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ABSTRACT. Targeted genome editing is now possible in nearly any organism and is widely
acknowledged as a biotech game-changer. Among available gene editing techniques, the CRISPR-
Cas9 system is the current favorite because it has been shown to work in many species, does not
necessarily result in the addition of foreign DNA at the target site, and follows a set of simple design
rules for target selection. Use of the CRISPR-Cas9 system is facilitated by the availability of an array
of CRISPR design tools that vary in design specifications and parameter choices, available genomes,
graphical visualization, and downstream analysis functionality. To help researchers choose a tool that
best suits their specific research needs, we review the functionality of various CRISPR design tools
including our own, the CRISPR Genome Analysis Tool (CGAT; http://cropbioengineering.iastate.
edu/cgat).

INTRODUCTION

Early in the 20th century Muller showed that
X-rays cause genetic mutations in Drosophila
(Muller, 1927). Likewise, Stadler showed the

mutational effects of X-rays on barley and
maize (Stadler, 1928; Stadler 1944) which
paved the way for researchers to broadly use
mutagens such as X-rays and chemical agents
to induce random genetic changes. However,
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those methods yielded many mutations that had
to be sorted out over generations to isolate the
one responsible for causing changes to specific
phenotypes/traits of interest. More recently,
basic research to understand the processes
underlying natural chromosomal recombina-
tion, microbial immune and virulence
responses, and DNA binding domains has led
to discoveries that made possible the develop-
ment of targeted genome editing techniques
that pair sequence-specific DNA binding pro-
teins with enzymes that cleave DNA (reviewed
in Wright et al., 2014). Development of these
methods led to the realization that a RNA
directed bacterial immune system could also be
developed into an effective genome editing
tool. Now three major systems for genome edit-
ing exist: Zinc Finger Nucleases (ZFNs), TAL
Effector Nucleases (TALENs), and Clustered
Regularly Interspaced Short Palindromic
Repeats (CRISPRs)/CRISPR associated pro-
teins 9 (CRISPR/Cas9; reviewed in Peng et al.,
2014).

Zinc finger proteins are classified into dis-
tinct families based on specific structural
motifs. Shared among all are DNA binding
domains along with one or more zinc ion(s)
that serve to stabilize the fold (Klug, 2010).
Early NMR spectroscopy experiments revealed
that the Cys2His2 zinc finger binding domain
in the Xenopus transcription factor IIA is com-
prised of a 30 amino acid repeat sequence with
conserved bba secondary structure (Ruiz i
Altaba et al., 1987). This architecture allows
amino acids on the surface of the a-helix to
interact with specific major groove nucleotides,
thus conferring specificity for particular dou-
ble-stranded DNA sequences (Beerli and Bar-
bas, 2002; Gaj et al., 2013; Lee et al., 1989). It
was later found that by changing amino acids
in the a-helix, DNA binding specificity and
affinity could be altered. Engineered zinc fin-
gers were combined with the DNA cleavage
domain of FokI, a type II restriction endonucle-
ase, to form ZFNs, which allow for specific tar-
geted double-strand breaks in DNA.. Induction
of DNA damage triggers the cellular repair
pathway via error-prone non-homologous end
joining or template mediated homology

directed repair thus giving limited control over
the repair process in a targeted manner (Lieber,
2010). Non-homologous end joining can create
loss-of-function mutations due to insertions,
deletions, or rearrangements whereas homol-
ogy directed repair can create a precise muta-
tion in the presence of a specific DNA template
(Bogdanove, 2014; Lieber, 2010)

Transcription activator-like effector (TALE;
also called TAL effector) proteins are major
components of the type III secretion system
conferring pathogenicity in the Gram negative
bacteria Xanthomonas (White et al., 2009;
Boch and Bonas 2010). Of the more than 30
families of bacterial effector proteins, TALEs
are unique in their ability to distinguish specific
DNA sequences via a central repetitive 34
amino acid DNA binding motif (Boch et al.,
2009; Moscou and Bogdanove, 2009). The
repeat variable di-amino acids (RVDs) at posi-
tions 12 and 13 determine overall specificity
and affinity for specific nucleotides in a target
sequence. When coupled with the nuclease
domain of FokI, TALE nucleases (TALENs)
emerged as a novel genome-editing tool (Chris-
tian et al., 2010; Li et al., 2011).

