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Abstract

Background: Chromatin conformation capture techniques have evolved rapidly over the last few years and have
provided new insights into genome organization at an unprecedented resolution. Analysis of Hi-C data is complex
and computationally intensive involving multiple tasks and requiring robust quality assessment. This has led to the
development of several tools and methods for processing Hi-C data. However, most of the existing tools do not
cover all aspects of the analysis and only offer few quality assessment options. Additionally, availability of a multitude of
tools makes scientists wonder how these tools and associated parameters can be optimally used, and how potential
discrepancies can be interpreted and resolved. Most importantly, investigators need to be ensured that slight changes
in parameters and/or methods do not affect the conclusions of their studies.

Results: To address these issues (compare, explore and reproduce), we introduce HiC-bench, a configurable
computational platform for comprehensive and reproducible analysis of Hi-C sequencing data. HiC-bench performs all
common Hi-C analysis tasks, such as alignment, filtering, contact matrix generation and normalization, identification of
topological domains, scoring and annotation of specific interactions using both published tools and our own. We have
also embedded various tasks that perform quality assessment and visualization. HiC-bench is implemented as a data
flow platform with an emphasis on analysis reproducibility. Additionally, the user can readily perform parameter
exploration and comparison of different tools in a combinatorial manner that takes into account all desired parameter
settings in each pipeline task. This unique feature facilitates the design and execution of complex benchmark studies
that may involve combinations of multiple tool/parameter choices in each step of the analysis. To demonstrate the
usefulness of our platform, we performed a comprehensive benchmark of existing and new TAD callers exploring
different matrix correction methods, parameter settings and sequencing depths. Users can extend our pipeline by
adding more tools as they become available.

Conclusions: HiC-bench consists an easy-to-use and extensible platform for comprehensive analysis of Hi-C datasets.
We expect that it will facilitate current analyses and help scientists formulate and test new hypotheses in the field of
three-dimensional genome organization.
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Background
Nuclear organization is of fundamental importance to gene
regulation. Recently, proximity ligation assays have greatly
enhanced our understanding of chromatin organization
and its relationship to gene expression [1]. Here we focus
on Hi-C, a powerful genome-wide chromosome con-
formation capture variant, which detects genome-wide
chromatin interactions [2, 3]. In Hi-C, chromatin is
cross-linked and DNA is fragmented using restriction
enzymes, the interacting fragments are ligated form-
ing hybrids that are then sequenced and mapped back
to the genome. Hi-C is a very powerful technique
that has led to important discoveries regarding the
organizational principles of the genome. More specifically,
Hi-C has revealed that the mammalian genome is
organized in active and repressed areas (A and B compart-
ments) [2] that are further divided in “meta-TADs” [4],
TADs [5] and sub-TADs [6]. TADs consist evolutionarily
conserved, megabase-scale, non-overlapping areas with
increased frequency of intra-domain compared to inter-
domain chromatin interactions [5, 7]. Despite the fact that
Hi-C is very powerful, it is known to be prone to system-
atic biases [8–10]. Moreover, as the sequencing costs
plummet allowing for increased Hi-C resolution, Hi-C
poses formidable challenges to computational analysis in
terms of data storage, memory usage and processing
speed. Thus, various tools have been recently developed
to mitigate biases in Hi-C data and make Hi-C analysis
faster and more efficient in terms of resource usage. HiC-
Box [11], hiclib [9] and HiC-Pro [12] perform various
Hi-C analysis tasks, such as alignment and binning of
Hi-C sequencing reads into Hi-C contact matrices,
noise reduction and detection of specific DNA-DNA in-
teractions. Hi-Corrector [13] has been developed for noise
reduction of Hi-C data, allowing parallelization and effect-
ive memory management, whereas Hi-Cpipe [14] offers
parallelization options and includes steps for alignment,
filtering, quality control, detection of specific interactions
and visualization of contact matrices. Other tools that
allow parallelization are HiFive [15], HOMER [16] and
HiC-Pro [12]. Allele-specific Hi-C contact maps can be
generated using HiC-Pro and HiCUP [17] (with SNPsplit
[18]). TADbit can be used to map raw reads, create inter-
action matrices, normalize and correct the matrices, call
topological domains and build three-dimensional (3D)
models based on the Hi-C matrices [19]. HiCdat performs
binning, matrix normalization, integration of other data
(e.g., ChIP-seq) and visualization [20]. HIPPIE offers
similar functionality with HiCdat and allows detection of
specific enhancer-promoter interactions [21]. Other tools
mainly focus on visualization of Hi-C data (e.g., Sushi [22]
and HiCPlotter [23]). Despite the recent boom in the
development of computational methods for Hi-C analysis,
most of these tools only focus on certain aspects of the

analysis, thus failing to encompass the entire Hi-C data
analysis workflow. More importantly, these tools or pipe-
lines are not easily extensible, and, for any given Hi-C
task, they do not allow the integration of multiple alterna-
tive tools (use of alternative TAD calling methods for
example) whose performance could then be qualitatively
or quantitatively compared. Available tools do not support
comprehensive reporting of the parameters used for each
task and they do not enable reproducible computational
analysis which is an imperative requirement in the era of
big data [24], especially given the complexity of Hi-C
analyses. The recently released HiFive is an exception as it
offers a Galaxy interface [15]. However, use of Galaxy [25]
can become problematic for data-heavy analyses, espe-
cially when the remote Galaxy server is used.
To facilitate comprehensive processing, reproducibility,

parameter exploration and benchmarking of Hi-C data
analyses, we introduce HiC-bench, a data flow platform
which is extensible and allows the integration of different
task-specific tools. Current and future tools related to Hi-
C analysis can be easily incorporated into HiC-bench by
implementing simple wrapper scripts. HiC-bench covers
all current aspects of a standard Hi-C analysis workflow,
including read mapping, filtering, quality control, binning,
noise correction and identification of specific interactions
(Table 1). Moreover, it integrates multiple alternative tools
for performing each task (such as matrix correction tools
and TAD-calling algorithms), while at the same time
allowing simultaneous exploration of different parameter
settings that are propagated from one task to all subse-
quent tasks in the pipeline. HiC-bench also generates a
variety of quality assessment plots and offers other
visualization options, such as generating genome browser
tracks as well as snapshots using HiCPlotter. We have
built this platform with reproducibility in mind, as all
tools, versions and parameter settings are recorded
throughout the analysis. HiC-bench is released as
open-source software and the source code is available
on GitHub and Zenodo (for details please refer to
“Availability and requirements” section). Our team
provides installation and usage support.

