute object-level performance 
measures, i.e., precision, recall and F1-score.

Dice coefficient is a pixel-level performance measure that 
measures the similarity between two regions. If a nucleus is 
represented by Region A in the ground truth and Region B 
in our nucleus segmentation mask, then Dice coefficient is 
defined as follows.

A Dice coefficient value of 0.6 means that there is 60% 
similarity between segmentation and ground truth. Dice 
coefficient has been extensively used in the literature to 
evaluate the performance of segmentation tasks (e.g., 
[4, 10, 12, 19]). Hence we have also used this measure to 
evaluate the validity of our nucleus segmentation as fol-
lows. If the Dice value for a nucleus is above or equal 0.6 
then that nucleus is assumed to be correctly detected and 
is considered a True Positive (TP); otherwise, it is a False 
Positive (FP). If a nucleus in the ground truth is not even 
present in the nucleus segmentation mask, then it is con-
sidered a False Negative (FN). Finally, we compute the 
final performance measures, namely, precision, recall and 
F1-score (please see the equations below) thereby com-
bining both pixel and object level performance measures 
in our experimental evaluation.

(3)Dice =
2|A ∩ B|

|A| + |B|

(4)Precision =
TP

TP + FP

Table 1  Results on ISBI Dataset

The best results are highlighted using boldface font

Approaches/algorithms Precision Recall F1-score

Ushizima et al. [10] 0.959 0.895 0.926

Lu et al. [12] 0.903 0.893 0.898

Lu et al. [36] 0.977 0.883 0.928

Phoulady et al. [37] 0.874 0.930 0.901

Saha et al. [15] 0.918 0.915 0.916

Braz and Lotufo [19] 0.929 0.917 0.923

Phoulady et al. [4] 0.961 0.933 0.947

Our algorithm 0.978 0.933 0.955



Page 8 of 12Hoque et al. BMC Med Imaging           (2021) 21:15 

Although F1-score takes into account both precision 
and recall, we still separately report the latter two met-
rics because there can be various applications of nucleus 
segmentation and depending on the actual application 
setting, minimizing either FPs or FNs could be more 
desirable.

The combination of pixel-level Dice Coefficient and 
object-level Precision, Recall and F1-score is the most 
commonly used performance measure in the literature. 
However, according to [22], Aggregate Jaccard Index 
(AJI) encompasses both pixel level and object level per-
formance in one measure. Therefore, we also included 
AJI in our comparative analysis on the BSMMU dataset.

Results on ISBI dataset
Table 1 presents the results of our algorithm on the ISBI 
dataset in terms of Precision, Recall and F1-score and 
compares the results with that of the approach presented 
in [4] and two newer works in [15, 19]. As can be noticed 
from Table  1, our algorithm achieves the highest preci-
sion, highest recall (jointly with the work of Phoulady 
et al. [4]) and the highest F1-score. The values of the tun-
able parameters of our algorithm are reported in Table 2.

Results on BSMMU dataset
To evaluate the performance of our algorithm and that of 
the algorithm of Phoulady et al. [4] on real cervical cytol-
ogy images, we use the 15 annotated test images from the 

(5)Recall =
TP

TP + FN

(6)F1− score =
2

(Precision)−1 + (Recall)−1

BSMMU dataset as described in section  "Datasets". To 
run the algorithm of [4], we have used the implementa-
tion found in [35].

Table  4 reports the performance of both the algo-
rithms on real cervical images in terms of precision, 
recall, F1-score, and Aggregate Jaccard Index (AJI) [22]. 
We report two separate cases of our algorithm with dif-
ferent values for the tunable parameters exhibiting the 
trade-off between the precision and recall. We also report 
another additional case showcasing the best-case sce-
nario in terms of AJI [22]. The values of the parameters 
are reported in Table 2. In Case 1, our algorithm achieves 
very high precision at the cost of a lower recall (than that 
of Phoulady et al. [4]). For Case 2, our algorithm achieves 
high recall at the cost of somewhat lower precision. For 
Case 3, our algorithm achieves high AJI at the cost of a 
low recall value. Although not clearly mentioned in [4], 
through an in-depth review, we have identified some 
tunable parameters in the algorithm of Phoulady et  al. 
[4]. These parameters are minimum nucleus size, mini-
mum solidity, lowest threshold, highest threshold and 