ZFNs are known to cleave at off-target sites.
This hampers their use and has been shown to
cause cellular toxicity (Gaj et al., 2013; Jiang
et al., 2013a). ZFNs are also difficult (and
costly) to design and construct with variable
rates of success (reviewed in (Gaj et al., 2013;
Jiang et al., 2013a). Compared to ZFNs,
TALEN assisted genome editing has signifi-
cantly reduced toxicity due to off-target effects;
however, construct design complexity due to
specific requirements in base composition cou-
pled with a lack of support for the TALEN len-
tiviral delivery systems (reviewed in (Gaj
et al., 2013; Holkers et al., 2013) have held
back broad adoption and use of TALENs
(Sander and Joung, 2014).

The difficulties of both ZFN and TALEN
techniques lie in designing and validating pro-
teins that recognize specific DNA sequences.
In contrast, the CRISPR system is RNA-medi-
ated. The natural CRISPR system is a defense
mechanism that provides bacterial adaptive
immunity to a wide range of potential

CRISPR DESIGN TOOLS REVIEW 267



pathogens (Barrangou et al., 2007; Rath et al.,
2015). There are three major classes (types I,
II, III) and ten subclasses of CRISPRs based on
the specific CRISPR-associated (Cas) proteins
and non-coding RNA species involved (Carte
et al., 2014; Makarova et al., 2011). The type
II CRISPR-Cas9 system has been co-opted for
genome editing.

The native CRISPR-Cas9 system (Fig. 1) is
comprised of three distinct architectural com-
ponents: a small non-coding transactivating
CRISPR RNA (tracrRNA), an operon that enc-
odes the Cas proteins, and a repeat array
encompassing crRNA units comprised of a 5’
20-nucleotide targeting sequence and a 19-22
nucleotide repeat sequence (referred to as
spacers; Deltcheva et al., 2011). Multiple stud-
ies suggest that Cas9 endonuclease activity
requires a highly conserved 3’ three nucleotide
protospacer adjacent motif (PAM) directly pre-
ceding the target sequence (Jiang et al., 2013b;
Zhang et al., 2014). PAM sequence composi-
tion is highly diverse depending on the CRISPR
type/subtype, with NGG representing the most
effective trinucleotide for the CRISPR-Cas9
system of Streptococcus pyogenes (Zhang
et al., 2014).

The native CRISPR-Cas9 genome editing
mechanism is broken into 3 processes: acquisi-
tion, expression, and interference (Carte et al.,
2014; Makarova et al., 2011). Upon host infec-
tion, exogenous genetic elements are incorpo-
rated into the CRISPR locus (acquisition
phase). These repeat sequences are then tran-
scribed into noncoding precursor CRISPR
RNAs (pre-crRNAs; expression phase). The
Cas9 nuclease uses these guide RNA sequences
to cleave invading plasmids or phage molecules
including any double stranded DNA matching
the CRISPR RNAs (interference). Double
strand DNA breaks are repaired via non-homol-
ogous end joining or homology directed repair
in vivo, frequently leading to errors or elimina-
tion of invading DNA.

To simplify the system for targeted muta-
tion, researchers combined the endogenous
tracrRNA and crRNA to produce effective sin-
gle guide RNA (sgRNA) constructs with
unique restriction sites for targeting oligo inser-
tion. The broad applicability of CRISPR to

gene editing in diverse species coupled with
simple design rules has resulted in the develop-
ment of myriad bioinformatics tools that aim to
identify potential sgRNA target sites in
genomes of interest. Although multiple
CRISPR sequence design tools already exist,
they are not all the same. Some are user
friendly, others are more difficult to use. Some
are available via web servers, others are not
available online. Many perform only a few
steps in a full computational analysis and
design pipeline, and deliver results that are
voluminous with no mechanism to sort. In addi-
tion, the genomes available for use within many
tools are limited, and very few tools have been
subjected to peer-review. To help researchers
choose a tool that best suits their specific
research needs, we compared the functionality
of various CRISPR design software including
our own, CGAT the CRISPR Genome Analysis
Tool.

