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Integratome analysis of adipose tissues reveals abnormal
epigenetic regulation of adipogenesis, inflammation, and
insulin signaling in obese individuals with type 2 diabetes

Dear Editor,

Obesity and type 2 diabetes (T2D) often but, not invariably,
coexist. We examined the transcriptomes and methylomes
of subcutaneous adipose (SAT) and visceral adipose
tissues (VAT) samples from 25 obese individuals (36%
men; mean+standard deviation (SD) body mass index:
391 + 4.6 kg/mz; age: 38.6 + 11.8 years; 12 had T2D;
Table S1) with or without T2D during metabolic surgery.
By integrating these datasets with public tissue-specific
regulatory networks, we revealed perturbations in adipo-
genesis, inflammatory, and insulin signaling pathways in
obese individuals with T2D with validation using multiple
external databases.

The whole transcriptome profiles identified only a few
differentially expressed genes (DEGs) in T2D, particularly
in T2D-SAT (Figure 1A; Table S4). This finding accorded
with previous reports showing only modest differences in
gene expression between T2D and control subjects’. Other
studies also identified DEGs implicated in glucose and
insulin metabolism mainly in VAT compared with SAT?.
These low levels of expression emphasize the need to use
an integrated approach to identify these complex gene
networks. Despite these differences in DEG in SAT and
VAT, enrichment analysis indicated dysregulation of cell
metabolism and inflammation in both SAT and VAT in
obese individuals with T2D (Figure 1B,C).

Global methylation levels, as determined by their rel-
ative distances to CpG islands, transcription start sites
(TSSs), histone marks, enhancer regions, and other anno-
tations, were similar between VAT and SAT in both T2D
and control individuals (Figure S2A-E). However, tran-
scription factor binding sites (TFBSs) in T2D-VAT showed
adifferential distribution of methylation compared to T2D-
SAT (Figure 2A,B). Additionally, 19 and 31 differentially
methylated regions (DMRs) were detected in T2D-SAT and
T2D-VAT, respectively (Figure 2C; Table S5). We discovered
a novel hypomethylated region in the promoter of LCLATI

in both T2D-VAT and T2D-SAT samples (Figure 2D).
According to ENCODE data and ChromHMM analysis,
this hypomethylated region could facilitate transcription
factor (TF) binding and activate gene expression. We also
found hypermethylation spanning the 5UTR of HOXA3
specific to T2D-SAT, accompanied by a depletion of its cod-
ing mRNA levels in individuals with T2D (Figure 2E).

Simply integrating DEGs with DMRs cannot fully elu-
cidate the complex biological networks implicated in T2D
and obesity. Thus, we used tissue-specific regulatory net-
works to discover epigenetically dysregulated gene mod-
ules in adipose tissues and their associations with T2D
(Supplemental materials). We detected three modules in
T2D-SAT and five modules in T2D-VAT by integrating
transcriptomes, methylomes, and tissue-specific regula-
tory networks (Figure 3A, 3C, 3E; Figure S3A-F). There
were 19 genes common to the T2D-SAT and T2D-VAT mod-
ules, with an enriched functional annotation of transcrip-
tional regulation (Figure 3B). These findings suggested
dysregulated biological pathways shared by SAT and VAT
in obese individuals with T2D.

Among the 82 T2D-VAT module genes, some were impli-
cated in circadian rhythm, disruption of which could con-
tribute to the development of T2D?, while many others
were known genes associated with T2D. For example,
slight downregulation of TFEB might result in reduced adi-
pogenesis known to be associated with an increased risk
of T2D*.

Interestingly, we identified a HOX gene-enriched mod-
ule in T2D-SAT (Figure 3C-D, Supplemental materi-
als). The distribution and pattern of HOX genes differed
between the upper and lower body which might explain
the different prognostic significance of VAT (predominate
in the upper body) and SAT (predominate in the lower
body)°. Given the association of VAT with cardiovascular
disease and T2D risk, and the protective effects of SAT®, the
identification of HOX genes as a major linking biomarker
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FIGURE 1

Whole transcriptome profiling reveals dysregulated cell metabolism and increased inflammation in obese individuals with

T2D. (A) Number of DEGs (FDR<0.1) in the T2D versus control groups in SAT and VAT. (B) Number of upregulated genes in SAT and VAT.
Enriched KEGG pathways (FDR<O0.1) of upregulated genes in T2D in VAT. (C) Number of downregulated genes in SAT and VAT. Enriched
KEGG pathways (FDR<0.1) of downregulated genes in T2D in SAT and VAT.

provides new insights regarding the causal role of adipoge-
nesis in T2D.