Table 2  Values of the Tunable parameters of our algorithm

Parameters wsize C Irange MinSolid MinSize MaxSize MinInertia

ISBI 55 40 30 0.8 20 140 0.4

BSMMU (Case 1) 35 50 40 0.8 5 50 0.3

BSMMU (Case 2) 41 48 40 0.6 5 50 0.2

BSMMU (Case 3) 35 50 40 0.8 5 70 0.4

Table 3  Values of the Tunable parameters in the algorithm of Phoulady et al. [4]

Parameters minsize minsolid lowthreshold highthreshold intensitydiff

ISBI 110 0.9 60 150 15

BSMMU (Case 1) 30 0.8 60 150 15

BSMMU (Case 2) 30 0.6 60 150 30

BSMMU (Case 3) 30 0.8 60 150 15

Table 4  Result on BSMMU dataset

Precision Recall F1-score AJI

Ahmady Phoulady et al. (2017) 
(Case 1)

0.656 0.873 0.749 0.490

Ahmady Phoulady et al. (2017) 
(Case 2)

0.643 0.895 0.750 0.488

Ahmady Phoulady et al. (2017) 
(Case 3)

0.656 0.873 0.749 0.490

Our algorithm (Case 1) 0.949 0.759 0.845 0.556
Our algorithm (Case 2) 0.770 0.886 0.822 0.489
Our algorithm (Case 3) 0.938 0.558 0.700 0.681
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minimum area and outer boundary average intensity dif-
ference. We also tune these parameters in an attempt to 
derive three results like ours, where the first one achieves 
high precision, the second one achieves high recall, and 
the final one achieves high AJI. For this algorithm, the 
best-case scenario for AJI is also the best-case scenario 
for precision value, thus case 1 and case 3 achieve identi-
cal results. Unfortunately, no combination of parameter 
values of their algorithm was able to achieve a decent 
precision. We still report all three cases. The values used 
for the parameters are reported in Table 3.

Discussion
In this section, we briefly discuss some salient features of 
our approach.

Our algorithm can balance precision and recall in real 
cervical cytology images
Our proposed method has achieved very high precision 
and recall on the (benchmark) ISBI dataset as reported in 
Table 1. In fact, it has achieved the highest precision and 
recall among all the previous works making it the current 
state of the art.

Subsequently, we put our algorithm to test by running 
it on the BSMMU dataset. While the results on the real 
cervical images (i.e., BSMMU dataset) are not as stellar, 
they are still very impressive. Even though our algorithm 
did not achieve high precision and high recall simultane-
ously (Table 4), it is flexible enough to achieve high preci-
sion or high recall while keeping the other decently high. 
This flexibility is undoubtedly desirable for practical pur-
poses as discussed below.

Currently, a computer-based, fully automated diagno-
sis of the pap smear test is not available. We don’t actu-
ally foresee or even desire this to happen; we want to 
keep computer-based diagnosis systems as an assistant 
to the human medical practitioners. In this context, our 
algorithm is expected to be used as follows. In our sce-
nario, only the output of our algorithm, i.e., the identified 
nuclei, are expected to be examined and analyzed by the 
pathologists. So, high recall is very important here since 
we don’t want to miss many nuclei. Precision is not as 
important in this case because the pathologist, while ana-
lyzing later, can attribute the false positives as noise him-
self (and discard those). Precision, while not as significant 
as recall in this scenario, is certainly not a throwaway 
measure since higher precision means less false positives, 
meaning less annoyance for the pathologist analyzing the 
pap smear for diagnosis.

Fig. 3  Qualitative comparison between our algorithm and Phoulady et al.’s algorithm. d & h directly compares the 3 kind of boundaries (Ours is 
yellow, Phoulady et al. [4] is white and Ground Truth is red)
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Our work can be considered as the first step in the 
pap smear test pipeline. Machine learning based algo-
rithms can be applied on cells defined by the identified 
nuclei, and automated diagnosis could be carried out 
to aid the pathologists further. In such a case (or in the 
case of a fully automated cervical cancer cell segmenta-
tion method), precision will become a highly significant 
measure as false positives, in that case, may result in false 
diagnoses.