CRISPR COMPUTATIONAL
RESOURCES COMPARISON

Of the available CRISPR resources we
evaluated (see Table 1), there are two major
classes: those that enable researchers to
query experimentally validated sgRNAs for
which genetic stocks are available, and those
that predict potential CRISPR targets in a
given sequence. At the time of this writing,
the only resource we find that is in the for-
mer category is CrisprGE, though we antici-
pate that other species will develop such
resources in the very near future. CrisprGE
is a high-quality, curated database that con-
tains thousands of sgRNAs for hundreds of
constructs and their available germplasm
resources. To locate resources of interest,
tools that enable browse and search function-
ality are available from the website at
http://crdd.osdd.net/servers/crisprge/. In con-
trast to this resource, other tools predict
which sites within a given DNA sequence are
amenable to CRISPR-based editing. For the
remainder of this discussion, we focus on tools
that can be used to predict potential CRISPR
targets given an input sequence.
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Multiple computational tools are available
to aid in the prediction and design of
CRISPR sgRNA constructs to target specific
genomic loci. For all tools compared in this

analysis, the ability to predict sgRNAs in
any user-submitted DNA sequence is possi-
ble, enabling researchers to design CRISPR
sgRNAs for: various versions of genome

FIGURE 1. The CRISPR-Cas adaptive immune system. Three processes underlie the system,
acquisition, expression, and interference. Foreign DNA is shown entering the cell. During acquisi-
tion, target DNA (beige; next to the PAM sequence shown in green) is incorporated into the
CRISPR locus. Expression involves transcribing target DNA into noncoding pre-crRNAs to which
tracrRNAs attach. During interference the Cas9 endonuclease uses these sequences to target for-
eign DNA for cleavage. (Color figure available online.)
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assemblies, non-model species of interest,
and diverse alleles of genes of interest. For
some tools, a database of sequences is pre-
loaded, enabling the user not only to specify
a gene of interest within a sequenced refer-
ence genome, but also to optionally search
the rest of the genome for off-target sites
that could be recognized by sgRNAs.

In Table 2, sgRNA design tools are
compared based on whether they are avail-
able online via web server, allow the user
to search for matching sgRNAs by gene
name, provide options to use alternate
PAM sequences, provide options to predict
off-targets (by genomic sequence similar-
ity), sort and/or rank lists of identified tar-
gets, and aggregate all analyses within a

single, all-in-one pipeline. Here we specifi-
cally highlight the functionality of 17
CRISPR design tools and report on their
comparative functionality (Table 2). Note
that the tools compared here are limited to
non-commercial software, though the com-
mercial tools to enable sgRNA design are
very much in keeping with functionality
described here.

CRISPRseek, sgRNAcas9 and SSFinder are
only available as stand-alone systems and
require installation and configuration. CRISPR
target sequences are identified and evaluated
based on user input. These tools are best suited
for users with some technical expertise.

Beyond databases of validated CRISPR con-
structs and tools that must be downloaded and

Table 1. CRISPR tool and resources examined

Tool Name Species Publication Web Address

s vertebrates, invertebrates,

plants

Ma et al., 2013 http://cas9.cbi.pku.edu.cn/

CCTop vertebrates, invertebrates,

plants,

Stemmer et al., 2015 http://crispr.cos.uni-heidelberg.de/

CGAT Plants This paper http://cbc.gdcb.iastate.edu/cgat/

CHOPCHOP vertebrates, invertebrates,

plants

Montague et al., 2014 https://chopchop.rc.fas.harvard.edu/

COSMID vertebrates, invertebrates Cradick et al., 2014 https://crispr.bme.gatech.edu/

CRISPR design vertebrates, invertebrates,

arabidopsis

N/A http://crispr.mit.edu/

CRISPRdirect vertebrates, invertebrates,

fungi

Naito et al., 2014 http://crispr.dbcls.jp/

Crispr Finder Vertebrates invertebrates

fungi

Grissa et al., 2007 http://crispr.u-psud.fr/Server/

CrisprGE* various: plants, animals,

fungi, prokaryotes, protists

Kaur et al., 2015 http://crdd.osdd.net/servers/crisprge/

CRISPR

Multitargeter

vertebrates,

invertebrates,

plants

Prykhozhij et al., 2015 http://www.multicrispr.net/

Crispr-P Plants Lei et al., 2014 http://cbi.hzau.edu.cn/crispr/

CRISPRseek vertebrates, invertebrates,

fungi, plants, protists

Zhu et al., 2014 http://www.bioconductor.org/packages/

release/bioc/html/CRISPRseek.html

CROP-IT vertebrates: mouse and

human

Singh et al., 2015 http://cheetah.bioch.virginia.edu/AdliLab/

CROP-IT/homepage.html

E-crisp vertebrates, invertebrates,

plants, fungi, protists

Heigwer et al., 2014 http://www.e-crisp.org/E-CRISP/

flyCRISPR invertebrates Gratz et al., 2014 http://flycrispr.molbio.wisc.edu/

GT-SCAN vertebrates, invertebrates,

plants, fungi

O’Brien and Bailey, 2014 http://flycrispr.molbio.wisc.edu/

sgRNAcas9 vertebrates, invertebrates Xie et al., 2014 http://www.biootools.com/col.jsp?id=140