In this HOX gene-enriched T2D-SAT module, we identi-
fied multiple genes with differential expression and methy-
lation, with several examples highlighted (Figure 3D).
Consistent with the previous studies,” we found downreg-
ulated trends of HOXD9 and MEOX2, and upregulation of
PRRX1. Along with APCDDI and SPII, PRRXI could inhibit
PPARy-mediated adipocyte differentiation and adipogene-
sis. On the other hand, cooperative expression of HOXD9,
MME, SPI, and TLR4 might impair insulin signaling and
secretion accompanied by obesity-induced inflammatory
responses®’. Using EpiMap'’, the rs34872471 genetic sig-
nal overlapped with the adipose tissue-specific enhancer
region nearest to the TCF7L2 promoter in T2D patients
(Figure 3C). Other genes in the module were potentially
novel T2D markers, such as ASPA, an interactor of TCF7L2,
which was hypermethylated with downregulation in T2D-
SAT. The novel T2D-SAT-specific 5UTR of HOXA3 hyper-

methylated region (Figure 2E) was related to all HOXA3-
regulated genes (Figure 3A), supporting their roles in
the epigenetic regulation in T2D. Taken together, this
HOX gene-enriched module may participate in inhibiting
PPARy-mediated adipocyte differentiation and adipogene-
sis, and impairing insulin signaling and secretion accom-
panied by obesity-induced inflammatory responses.

In another T2D-SAT-specific module (Figure 3E-F), we
identified novel T2D biomarkers. The expression levels of
ACACB, ELFI, ILIRL1, and SPI1 were confirmed by gPCR
validation in additional T2D-SAT samples (Figure S4).
ELF1, ILIRL1, NR3C1, and TFCP2 were known to reduce
adipocyte differentiation which can lead to abnormal
glucose metabolism and inflammation, while APBBIIP
and FBNI were predicted to be involved in these biological
pathways. Taken together, this module might provide a
novel epigenetic pathway regulating insulin signaling
through adipocyte differentiation and inflammatory
responses in obese patients with T2D.
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Whole methylome profiling of TFBSs and DMRs in VAT and SAT in obese individuals with T2D (A) Number of TFs that bind

to TFBSs with differential methylation (FDR<0.1). (B) Venn diagram showing the number of TFs that bind to TFBSs with similar, divergent,
or tissue-specific differential methylation in SAT and VAT. (C) Heat-map of the methylation levels of five common DMRs in SAT and VAT, 14
SAT-specific DMRs, and 24 VAT-specific DMRs. Rows and columns represent methylation probes and samples, respectively. (D) Methylation
levels and histone modifications of LCLATI. Novel hypomethylated regions in the promoter (TSS1500) region of LCLATI in SAT and VAT.
Histone modifications in the hypomethylated regions of LCLATI were determined using ENCODE data. (E) Methylation levels and
expression of HOXA3 in SAT. Novel tissue-specific hypermethylated regions in the 5UTR of HOXA3 in SAT. Boxplot showing FPKM of
HOXA3 in T2D-SAT and control-SAT. Colors represent disease groups (T2D; control).
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FIGURE 3 Tissue-specific functional epigenetic network-based analysis of SAT and VAT. (A) Overview of the three and five functional

epigenetic modules identified in SAT and VAT, respectively. The significance of the colors of the nodes and edges are described in the legend.

The 19 genes in the grey frame are the genes shared between SAT and VAT. Dashed lines represented regulatory interactions between
HOXA3-related genes and module genes in the SAT-specific network. (B) Enriched GO biological processes (FDR<0.1) of the 19 shared genes,
including transcriptional regulation-related biological processes. (C) Homeobox gene family-enriched module in SAT (Module 2). Genes in
orange represent the homeobox gene family genes. Edge widths represent the average statistic of the genes comprising the edge. The core of
the node represents the differential DNA methylation statistics. The border of the node represents the differential gene expression statistics.
Regulatory direction is not shown. (D) Literature-based interpretation of how HOX genes and their targets identified in SAT module 2 can
lead to dysfunction of adipogenesis and adipocyte differentiation, thereby activating obesity-induced inflammatory response and inhibiting
insulin signaling. Edge and node colors are explained in the legend. (E) Tissue-specific functional epigenetic module 1 in SAT. (F)
Literature-based interpretation (solid line) of genes in the tissue-specific SAT module that lead to obesity-induced inflammatory responses
and the inference (dashed line) of the module function.
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(A) Summary of the 161 module- and DMR-identified biomarkers in T2D and control SAT and VAT. DEGs represent

marginal DEGs. T2D biomarkers are those differentially expressed or methylated genes in T2D. Control biomarkers are those that interacted

with the T2D biomarkers, but no differential expression or methylation in T2D. (B) Datasets used for external validation of module genes and
DMRs in this study (i.e., comorbidity, druggability, eQTL, trans-ethnic GWAS, TFBSs, TFs, and T2Di datasets).

We identified 161 potential biomarkers in these networks
and DMRs which were independently validated in at least
one external database relevant to comorbidity, druggabil-
ity, expression quantitative trait loci (eQTL), genome-wide
association studies (GWAS), TFBSs, TFs, or the T2D inte-
gratome (T2Di) (Figure 4A-B; Table S6-S7). Of these 161
modular biomarkers enriched in multiple databases, 73.9%
were validated in at least one external dataset and 48.4%
were TFs. Amongst the biomarkers shared by both tissues,
7 were potential drug targets.

By integrating differential gene expression and methy-
lation levels in SAT and VAT collected during metabolic
surgery from obese T2D and non-T2D individuals with
tissue-specific regulatory networks, we found multiple epi-
genetic regulatory networks in both SAT and VAT associ-
ated with obesity in T2D. These findings confirmed current
knowledge regarding the pathophysiological roles of dif-
ferent adipose tissues in insulin resistance, inflammation,
and development of T2D whilst revealing novel relation-
ships not detectable by single-layered analysis.
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