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Abstract

Understanding the dynamics and mechanisms of acquired drug resistance across major classes of antibiotics and bacterial 
pathogens is of critical importance for the optimization of current anti-infective therapies and the development of novel ones. 
To systematically address this challenge, we developed a workflow combining experimental evolution in a morbidostat continu-
ous culturing device with deep genomic sequencing of population samples collected in time series. This approach was applied 
to the experimental evolution of six populations of Escherichia coli BW25113 towards acquiring resistance to triclosan (TCS), 
an antibacterial agent in various consumer products. This study revealed the rapid emergence and expansion (up to 100% in 
each culture within 4 days) of missense mutations in the fabI gene, encoding enoyl-acyl carrier protein reductase, the known 
TCS molecular target. A follow-up analysis of isolated clones showed that distinct amino acid substitutions increased the drug 
IC

90
 in a 3–16-fold range, reflecting their proximity to the TCS-binding site. In contrast to other antibiotics, efflux-upregulating 

mutations occurred only rarely and with low abundance. Mutations in several other genes were detected at an earlier stage 
of evolution. Most notably, three distinct amino acid substitutions were mapped in the C-terminal periplasmic domain of CadC 
protein, an acid stress-responsive transcriptional regulator. While these mutations do not confer robust TCS resistance, they 
appear to play a certain, yet unknown, role in adaptation to relatively low drug pressure. Overall, the observed evolutionary tra-
jectories suggest that the FabI enzyme is the sole target of TCS (at least up to the ~50 µm level), and amino acid substitutions in 
the TCS-binding site represent the main mechanism of robust TCS resistance in E. coli. This model study illustrates the potential 
utility of the established morbidostat-based approach for uncovering resistance mechanisms and target identification for novel 
drug candidates with yet unknown mechanisms of action.

DATA SUMMARY
Illumina sequencing data in FastQ format have been depos-
ited at the National Center for Biotechnology Information 
(NCBI) Sequence Read Archive [1] and can be downloaded 
from the NCBI BioProject database using accession number 
PRJNA472810 (https://www.​ncbi.​nlm.​nih.​gov/​bioproject/​
PRJNA472810). The supplementary data (text, figures and 
tables) are available on Figshare (https://​doi.​org/​10.​6084/​m9.​
figshare.​13076264). A detailed description of the morbidostat 
implementation, the scripts for NGS data processing and the 
tool for calling IS element reallocation (iJump) can be found 
in the following GitHub repositories: https://​github.​com/​

sleyn/​morbidostat_​construction, https://​github.​com/​sleyn/​
Triclosan_​EE_​paper and https://​github.​com/​sleyn/​ijump, 
respectively.

INTRODUCTION
Antibiotic resistance is a major threat to public health. 
According to US and European Centers for Disease Control 
and Prevention reports, infections by drug-resistant bacteria 
cause more than 30 000 deaths per year [2, 3]. At the same 
time, the current pace of development and regulatory 
approval of new antibiotics is too slow to curb the spread 
of acquired multidrug resistance. Thus, of 51 antibiotics 
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and 11 biologics counted as being in development by the 
World Health Organization in 2017, only 10 are expected 
to be approved within the following 5 years [4]. Knowledge 
of the dynamics and mechanisms of acquired drug resist-
ance across a range of target bacterial pathogens is one of 
the bottlenecks in the development and approval of new 
therapies. Historically, these features of new drug candidates 
have been addressed at a late stage of development, mostly 
because the traditional methodology of studying acquired 
resistance (via serial dilutions) is slow and labour-intensive 
[5]. The recent introduction of continuous culturing method-
ologies combined with highly efficient genome sequencing is 
expected to change the traditional drug discovery paradigm. 
It will enable the includision of ‘resistibility’ profiling at an 
earlier stage of testing and triaging drug candidates, on a par 
with conventional efficacy and safety testing. More efficient 
methods or experimental evolution-based drug resistance 
studies are also required to accelerate the identification of 
molecular targets of novel phenotypically selected antibacte-
rial agents with unknown mechanisms of action.