Implementation
The HiC-bench workflow
HiC-bench is a comprehensive computational pipeline
for Hi-C sequencing data analysis. It covers all aspects
of Hi-C data analysis, ranging from alignment of raw
reads to boundary-score calculation, TAD calling,
boundary detection, annotation of specific interactions
and enrichment analysis. Thus, HiC-bench consists the
most complete computational Hi-C analysis pipeline to
date (Table 1). Importantly, every step of the pipeline
includes summary statistics (when applicable) and direct
comparative visualization of the results. This feature is
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essential for quality control and facilitates troubleshoot-
ing. The HiC-bench workflow (Fig. 1) starts with the
alignment of Hi-C sequencing reads and ends with the
annotation and enrichment of specific interactions.
More specifically, in the first step, the raw reads (fastq
files) are aligned to the reference genome using Bowtie2
[26] (align). The aligned reads are further filtered in
order to determine those Hi-C read pairs that will be
used for downstream analysis (filter). A detailed statistics
report showing the numbers and percentages of reads
assigned to the different categories is automatically
generated in the next step (filter-stats). The reads that
satisfy the filtering criteria are used for the creation of

Hi-C contact matrices (matrix-filtered). These contact
matrices can either be directly visualized in the WashU
Epigenome Browser [27] as Hi-C tracks (tracks), or fur-
ther processed using three alternative matrix correction
methods: (a) matrix scaling (matrix-prep), (b) iterative cor-
rection (matrix-ic) [9] and (c) HiCNorm (matrix-hicnorm)
[28]. As quality control, plots of the average number of Hi-
C interactions as a function of the distance between the
interacting loci are automatically generated in the next step
(matrix-stats). The Hi-C matrices, before and after matrix
correction, are used as inputs in various subsequent pipe-
line tasks. First, they are directly compared in terms of
Pearson or Spearman correlation (compare-matrices and

Fig. 1 HiC-bench workflow. Raw reads (input fastq files) are aligned and then filtered (align and filter tasks). Filtered reads are used for the creation of
Hi-C track files (tracks) that can be directly uploaded to the WashU Epigenome Browser [27]. A report with a statistics summary of filtered Hi-C reads, is
also automatically generated (filter-stats). Raw Hi-C matrices (matrix-filtered) are normalized using (a) scaling (matrix-prep), (b) iterative correction
(matrix-ic) [9] or (c) HiCNorm (matrix-hicnorm) [28]. A report with the plots of the normalized Hi-C counts as function of the distance between the
interacting partners (matrix-stats) is automatically generated for all methods. The resulting matrices are compared across all samples in terms of
Pearson and Spearman correlation (compare-matrices and compare-matrices-stats). Boundary scores are calculated and the corresponding report with
the Principal Component Analysis (PCA) is automatically generated (boundary-scores and boundary-scores-pca). Domains are identified using various
TAD calling algorithms (domains) followed by comparison of TAD boundaries (compare-boundaries and compare-boundaries-stats). A report with the
statistics of boundary comparison is also automatically generated. Hi-C visualization of user-defined genomic regions is performed using HiCPlotter
(hicplotter) [23]. Specific chromatin interactions (interactions) are detected and annotated (annotations). Finally, enrichment of top interactions in certain
chromatin marks, transcription factors etc. provided by the user, is automatically calculated (annotations-stats)
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compare-matrices-stats) in order to estimate the similarity
between Hi-C samples. Second, they are used for the calcu-
lation of boundary scores (boundary-scores and boundary-
scores-pca), identification of topological domains (domains)
and comparison of boundaries (compare-boundaries and
compare-boundaries-stats). Third, high-resolution Hi-C
matrices are used for detection and annotation of specific
chromatin interactions (interactions and annotations),
enrichment analysis in transcription factors, chromatin
marks or other segmented data (annotation-stats) and
visualization of chromatin interactions in certain genomic
loci of interest (hicplotter). We should note here that HiC-
bench is totally extensible and customizable as new tools
can be easily integrated into the HiC-bench workflow (see
Additional file 1 User Manual for more details). In addition
to the multiple alternative tools that can be used to per-
form certain tasks, HiC-bench allows simultaneous explor-
ation of different parameter settings that are propagated
from one task to all subsequent tasks in the pipeline (for
details please refer to “Main concepts and pipeline archi-
tecture” section). For example, after contact matrices are
generated and corrected using alternative methods, HiC-
bench proceeds with TAD calling using all computed
matrices as inputs (Figs. 1 and 2a). This unique feature en-
ables the design and execution of complex benchmark
studies that may include combinations of multiple tool/
parameter choices in each step. HiC-bench focuses on the
reproducibility of the analysis by keeping records of the
source code, tool versions and parameter settings, and it is
the only HiC-analysis pipeline that allows combinatorial
parameter exploration facilitating benchmarking of Hi-C
analyses.

The HiC-bench toolkit
HiC-bench performs various tasks of Hi-C analysis
ranging from read alignment to annotation of specific
interactions and visualization. We have developed two
new tools, gtools-hic and hic-matrix, to execute the
multiple tasks in the HiC-bench pipeline, but we have
also integrated existing tools to allow comparative and
complementary analyses and facilitate benchmarking.
More specifically, the alignment task is performed either
with Bowtie2 [26] or with the “align” function of gtools-
hic, our newest addition to GenomicTools [29]. Likewise,
filtering, creation of Hi-C tracks and generation of Hi-C
contact matrices are performed using the functions
“filter”, “bin/convert” and “matrix” of gtools-hic respect-
ively. For advanced users, we have implemented a series
of novel features for these common Hi-C analysis tasks.
For example, the operation “matrix” of gtools-hic allows
generation of arbitrary chimeric Hi-C contact matrices,
a feature particularly useful for the study of the effect of
chromosomal translocations on chromatin interactions.
Another example is the generation of distance-restricted