SSFinder N/A Upadhyay and Sharma,

2014

https://code.google.com/p/ssfinder/

*queries sgRNA sequences against experimentally validated sgRNAs for which genetic stocks are available.
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installed, myriad online tools exist that allow
users to quickly parse an input to predict puta-
tive CRISPR targets. Tools in this category tend
to allow the greatest amount of user flexibility
in terms of sgRNA design criteria. As the
CRISPR system continues to improve, specifica-
tions such as the ability to search non-canonical
PAM sequences, an option to designate pro-
moter-specific bases preceding the seed
sequence, and improved prioritization for poten-
tial targets will provide the greatest expansion in
utility across a multitude of genomes and cell
types.

A major concern with targeted nuclease
technology is the potential for off-target cleav-
age and associated toxicity. With this in mind,
many tools check the rest of a genome for addi-
tional matches to predicted target sequences.
Even more sophisticated tools produce a ranked
output of CRISPR targets by interpreting off-
target scores as a function of the overall sgRNA
score.

Only CGAT, Crispr-P, CHOPCHOP and
CRISPRdirect offer access online, enable
search by gene name, predict off-targets, enable
ranking of identified targets, and contain all of
these functionalities within a single pipeline.
Here we describe the functionality of CGAT
and demonstrate its capability as a specific
example that shows how such tools work.

MATERIALS AND METHODS

CGAT is built upon a variety of technologies.
PostgreSQL 9.3 (http://www.postgresql.org/) is
the relational database system (RDBMS). For
data retrieval, CGAT makes use of Post-
greSQL’s procedural language extensibility
with portions of the database query logic writ-
ten in PL/Python (http://www.postgresql.org/
docs/9.3/static/plpython.html). The current ver-
sion of the parser that processes genomic
FASTA-formatted files into relational database
tables is written in the Go programming lan-
guage (version 1.4.2) (https://golang.org/).

The website itself is written in Python 2.7.x
using the 1.8.2 version of the Django framework
(https://www.djangoproject.com/). Finally, the
client-side functionality of the tool is written in
Javascript using the 1.3.9 version of the Angu-
larJS framework (https://angularjs.org/).

Code is available online at https://github.
com/ISU-Crop-Bioengineering-Consortium/
crispr. While the above technology stack is rel-
atively stable, version numbers of discrete
pieces of the stack are likely to change as
CGAT and the individual technologies on
which it is built mature over time.

At this time, the current genome assemblies
for maize, soy, rice, Chlamydomonas, peanut,
and sorghum are available for gene model-

Table 2. Comparison of CRISPR tool functionalities

Tool Name

Web

Server

Search by

Gene Name

Alternate PAM

Sequence

Predicts

Off-targets

Ranks

Output

All in

One Tool

Cas9-Design @ £ £ @ £ @
CCTop @ £ @ @ £ @
CGAT @ @ £ @ @ @
CHOPCHOP @ @ @ @ @ @
COSMID @ £ @ @ @ @
CRISPR design @ £ @ @ @ @
CRISPRdirect @ @ @ @ @ @
Crispr Finder @ £ £ @ £ £
CRISPR Multitargeter @ £ @ @ £ £
Crispr-P @ @ @ @ @ @
CRISPRseek £ £ @ @ £ @
CROP-IT @ @ @ @ @ £
E-crisp @ £ @ @ £ £
flyCRISPR @ £ @ £ £ @
GT-SCAN @ £ @ @ £ @
sgRNAcas9 £ £ @ @ £ £
SSFinder £ £ £ £ £ £
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specific query from within the CGAT tool. The
breadth of the list will be increased over time,
with a plan to automatically populate the avail-
able genomes from long-lived resources (e.g.,
EnsembPlants; Kersey et al., 2016). Because
the CGAT tool accepts DNA sequence as input
directly, DNA sequence from any organism
can be evaluated for sites amenable to CRISPR
design, but only those with genomes loaded
into the database can be evaluated for potential
off-target sites.