Realization of the advantages of automated (computer-
controlled) continuous culturing over manual serial dilution 
methods of experimental evolution [6] was enabled by the 
recently enhanced accessibility of 3D printing technology 
and programmable microcontrollers (such as Arduino and 
Raspberry Pi). One of the rapidly emerging custom-built 
continuous culturing devices [7–10], termed ‘morbidostat’, 
is a modification of the chemostat in which, instead of 
nutrient supply, the culture density is controlled by selec-
tive drug pressure [11, 12]. This approach enables gradual 
genetic adaptation of evolving bacterial populations to higher 
concentrations of an antibiotic and generally recapitulates the 
knowledge of resistance mechanisms from previous studies 
[11, 13, 14].

Among recently reported continuous culturing devices, 
eVOLVER [9] and omnistat [7] provide technologically 
sophisticated multi-purpose platforms supporting a broad 
range of microbial evolutionary experiments in chemostat, 

turbidostat and morbidostat modes. The key feature of 
the eVOLVER platform is the capability for highly parallel 
processing of multiple samples over a variety of individually 
controlled experimental conditions. By the addition of special-
ized circuit boards and microfluidics, it can be customized to 
implement a morbidostat evolutionary mode. The omnistat 
platform features a simpler approach to automated liquid 
handling by bundling together a number of commercially 
available laboratory instruments. Our implementation of the 
morbidostat-based workflow (Fig. 1) included the engineering 
of a simple and robust device that uses inexpensive commer-
cially available components, does not require sophisticated 

Impact Statement

The current article describes the application of a 
morbidostat-based experimental evolution workflow 
for studying the dynamics and mechanisms of acquired 
antibiotic resistance, which is critical for the develop-
ment and optimization of antimicrobial therapies. The 
established workflow enables accelerated studies of 
antimicrobial resistance via continuous culturing of 
target bacteria under automatically adjustable drug 
pressure combined with monitoring of the dynamics of 
mutation accumulation via deep sequencing of evolving 
bacterial populations in time series. We report the vali-
dation of this workflow in a model system of Escherichia 
coli evolving resistance to a common biocide triclosan 
(TCS), which revealed distinct evolutionary trajectories 
in six parallel reactors converging to a series of amino 
acid substitutions in the active site of enoyl-acyl carrier 
protein reductase FabI, the known TCS target. The prac-
tical significance of this work lies in the detailed descrip-
tion of the hardware and software components of a 
ready-to-implement workflow enabling antibiotic resist-
ance studies for novel drug candidates.

Fig. 1. The experimental evolution of antibiotic resistance workflow includes four main stages. (1) Bacterial populations are evolving 
under increasing selective drug pressure in six parallel reactors of the morbidostat, a continuous culturing device. Time series of 
samples are collected from each reactor. (2) Total genomic DNA from each sample is sequenced with high coverage to obtain 
quantitative representation of low- and high-frequency sequence variants in bacterial populations at every time point. (3) Possible 
resistance mechanisms are deduced from the dynamics of observed mutations. (4) Follow-up experiments aimed to test bioinformatic 
predictions and elucidate genotype-to-phenotype associations include verification of identified mutations and measurement of the 
extent of acquired resistance (MIC fold change) in selected representative clones.
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robotics, and allows Arduino-based programmable process 
control and data acquisition (Fig. 2). Our current morbidostat 
design supports parallel evolution in six 20 ml reactors (glass 
tubes). It has a minimal number of parts requiring low-
resolution 3D printing, and it may be seamlessly replicated 
in any research laboratory based on the detailed hardware 
and software description provided on GitHub (https://​github.​
com/​sleyn/​morbidostat_​construction).

At the end of the first stage of the workflow, a selective 
outgrowth in the morbidostat (Fig. 1), increased antibiotic 
resistance is tested experimentally in collected microbial 
population samples (one–two samples per day until maximum 
resistance is reached, typically within 3 to 8 days). At the next 
stage, total genomic DNA isolated from these samples is used 
for the preparation of non-amplified genomic libraries and 
deep sequencing (up to 1000× genomic coverage). Primary 
data processing using an assembled computational pipeline 
(see the Methods section and https://​github.​com/​sleyn/​
Triclosan_​EE_​paper) yields a list of identified mutations 
(SNVs, small indels, genomic rearrangements including 
‘jumping’ of IS elements), along with their fractional repre-
sentation (%) in each sample. Further filtration with chosen 
confidence criteria (thresholds) and downstream analysis of 
gene-by-gene distribution and dynamics of accumulation of 
mapped variants across all reactors and time points lead to 
tentative identification of genetic features associated with 
antibiotic resistance. The final stage of the workflow is aimed 
at experimental testing of inferred genotype-to-phenotype 
associations via mapping of mutations and determination of 
MIC values for selected individual clones.