matrices (up to some maximum distance off the diagonal)
in order to save storage space and reduce memory usage
at fine resolutions. For matrix correction we use either
published algorithms (iterative correction (IC/ICE) [9],
HiCNorm [28]) or our “naïve scaling” method where we
divide the Hi-C counts by (a) the total number of (usable)
reads, and (b) the “effective length” [8, 28] of each
genomic bin. We also integrated published TAD callers
like DI [5], Armatus [30], TopDom [31], insulation index
(Crane) [32] and our own TAD calling method (similar
but not identical to contrast index [33, 34]) implemented
as the “domains” operation in hic-matrix. Additionally,
the “domains” operation produces genome-wide boundary
scores using multiple methods and allowing flexibility in
choosing parameters. Boundaries are simply defined as
local maxima of the boundary scores. For the detection of
specific interactions, we introduce the “loops” function of
hic-matrix, while GenomicTools is used for annotation of
these interactions with gene names, ChIP-seq and other
user-defined data. Finally, we implemented a wrapper for
HiCPlotter, taking advantage of its advanced visualization
features in order to allow the user to quickly generate
snapshots of areas of interest in batch. The HiC-bench
toolkit is summarized in Table 2. All the tools we devel-
oped appear in bold. Further information on the toolkit is
provided in the User Manual found online and in the
Supplemental Information section.

Main concepts and pipeline architecture
We built our platform based on principles outlined in
scientific workflow systems such as Kepler [35], Taverna
[36] and VisTrails [37]. The main idea behind our
platform is the ability to track data provenance [37, 38],
the origin of the data, computational tasks, tool versions
and parameter settings used in order to generate a
certain output (or collection of outputs) from a given in-
put (or collection of inputs). Thus, our pipeline ensures
reproducibility which is a particularly important feature
for such a complex computational task. In addition,
HiC-bench enables combinatorial analysis and parameter
exploration by implementing the idea of computational
“trails”: a unique combination of inputs, tools and par-
ameter values can be imagined as a unique (computa-
tional) trail that is followed simultaneously with all the
other possible trails in order to generate a collection of
output objects (Fig. 2a). Our platform consists of three
main components: (a) data, (b) code and (c) pipelines.
These components are organized in respective director-
ies in our local repository, and synchronized with a
remote GitHub repository for public access. The data
directory is used to store data that would be used by any
analysis, for example genome-related data, such as DNA
sequences and indices (e.g., Bowtie2), gene annotations
and, in general, any type of data that is required for the
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analysis. The code directory is used to store scripts,
source code and executables. More details about the
directory structure can be found in the User Manual.
Finally, the “pipelines” directory is used to store the
structure of each pipeline. Here, we will focus on our
Hi-C pipeline, but we have also implemented a ChIP-seq
pipeline, which is very useful for integrating CTCF and
histone modification ChIP-seq data with Hi-C data. The
structure of the pipeline is presented to the user as a
numbered list of directories, each one corresponding to
one operation (or task) of the pipeline. As shown in
Fig. 1, our Hi-C pipeline currently consists of several

tasks starting with alignment and reaching completion
with the identification and annotation of specific DNA-
DNA interactions and annotations with ChIP-seq and
other genome-wide data (see also Table 2 and Additional
file 2: Table S1). We will examine these tasks in detail in
the Results section of this manuscript.

Parameter exploration, input and output objects
In conventional computational pipelines, several compu-
tational tasks (operations) are executed on their required
inputs. However, in existing genomics pipelines, each
task generates a single result object (e.g., TAD calling

Fig. 2 a Computational trails. Each combination of tools and parameter settings can be imagined as a unique computational “trail” that is executed
simultaneously with all the other possible trails to create a collection of output objects. As an example, one of these possible trails is presented in red.
The raw reads were aligned, filtered and then binned in 40 kb resolution matrices. Our own naïve matrix scaling method was then used for matrix
correction and domains were called using TopDom [31]. b HiC-bench pipeline task architecture. All pipeline tasks are performed by a single R script,
“pipeline-master-explorer.r”. This script generates output objects based on all combinations of input objects and parameter scripts while taking into
account the split variable, group variable and tuple settings. The output objects are stored in the corresponding “results” directory. As an example,
domain calling for IMR90 is presented. The filtered reads of the IMR90 Hi-C sample (digested with HindIII) are used as input. The pipeline-master-explorer
script tests if TAD calling with these settings has been performed and if not it calls the domain calling wrapper script (code/hicseq-domains.tcsh) with the
corresponding parameters (e.g., params/params.armatus.gamma_0.5.tcsh). After the task is complete, the output is stored in the corresponding
“results” directory
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using one method with fixed parameter settings) which
is then used by downstream tasks. To allow full param-
eter (and method/tool) exploration, we introduce instead
a data flow model, where every task may accommodate
an arbitrary number of output objects. Downstream
tasks will then operate on all computed objects gener-
ated by the tasks they depend on. Pipeline tasks are
implemented as shown in the diagram of Fig. 2b. First,
input objects are filtered according to user-specified
criteria (e.g., TAD calling is only done for Hi-C contact
matrices at 40 kb resolution). Then, pipeline-master-ex-
plorer (implemented as an R script; see Additional file 1
User Manual for usage and input arguments) generates
the commands that create all desired output objects. In
principle, all combinations of input objects with all par-
ameter settings will be created, subject to user-defined
filtering criteria. In the interest of extensibility, new
pipeline tasks can be conveniently implemented using
a single-line pipeline-master-explorer command (see
Additional file 3: Table S2), provided that wrapper scripts
for each task (e.g., TAD calling using TopDom) have been
properly set up. In the simplest scenario, any task in
our pipeline will generate computational objects for
each combination of parameter file and input objects
obtained from upstream tasks. For example, suppose
the aligned reads from 12 Hi-C datasets are filtered
using three different parameter settings, and that we
need to create contact matrices at four resolutions
(1 Mb, 100 kb, 40 kb and 10 kb). Then, the number
of output objects (contact matrices in this case) will
be 144 (i.e., 12 × 3 × 4). Although many computational
scenarios can be realized by this simple one-to-one
mapping of input–output objects, more complex
scenarios are frequently encountered, as described in
the next section.