RESULTS

In overview, the CGAT tool works in two
steps. In step one, CRISPR targets are identified
in a user-specified sequence of interest with the
sequence being pasted into a text field or
selected from a list of gene/gene model names
from the species of interest. In the second step,
potential off-targets are identified. These two
functionalities encompass the following steps:

1. For each genome available to search
above, the genome sequence has been
parsed in advance for valid CRISPR tar-
get sequences. All found target sequences
were exported to a SQL database along
with some relevant metadata. Addition-
ally, the transcript data for each gene has
also been stored in the SQL DB for easy
retrieval when a user opts to select the
input sequence from a specific gene.

2. In the tool interface, Javascript is used to
parse both the input sequence and its
complement for valid CRISPR targets
based on the user-provided search param-
eters (i.e., Target Length, GC Content
and Allowed Nucleotide Repeats). The
results are rendered in the browser and,
for each found target sequence, a request
is sent to the webserver to search the
specified genome database for potential
off-target matches.

3. For each request sent from the web
browser to the webserver in the previous
step, the server queries the database for
the target genome with the user-provided
search parameters.

4. Search results are filtered and sorted pri-
marily by an identity score between an
input subsequence (bases 6–18 for 21
base sequences or bases 6–20 for 23 base
sequences) and the corresponding subse-
quences stored in the database. Addi-
tional sorting is performed based on an
identity score between the subsequence at
bases 2-5 of the input sequence and the
corresponding subsequences in the
database.

5. Finally, the webserver returns the search
results to the browser, which updates the
existing table. Clicking any table row
reveals more details about the result.

OsSWEET11 Example

The SWEET gene family of sugar trans-
porters has been shown to play a vital role
in multiple plant growth and developmental
processes, including seed nutrition. They are
also responsible for host recognition and
subsequent sugar acquisition by the bacterial
pathogen Xanthomonas oryzae pv. oryzae -
the causal agent of rice bacterial blight
(Chen et al., 2010; Boch et al., 2014). Jiang
et al. demonstrated that efficient Cas9-medi-
ated modification of the OsSWEET11 pro-
moter decreased pathogen-host interaction in
rice (2013b). Here we search japonica rice
(Oryza sativa L. cv. Nipponbare) for the
same target as a representative usage exam-
ple for CGAT.

As shown in Figure 2, the sequence for the
OsSWEET11 gene promoter (GenBank:
CM000145.1 nucleotides 25503600-25503800)
was used as input. CGAT default parameters
were set to identify CRISPR targets of at least
21 nucleotides. The results table highlights
potential CRISPR target regions in green. The
OsSWEET11 CRISPR target exploited by Jiang
et al. (2013b) to induce a mutation that increased
host resistance to bacterial blight is the last in
the group (i.e., sequence 5’-GTACACCAC-
CAAAAGTGGAGG-3’). Next, the targets were
used to query for off-target matches genome-
wide. No off-target 100% identical to the Jiang
et al. target was identified in the rice genome.
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FIGURE 2. CGATexample functionality using OsSWEET11. (A) Paste into the box a sequence (or
select a sequence from the database). (B) Specify design parameters including target length, the
maximum number of tandemly repeated nucleotides, and minimum/maximum GC content (which has
been shown to correlate with sgRNA efficiency; Ren et al. 2014). (C) Select a genome to query for
potential off-target recognition and hit the ‘Analyze’ button. (D) Evaluate and prioritize targets using
sequence identity as well as (E) off-target sequence identity. (Color figure available online.)
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CONCLUSIONS AND FUTURE WORK

The CRISPR-Cas adaptive immune system
continues to show increased potential as an
excellent tool for genome editing. This obvious
and general use across the life sciences has
sparked the rapid production of bioinformatics
tools to predict and analyze target sequences
across a multitude of genomes. In this review,
we compared functionality among a list of
CRISPR prediction software and described in
detail how to use CGAT.

To enable generalized bioinformatics sup-
port of the CRISPR-Cas9 system, emerging
CRISPR sequence analysis tools are anticipated
to provide functionality beyond guide RNA
design and off-target identification. Improve-
ments that would simplify the process include:
direct access to public sequence databases such
as ENSEMBL and Genbank at NCBI, the addi-
tion of integrated tools to simplify cloning vec-
tor design, and identification of restriction
enzyme cut sites within target sequences to
simplify screening putative transformants by
restriction digest of PCR products. Addition-
ally, reporting whether off-target matches rep-
resent duplicate genes and/or gene family
members would be a useful feature.
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