Our algorithm delineates nuclei boundaries better
While the approach of Phoulady et  al. [4] can detect 
the presence of a nucleus properly, sometimes it fails to 
accurately delineate the boundary of the nucleus in pap 
smear images. This happens due to overzealous dilation 
at the very end of the algorithm, which unfortunately 
overextends their nuclei boundaries beyond the actual 
ones. Our proposed method is more conservative in this 
regard. Instead of general dilation, our nuclei recovery 
stage examines boundary pixels and extends the nuclei 
boundaries based on their average intensity, which is 
further scrutinized by a solidity check at the end. This 
results in delineating nuclei boundaries more accurately 
at the pixel level. When calculating the dice coefficient 
of each nucleus, before ultimately calculating the final 
object base measures, we noted down the values for each 
nucleus. We compared them with the values of the same 
nucleus from the output of the method of Phoulady et al. 
[4]. Our algorithm’s superior boundary delineation is evi-
dent from slightly better (2–3%) dice co-efficient values 
in most of the nuclei. Figure 3d and h show a qualitative 
comparison between the outputs of both methods on 2 
separate images. Our nuclei boundaries are identified by 
yellow color, while white color indicates the boundaries 
of the method of Phoulady et al. [4] and red boundaries 
indicate the ground truth. We can see that, on most of 
the nuclei, the white boundary encircles the red one. On 
the other hand, the yellow boundaries are very close to 
the red boundaries, sometimes even getting overlapped 
by them.

Our algorithm is more robust against outliers
Unlike the ISBI images, the real-life pap smear images 
contain many outliers (artifacts, superficial cells). These 
outliers often look very similar to actual nuclei, but they 
are, in fact, undesirables in the output image. Our algo-
rithm is much more robust against these kinds of outliers 
than Phoulady et al.’s [4] algorithm. Their algorithm only 
uses minimum size and solidity to filter out noises and 
outliers, which fall short in filtering out all outliers, as is 
evident by their very low precision values. On the other 
hand, our algorithm has a separate noise removal stage 
followed by a more stringent check of contour properties 

(including minimum size, solidity, and inertia ratio). As 
a result, very few outliers are present in the final output 
images of our algorithm as compared to that of Phou-
lady et  al.’s [4] algorithm. This stringent noise removal 
procedure ensures a very high precision value for our 
algorithm. Figure 3a–c & e–g compare the outputs from 
both methods to the respective ground truths. In the first 
image (top), our output contains only 2 outliers while the 
output of the algorithm of [4] has 8 (75% fewer outliers in 
ours). In the second image (bottom), our output contains 
4 outliers while their output has 7 (43% fewer outliers in 
ours).

Limitations
Our cervical nucleus segmentation approach has a slight 
drawback. There are seven tunable parameters of this 
method. In order to perform correct nuclei segmenta-
tion on any dataset, these parameters need to be tuned 
properly. Improper tuning of these parameters produces 
sub-par performance. Manually tuning these param-
eters is inefficient and makes our approach subjective to 
the dataset. To make this approach objective, we wrote a 
script for parameter tuning as described in section "Tun-
able parameters". The script itself can be found in our 
online repository [34]. This script requires a small set of 
annotated training images on which the script runs a grid 
search of different values of all the parameters to find the 
best combination thereof. The ability to adapt to different 
types of real cervical cytology datasets coupled with the 
flexibility to produce high precision, recall, F1-score, or 
AJI ultimately compensates for the drawback of requiring 
a small training dataset.

Conclusion and future work
This paper introduces an algorithm to detect and seg-
ment nuclei from pap smear images based on local dis-
tinctive features. Here, each image was first adaptively 
thresholded and then passed through a convolution fil-
ter to filter out noises. Then contours from the images 
were filtered based on size, solidity, and inertial ratio, 
followed by an iterative method based on average con-
tour intensity to recover the nucleus’s size and shape. 
The proposed algorithm produced satisfactory results, 
achieving the highest performance out of every work on 
the ISBI dataset while achieving reasonably well preci-
sion and F1-score on real pap smear images. For the pap 
smear test, recall is an important performance measure 
since higher recall means fewer missed nuclei. Thus our 
future work includes improving the recall while keeping 
the precision high on real cervical images and discover-
ing an innovative method for cell clump and overlapping 
cytoplasm segmentation.
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