Filtering, splitting and grouping input objects into new
output objects
Oftentimes, a simple one-to-one mapping of input ob-
jects to output objects is not desirable. For this reason,
we introduce the concepts of filtering, splitting and
grouping of input objects which are used to modify the
behavior of pipeline-master-explorer (see Fig. 2b). Filtering
is required when some input objects are not relevant for a
given task, e.g., TAD calling is not performed on 1 Mb-
resolution contact matrices, and specific DNA-DNA inter-
actions are not meaningful for resolutions greater than
10–20 kb. Splitting is necessary in some cases: for ex-
ample, we split the input objects by genome assembly
(hg19, mm10) when comparing contact matrices or do-
mains across samples, since only matrices or domains
from the same genome assembly can be compared dir-
ectly. In our platform, the user is allowed to split a collec-
tion of input objects by any variable contained in the
sample sheet (except fastq files), thus allowing user-
defined splits of the data, such as by cell type or treatment.
Complementary to the splitting concept, grouping permits
the aggregation of a collection of input objects (sharing
the same value of a variable defined in the sample sheet)
into a single output object. For example, the user may
want to create genome browser tracks or contact matrices
of combined technical and/or biological replicates, or
group all input objects (samples) together in tasks such as
Principal Component Analysis (PCA) or alignment/filter-
ing statistics.

Combinatorial objects
Even after introducing the concepts described above,
more complex scenarios are possible as some tasks
require the input of pairs (or triplets etc.) of objects.
This feature has also been implemented in our pipeline
(tuples in Fig. 2b) and is currently used in the compare-
matrices and compare-boundaries tasks. However, it
should be utilized wisely (for example in conjunction
with filtering, splitting and grouping) because it may
lead to a combinatorial “explosion” of output objects.

Parameter scripts
The design of our platform is motivated by the need to
facilitate the use of different parameter settings for each
pipeline task. For this reason, we have implemented
wrapper scripts for each tool/method used in each task.
For example, we have implemented a wrapper script for
alignment, filtering, correcting contact matrices using IC
or HiCNorm (separate wrappers), TAD calling using
Armatus [30], TopDom [31], DI [5] and insulation index
(Crane) [32] (separate wrappers). The main motivation
is to hide most of the complexity inside the wrapper
script and allow the user to modify the parameters using
a simple but flexible parameter script. Unlike static

Table 2 The HiC-bench toolkit

Hi-C tasks HiC-bench toolkit

Alignment bowtie2, gtools-hic[align]

Filtering gtools-hic[filter]

Genome browser tracks gtools-hic[bin/convert]

Matrix generation gtools-hic[matrix]

Matrix correction IC, HiCNorm, hic-matrix[preprocess/normalize]

Boundary scores hic-matrix[domains]

Domain calling DI, Armatus, TopDom, hic-matrix[domains]

Interactions hic-matrix[loops]

Annotations genomic-tools

Visualization HiCPlotter

The HiC-bench toolkit consists mostly of newly-developed tools (shown in bold)
but we have also incorporated existing tools to allow comparisons and
benchmarking
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parameter files, parameter scripts allow for dynamic cal-
culation of parameters based on certain input variables
(e.g., enzyme name, group name etc.). Within this frame-
work, by adding and/or modifying simple parameter
scripts, the user can explore the effect of different pa-
rameters (a) on the task directly affected by these
parameters, and (b) on all dependent downstream tasks.
Additionally, these parameter scripts serve as a record of
parameters and tool versions that were used to produce
the results, facilitating analysis reproducibility as well as
documentation in scientific reports and manuscripts.

Results stored as computational trails
All the concepts described above have been implemented
in a single R script named pipeline-master-explorer. This
script maintains a database of input-output objects for each
task, stored in a hidden directory under results (results/
.db). It also creates a “run” script which is executed in order
to generate all the desired results. All results are stored in
the results directory in a tree structure that reveals the
computational trail for each object (see examples shown in
Fig. 2b and Additional file 3: Table S2). Therefore, the user
can easily infer how each object was created, including
what inputs and what parameters were used.

Initiating a new reproducible analysis
In the interest of data analysis reproducibility, any new
analysis requires creating a copy of the code and pipeline
structure into a desired location, effectively creating a
branch. This way, any changes in the code repository
will not affect the analysis and conversely, the user can
customize the code according to the requirements of
each project without modifying the code repository.
Copying of the code and initiating a new analysis is done
simply by invoking the script “pipeline-new-analysis.tcsh”
as described in the User Manual.

Pipeline tasks
A pipeline consists of a number of (partially) ordered
tasks that can be described by a directed acyclic graph
which defines all dependencies. HiC-bench implements
a total of 20 tasks as shown in the workflow of Fig. 1. In
the analysis directory structure, each task is assigned its
own subdirectory found inside the pipeline directory
starting from the top level. This directory includes a
symbolic link to the inputs of the analysis (fastq files,
sample sheet, etc.), a link to the code, a directory
(inpdirs) containing links to all dependencies, a directory
containing parameter scripts (see below) and a “run”
script which can be used to generate all the results of
this task. The “run” scripts of each task are executed in
the specified order by the master “run” script located at
the top level (see Additional file 1 User Manual for
details on pipeline directory structure).

Input data and the sample sheet
Before performing any analysis, a computational pipeline
needs input data. All input data for our pipeline tasks
are stored in their own “inputs” directory accessible at
the top level (along with the numbered pipeline tasks)
and via symbolic links from within the directories
assigned to each task to allow easy access to the corre-
sponding input data. A “readme” file explains how to
organize the input data inside the inputs directory (see
Additional file 1 User Manual for details). Briefly, the
fastq subdirectory is used to store all fastq files,
organized into one subdirectory per sample. Then, the
sample sheet needs to be generated. This can be done
automatically using the “create-sample-sheet.tcsh” script,
but the user can also manually modify and expand the
sample sheet with features beyond what is required.
Currently required features are the sample name (to be
used in all downstream analyses), fastq files (R1 and R2
in separate columns), genome assembly version (e.g.,
hg19, mm10) and restriction enzyme name (e.g., HindIII,
NcoI). Adding more features, such as different group
names (e.g., sample, cell type, treatment), allows the user
to perform more sophisticated downstream analyses,
such as grouping replicates for generating genome
browser tracks, or splitting samples by genome assembly
to compare boundaries (see previous section on group-
ing and splitting).

Executing the pipeline
The entire pipeline can be executed automatically by the
“pipeline-execute.tcsh” script, as shown below:

code=code:main=pipeline‐execute < project name >

< user e‐mail address >

where < project name > will be substituted by the name
of the project and < user e-mail address > by the preferred
e-mail address of the person who runs the analysis in
order to be notified upon completion. The “pipeline-exe-
cute.tcsh” script essentially executes the “run” script for
each task (following the specified order). At the comple-
tion of every task, the log files of all finished jobs are
inspected for error messages. If error messages are found,
the pipeline aborts with an error message.

Timestamping
Besides creating the “run” script used to generate all
results, the “pipeline-master-explorer.r” script, also
checks whether existing output objects are up-to-date
when compared to their dependencies (i.e., input objects
and parameter scripts; can be expanded to include code
dependencies as well). Currently, the pipelines are set up
so that out-of-date objects are not deleted and recom-
puted automatically, but only presented to the user as a
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warning. The user can then choose to delete them
manually and re-compute. The reason for this is to pro-
tect the user against accidentally repeating computation-
ally demanding tasks (e.g., alignments) without given
first the chance to review why certain objects may be
out-of-date. From a more philosophical point of view,
and in the interest of keeping a record of all computa-
tions (when possible), the user may never want to mod-
ify parameter files or the code for a given project, but
instead only add new parameter files. Then, no object
will be out-of-date, and only new objects will need to be
recomputed every time.

Alignment and filtering
Paired-end reads were mapped to the reference genome
(hg19 or mm10) using Bowtie2 [26]. Reads with low
mapping quality (MAPQ < 30) were discarded. Local
alignments of input read pairs were performed as they
consist of chimeric reads between two (non-consecutive)
interacting fragments. This approach yielded a high
percentage of mappable reads (>95%) for all datasets
(Additional file 4: Figure S1). Mapped read pairs were
subsequently filtered for known artifacts of the Hi-C
protocol such as self-ligation, mapping too far from the
enzyme’s known cutting sites etc. More specifically,
reads mapping in multiple locations on the reference
genome (multihit), double-sided reads that mapped to
the same enzyme fragment (ds-same-fragment), reads
whose 5’-end mapped too far (ds-too-far) from the
enzyme cutting site, reads with only one mappable end
(single-sided) and unmapped reads (unmapped), were
discarded. Read pairs that corresponded to regions that
were very close (less than 25 kilobases, ds-too-close) in
linear distance on the genome as well as duplicate read
pairs (ds-duplicate-intra and ds-duplicate-inter) were
also discarded. In Additional file 4: Figure S1, we show
detailed paired-end read statistics for the Hi-C datasets
used in this study. We include the read numbers
(Additional file 4: Figure S1A) and their corresponding
percentages (Additional file 4: Figure S1B). Eventually,
approximately 10–50% of paired-reads passed all filter-
ing criteria and were used for downstream analysis
(Additional file 4: Figure S1B). The statistics report is
automatically generated for all input samples. The tools
and parameter settings used for the alignment and filter-
ing tasks are fully customizable and can be defined in
the corresponding parameter files.

Contact matrix generation, normalization and correction
The read-pairs that passed the filtering task were used
to create Hi-C contact matrices for all samples. The
elements of each contact matrix correspond to pairs of
genomic “bins”. The value in each matrix element is the
number of read pairs aligning to the corresponding

genomic regions. In this study, we used various resolu-
tions, ranging from fine (10 kb) to coarse (1 Mb). The
resulting matrices either remained unprocessed (filtered),
or they were processed using different correction methods
including HiCNorm [28], iterative correction (IC or ICE)
[9] as well as “naïve scaling”. In Additional file 5:
Figure S2, we present the average Hi-C count as a
function of the distance between the interacting frag-
ments, separately for each Hi-C matrix for not corrected
(filtered) and IC-corrected matrices.

Comparison of contact matrices
Our pipeline allows direct comparison and visualization
of the generated Hi-C contact matrices. More specific-
ally, using our hic-matrix tool, all pairwise Pearson and
Spearman correlations were automatically calculated for
each (a) input sample, (b) resolution, and (c) matrix
correction method. The corresponding correlograms
were automatically generated using the corrgram R
package [39]. A representative example is shown in
Additional file 6: Figure S3. The correlograms summar-
izing the pairwise Pearson correlations for all samples
used in this study are presented before and after matrix
correction using the iterative correction algorithm.
These plots are very useful because the user can quickly
assess the similarity between technical and biological
replicates as well as differences between various cell
types. As shown before (Additional file 6: Figure S3 in
[5]), iterative correction improves the correlation be-
tween enzymes at the expense of a decreased correlation
between samples prepared using the same enzyme.

Boundary scores
Topological domains (TADs) are defined as genomic
neighborhoods of highly interacting chromatin, with
relatively more infrequent inter-domain interactions
[5, 40, 41]. Topological domains are demarcated by
boundaries, i.e., genomic regions bound by insulators
thus hampering DNA contacts across adjacent domains.
For each genomic position, in a given resolution (typically
40 kb or less), we define a “boundary score” to quantify
the insulation strength of this position. The higher the
boundary score, the higher the insulation strength and the
probability that this region actually acts as a boundary
between adjacent domains. The idea of boundary scores is
further illustrated in Additional file 7: Figure S4, where
two adjacent TADs are shown. The upstream TAD on the
left (L) is separated from the downstream TAD on the
right (R) by a boundary (black circle). We define two
parameters, the distance from the diagonal of the Hi-C
contact matrix to be excluded from the boundary score
calculation (δ) (not shown) and the maximum distance
from the diagonal to be considered (d). The correspond-
ing parameter values can be selected by the user. For this
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analysis, we used δ = 0 and d = 2 Mb as suggested before
[5]. In addition to the published directionality index [5],
we defined and computed the “inter”, “intra-max” and
“ratio” scores, defined as follows:

inter ¼ mean Xð Þ
intramax ¼ max mean Lð Þ; mean Rð Þð Þ
ratio ¼ intramax=inter

Principal component analysis (PCA) of boundary
scores across samples in this study, before and after
matrix correction, shows that biological replicates tend
to cluster together, either in the case of filtered or
corrected (IC) matrices (Additional file 8: Figure S5).

Topological domains
Topologically-associated domains (TADs) are increas-
ingly recognized as an important feature of genome
organization [5]. Despite the importance of TADs in
genome organization, very few Hi-C pipelines have inte-
grated TAD calling (e.g., TADbit [19]). In HiC-bench, we
have integrated TAD calling as a pipeline task and we
demonstrate this integration using different TAD callers:
(a) Armatus [30], (b) TopDom [31], (c) DI [5], (d)
insulation index (Crane) [32] and (e) our own hic-matrix
(domains). Our pipeline makes it straightforward to plug
in additional TAD callers, by installing these tools and
setting up the corresponding wrapper scripts. HiC-
bench also facilitates the direct comparison of TADs
across samples by automatically calculating the number
of TAD boundaries and all the pairwise overlaps of TAD
boundaries across all inputs, generating the correspon-
ding graphs (as in the case of matrix correlations
described in a previous section). We define boundary
overlap as the ratio of the intersection of boundaries be-
tween two replicates (A and B) over the union of bound-
aries in these two replicates, as shown in the equation
below:

boundaryoverlap ¼ A∩Bð Þ= A∪Bð Þ

For the boundary overlap calculation, we extended
each boundary by 40 kb on both sides (+/−40 kb flank-
ing region, i.e., the size of one bin). The fact that HiC-
bench allows simultaneous exploration of all parameter
settings for all installed TAD-calling algorithms, greatly
facilitates parameter exploration, optimization as well as
assessment of algorithm effectiveness. Pairwise compari-
son of boundaries (boundary overlaps) across samples is
shown in Fig. 3 and Additional file 9: Figure S6.

Visualization
In our pipeline, we also take advantage of the great
visualization capabilities offered by the recently released

HiCPlotter [23], in order to allow the user to visualize
Hi-C contact matrices along with TADs (in triangle for-
mat) for multiple genomic regions of interest. The user
can also add binding profiles in BedGraph format for
factors (e.g., CTCF), boundary scores, histone marks of
interest (e.g., H3K4me3, H3K27ac) etc. An example is
shown in Additional file 10: Figure S7, where an area of
the contact matrix of human embryonic stem cells (H1)
(HindIII) is presented along with the corresponding
TADs (triangles), various boundary scores, the CTCF
binding profile and annotations of selected genomic
elements, before and after matrix correction (IC). The
integration of HiCPlotter in our pipeline, allows the user
to easily create publication-quality figures for multiple
areas of interest simultaneously.

Specific interactions, annotations and enrichments
The plummeting costs of next-generation sequencing
have resulted in a dramatic increase in the resolution
achieved in Hi-C experiments. While the original Hi-C
study reported interaction matrices of 1 Mb resolution
[2], recently 1 kb resolution was reported [42]. Thus, the
characterization and annotation of specific genomic
interactions from Hi-C data is an important feature of a
modern Hi-C analysis pipeline. HiC-bench generates a
table of the interacting loci based on parameters defined
by the user. These parameters include the resolution, the
lowest number of read pairs required per interacting
area as well as the minimum distance between the inter-
acting partners. The resulting table contains the coordi-
nates of the interacting loci, the raw count of
interactions between them, the number of interactions
after “scaling” and the number of interactions between
the partners after distance normalization (observed Hi-C
counts normalized by expected counts as a function of
distance). This table is further annotated with the gene
names or the factors (e.g., CTCF) and histone modifica-
tion marks (e.g., H3K4me1, H3K27ac, H3K4me3) that
overlap with the interacting loci. The user can pro-
vide bed files with the features of interest to be used
for annotation. As an example, the enrichment of
chromatin marks in the top 50,000 chromatin interac-
tions in the H1 and IMR90 samples is presented in
Additional file 11: Figure S8.

Software requirements
The main software requirements are: Bowtie2 aligner
[26], Python (2.7 or later) (along with Numpy, Scipy and
Matplotlib libraries), R (3.0.2) [43] and various R pack-
ages (lattice, RColorBrewer, corrplot, reshape, gplots,
preprocessCore, zoo, reshape2, plotrix, pastecs, boot,
optparse, ggplot2, igraph, Matrix, MASS, flsa, VennDia-
gram, futile.logger and plyr). More details on the ver-
sions of the packages can be found in the User Manual
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(sessionInfo()). In addition, installation of mirnylib Py-
thon library [44] is required for matrix balancing
based on IC (ICE). The pipeline has been tested on a
high-performance computing cluster based on Sun
Grid Engine (SGE). The operating system used was
Redhat Linux GNU (64 bit).

Results
We used HiC-bench to analyze several published Hi-C
datasets and the results of our analysis are presented
below. Additionally, we performed a comprehensive
benchmark of existing and new TAD callers exploring
different matrix correction methods, parameter settings

Fig. 3 Comparison of topological domain calling methods subject to Hi-C contact matrix preprocessing by simple filtering or iterative correction
(IC). The methods were assessed in terms of boundary overlap between replicates (a), change (%) in mean boundary overlap after matrix correction (b),
change (%) in standard deviation of mean overlap across replicates after matrix correction (c) and number of identified topological domains per cell type
(d). The different colors correspond to the different callers. Gradients of the same color are used for the different values of the same parameter, ranging
from low (light color) to high (dark color) values. The TAD callers along with the corresponding parameter settings are presented in the legend. For this
analysis all available read pairs were used
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and sequencing depths. Our results can be reproduced
by re-running the corresponding pipeline snapshot
available upon request as a single compressed archive
file (too big to include as a Supplemental file).

Comprehensive reanalysis of available Hi-C datasets using
HiC-bench
Our platform is designed to facilitate and streamline the
analysis of a large number of available Hi-C datasets in
batch. Thus, we collected and comprehensively analyzed
multiple Hi-C samples from three large studies [5, 42, 45].
From the first study we analyzed IMR90 (HindIII) sam-
ples, from the second we analyzed Hi-C samples from
lymphoblastoid cells (GM12878), human lung fibroblasts
(IMR90 (MboI)), erythroleukemia cells (K562), chronic
myelogenous leukemia (CML) cells (KBM-7) and kerati-
nocytes (NHEK), and from the third one, we analyzed
samples from human embryonic stem cells (H1) and all
the embryonic stem-cell derived lineages mentioned, in-
cluding mesendoderm, mesenchymal stem cells, neural
progenitor cells and trophectoderm cells. All datasets
yielded at least 40 million usable intra-chromosomal read
pairs in at least two biological replicates. We performed
extensive quality control on all datasets, calculating the
read counts and percentages per classification category
(Additional file 4: Figure S1), the attenuation of Hi-C sig-
nal over genomic distance (Additional file 5: Figure
S2), the correlation of Hi-C matrices before and after
matrix correction (Additional file 6: Figure S3), the simi-
larity of boundary scores (Additional file 8: Figure S5) and
all pairwise boundary overlaps across samples (Additional
file 9: Figure S6). In addition, we performed a comprehen-
sive benchmarking of our own and published TAD callers,
across all reanalyzed Hi-C datasets. The results of our
benchmark are presented in the following sections.

Iterative correction of Hi-C contact matrices improves
reproducibility of TAD boundaries
Iterative correction has been shown to correct for
known biases in Hi-C [9]. Thus, we hypothesized that IC
may increase the reproducibility of TAD calling. We per-
formed a comprehensive analysis calculating the TAD
boundary overlaps for biological replicates of the same
sample (as described in Methods section), using different
TAD callers and different main parameter values for
each TAD caller (Fig. 3a). After comparing TAD bound-
ary overlaps between filtered (uncorrected) and IC-
corrected matrices, we observed an improvement in the
boundary overlap when corrected matrices were used,
irrespective of TAD caller and parameter settings
(Fig. 3b). The only exception was DI. Careful examin-
ation of the overlaps per sample revealed that IC intro-
duced outliers only in the case of DI (in general, the
opposite was true for the other callers). We hypothesize

that IC may occasionally negatively affect the computa-
tion of the directionality index, especially because its
calculation depends on a smaller number of bins (1-di-
mensional line) compared to the rest of the methods (2-
dimensional triangles). In addition to the increase in the
mean value of boundary overlap upon correction, we ob-
served that the standard deviation of boundary overlaps
among replicates decreased (again, with the exception of
DI) (Fig. 3c). While this seems to be the trend for almost
all TAD caller/parameter value combinations, the effect
of correction in variance is more profound in certain
cases (e.g., hicintra-max) than others. It is also worth
mentioning that increased size of the insulation window
(in the case of Crane), the resolution parameter γ
(Armatus) or the distance d (hicinter, hicintra-max,
hicratio) may result in certain cases in increased bound-
ary overlap (e.g., Armatus), but this is not generalizable
(e.g., hicintra-max). Interestingly, increased TAD bound-
ary overlap does not necessarily mean increased
consistency in the number of predicted TADs across
sample types, as would be expected since TADs are
largely invariant across cell types [5]. For example, the
TAD calling algorithm which is based on insulation
score (Crane), predicted similar TAD overlaps and
similar TAD numbers for different insulation windows
(ranging from 0.5 Mb to 2 Mb), whereas Armatus per-
formed well in terms of TAD boundary reproducibility
(Fig. 3a) but the corresponding predicted TAD numbers
varied considerably (Fig. 3d). This may be partly due to
the nature of the Armatus algorithm, as it has been built
to reveal multiple levels of chromatin organization
(TADs, sub-TADs etc.). We conclude that while iterative
correction improves the reproducibility of TAD bound-
ary detection across replicates, the number of predicted
TADs should be also taken into account when selecting
TAD calling method for downstream analysis. The
method of choice should be the one that is robust in
terms of both reproducibility and number of predicted
TADs.

Increased sequencing depth improves the reproducibility
of TAD boundaries
After selecting the parameter setting that optimized
TAD boundary overlap between biological replicates
of the same sample per TAD caller, we also investi-
gated the effect of sequencing depth on the reprodu-
cibility of TAD boundary detection. Since some of the
input samples were limited to only 40 million usable
intra-chromosomal Hi-C read pairs, we resampled 10
million, 20 million and 40 million read pairs from
each sample and evaluated the effect of increasing
sequencing depth on TAD boundary reproducibility.
The results are depicted in Fig. 4a. We noticed that
increased sequencing depth resulted in increased TAD
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boundary overlap, regardless of the TAD calling algo-
rithm used (Fig. 4a, c). As far as the TAD numbers
are concerned, increased sequencing depth decreased
TAD number variability for certain callers (e.g., hicra-
tio) but not in all cases (e.g., Armatus) (Fig. 4b). In
many cases, increased sequencing depth, decreased
the variance of TAD boundary overlap among repli-
cates (Fig. 4c). In summary, based on this benchmark,
we recommend that Hi-C samples should be suffi-
ciently sequenced as sequencing depth seems to affect
TAD calling reproducibility.

Conclusions
Recently, several computational tools and pipelines have
been developed for Hi-C analysis. Some focus on matrix
correction, others on detection of specific chromatin
interactions and their differences across conditions and
others on visualization of these interactions. However,
very few of these tools offer a complete Hi-C analysis
(e.g., HiC-Pro), addressing tasks which range from align-
ment to interaction annotation. HiC-bench is a compre-
hensive Hi-C analysis pipeline with the ability to process
many samples in parallel, record and visualize the results

Fig. 4 Comparison of topological domain calling methods for different preprocessing method and sequencing depth. TAD calling methods were
assessed in terms of boundary overlap between replicates (a), number of identified topological domains (b) and boundary overlap across replicates
upon increasing sequencing depth (c) for different matrix preprocessing (filtered and IC corrected) and different sequencing depths (10 million, 20
million and 40 million reads). For TAD calling, only the optimal caller/parameter value pairs are shown (defined as the ones achieving the maximum
boundary overlap for IC and 40 million reads). The boxplot and line colors correspond to the different TAD callers
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in each task, thus facilitating troubleshooting and further
analyses. It integrates both existing tools but also new
tools that we developed to perform certain Hi-C analysis
tasks. In addition, HiC-bench focuses on parameter
exploration, reproducibility and extensibility. All param-
eter settings used in each pipeline task are automatically
recorded, while future tools can be easily added using
the supplied wrapper template. More importantly, HiC-
bench is the only Hi-C pipeline so far that allows
extensive parameter exploration, thus facilitating direct
comparison of the results obtained by different tools,
methods and parameters. This unique feature helps
users test the robustness of the analysis, optimize the
parameter settings and eventually obtain reliable and
biologically meaningful results. To demonstrate the
usefulness of HiC-bench, we performed a comprehen-
sive benchmark of popular and newly-introduced
TAD callers, varying the matrix preprocessing (filtered
or corrected matrices with IC method), the sequen-
cing depth, and the value of the main parameter of
each TAD caller, which is usually the window used for
the calculation of directionality index or insulation score.
We found that the matrix correction has a positive effect
on the boundary overlap between replicates and that
increased sequencing depth leads to higher boundary
overlap.
In conclusion, HiC-bench is an easy-to-use frame-

work for systematic, comprehensive, integrative and
reproducible analysis of Hi-C datasets. We expect that
use of our platform will facilitate current analyses and
enable scientists to further develop and test interes-
ting hypotheses in the field of chromatin organization
and epigenetics.

Additional files

Additional file 1: HiC-Bench Manual. (PDF 3853 kb)

Additional file 2: Table S1. HiC-bench task implementation. The table
summarizes how the pipeline tasks are implemented, which are the
requirements for their execution and how they are handled by the
pipeline-master-explorer script. The first column lists all the tasks
performed by the pipeline ranging from alignment to annotation. The
second column lists the input directory required for each task while the
third one lists the parameter files. Certain tasks depend on the reference
genome (human or mouse), thus the genome assembly acts as split
variable (column 4). In some tasks, replicates can be grouped using the
group variable (column 5). Pairwise comparisons between replicates or
samples are also allowed using tuples (column 6). The last column lists
the full pipeline-master-explorer command for each pipeline task.
(XLSX 10 kb)

Additional file 3: Table S2. HiC-bench input-output objects. The table
summarizes the inputs and outputs of the TAD-calling task using three
different methods with parameter values stored in the params files
(column 2). The first column describes the tree structure of the input
directories that are essentially the different Hi-C matrices for each sample,
before (filtered) and after matrix correction using different methods (e.g.,
IC). The second column lists all the different parameter scripts and the

third column corresponds to the tree structure of the generated output
objects. (XLSX 10 kb)

Additional file 4: Figure S1. Hi-C reads filtering statistics. Number (A)
and percentage (B) of the various read categories identified during filtering
for all datasets used in the study. Mappable reads were over 95% in all
samples. Duplicate (ds-duplicate-intra and ds-duplicate-inter; red and pink
respectively), non-uniquely mappable (multihit; light blue), single-end
mappable (single-sided; dark blue) and unmapped reads (unmapped; dark
purple) were discarded. Self-ligation products (ds-same-fragment; orange)
and reads mapping too far (ds-too-far; light purple) from restriction sites or
too close to one another (ds-too-close; orange) were also discarded. Only
double-sided uniquely mappable cis (ds-accepted-intra; dark green) and trans
(ds-accepted-inter; light green) read pairs were used for downstream analysis.
The x axis represents either the raw read number (A) or the percentage of
reads (B) falling within each of the categories described in the legend.
The y axis represents the samples. (PDF 1380 kb)

Additional file 5: Figure S2. Matrix statistics. Normalized Hi-C counts
are presented as a function of the distance between the interacting
partners for all samples and correction methods. The Hi-C samples
analyzed were GM12878 (light blue), hESCs (H1) (blue), mesenchymal cells
(light green), mesendoderm (dark green), neural progenitors (pink),
trophectoderm (red), IMR90 (light and dark orange), K562 (light purple),
KBM7 (dark purple) and NHEK (yellow). The matrices were either unprocessed
(filtered) (top) or corrected using IC (bottom). The y axis represents the
normalized count of Hi-C interactions and the x axis the distance between
the interacting partners in kilobases. (PDF 2050 kb)

Additional file 6: Figure S3. Pairwise Pearson correlation of Hi-C
matrices. Correlograms summarizing all pairwise Pearson correlations for
all Hi-C samples used in this study: raw (filtered) matrices (left panel) and
matrices after iterative correction (right panel). Dark red indicates strong
positive correlation and dark blue strong negative. The resolution of the
matrices is 40 kb. (PDF 1405 kb)

Additional file 7: Figure S4. Boundary score calculation. Two adjacent
topological domains (red triangles) are depicted. The left domain (L) is
separated from the right domain (R) by a boundary (black circle). The
areas of more-frequent intra-domain interactions are in red. The area of
less-frequent cross-domain (or inter-domain) interactions is X. We also
introduce parameter d which is the maximum distance from the diagonal
to be considered for the calculation of boundary scores (default value:
d = 2 Mb). (PDF 1546 kb)

Additional file 8: Figure S5. Principal component analysis of boundary
scores. Boundary scores were calculated using ratio score, for all samples
either before (filtered) (left panel) or after iterative correction (IC) (right
panel). (PDF 882 kb)

Additional file 9: Figure S6. Pairwise overlaps of TAD boundaries. The
pairwise overlaps of TAD boundaries are shown for all samples of this
study, after calling boundaries using hicratio (all reads, d = 0500). Before
TAD calling, the Hi-C matrices were either unprocessed (filtered) or
corrected using iterative correction (IC) (resolution = 40 kb). (PDF 3847 kb)

Additional file 10: Figure S7. Visualization of TADs and certain areas of
interest. HiC-bench integrates HiCPlotter [23] and it offers the ability to
easily prepare publication-quality figures. We present the area surrounding
NANOG, a gene of particular importance for the maintenance of pluripotency.
The Hi-C matrix corresponding to the chr12:3940389–11948655 genomic
region is presented for H1 cells, before and after matrix correction. The matrix
is also rotated 45° to facilitate TAD visualization. Various boundary scores
(intra-max, DI, ratio) are shown as individual tracks along with CTCF binding.
The location of NANOG is presented as a blue line. (PDF 1307 kb)

Additional file 11: Figure S8. Enrichment of chromatin interactions
in human fibroblasts (IMR90) and embryonic stem cells (H1). The
enrichment of certain chromatin marks and CTCF in the top 50,000
chromatin interactions in the IMR90 and H1 samples is shown. Deep blue
and larger circle size indicate higher enrichment. (PDF 921 kb)
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DI: Directionality index; IC or ICE: Iterative correction; PCA: Principal
component analysis; TAD: Topological domain or topologically associating
domain
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