Here we report the application of this workflow for the experi-
mental evolution of triclosan (TCS) resistance in a model 
system of Escherichia coli BW25113. TCS is an antimicrobial 
agent (biocide) commonly used in a variety of consumer 
products for dental care, cosmetics and soaps [15]. Extensive, 
indiscriminate use of TCS has led to its accumulation in the 
environment, in some soil samples reaching levels compa-
rable to its MIC for E. coli and other susceptible bacterial 
pathogens (e.g. Acinetobacter baumannii and Staphylococcus 
aureus) [16]. An observed spontaneous acquisition of TCS 
resistance by pathogenic bacteria not only jeopardizes the 
utility of this biocide, but it may also pave the way toward 
their cross-resistance to some clinical antibiotics [17, 18].

The mechanism of action of TCS was established via the 
isolation of resistant clones with missense mutations in the 
gene fabI [19]. This essential gene encodes NADH-dependent 
enoyl-[acyl carrier protein] reductase, which is involved in 
one of the four elongation steps in fatty acid synthesis in most 
bacteria. TCS acts as a FabI inhibitor [19, 20], forming a stable 
and catalytically inactive TCS–NAD+–FabI complex [21–23]. 
In all eukaryotes the function of enoyl-[ACP] reductase is 
performed by a non-homologous domain of a multi-domain 
fatty acid synthase, which makes FabI attractive as a highly 
selective antimicrobial drug target. In some Gram-positive 
bacteria (such as Streptococcus pneumoniae) the gene fabI 
is replaced by a non-homologous isofunctional gene fabK, 

which explains their intrinsic TCS resistance [19, 24]. In addi-
tion to some amino acid substitutions in the FabI target (most 
notably of Phe203 in ecFabI), an acquired TCS resistance 
was reported to result from overexpression of the fabI gene 
[25] and deregulation of efflux transporters [26]. However, 
according to some reports, TCS may also act on additional yet 
unknown targets at higher concentrations of the drug [27, 28].

Therefore, one goal of our study was to assess all possible 
mechanisms of acquired TCS resistance via experimental 
evolution across a broad range of TCS concentrations, from 
sub-MIC (<1 µm) to the highest concentration achievable in 
aqueous media (50 µm). The observed convergent evolution 
trajectories unambiguously pointed to the FabI enzyme being 
the sole protein target of TCS. We have identified a broad 
range of resistance-conferring amino acid substitutions in 
FabI (including all of the previously reported mutations) as 
the only tractable mechanism of robust TCS resistance in  
E. coli. All identified substitutions are localized in the vicinity 
of the FabI–TCS binding site and confer different levels of 
acquired resistance, ranging from ~3 to 16× MIC. This model 
study also points to the potential utility of the established 
morbidostat-based approach for uncovering resistance 
mechanisms and identifying targets for novel drug candidates 
with as yet unknown mechanisms of action.

METHODS
Morbidostat design (Fig. 2)
We designed and assembled the first version of the morbidostat 
device used in this study based on the principles described 
by Toprak et al. [12]. A detailed description of a more 
advanced current version of hardware and accompanying 
software is available from GitHub (https://​github.​com/​sleyn/​
morbidostat_​construction). Briefly, the main components of 
the device (Fig. 2c) include: (i) 6×20 ml bioreactors – glass 
tubes with magnetic stir bars and cap assemblies containing 
air-tight needle ports for feeding dilution media, constant air 
flow, and displacement of excess liquid after dilution; (ii) glass 
tubes fixed by silicone rings in 3D-printed plastic housings 
containing a laser and a sensor diode for measuring turbidity; 
(iii) a mini air-pump, which provides constant aeration for 
growing cultures (through sterile filters) and enables liquid 
displacement from reactors (over a fixed level corresponding 
to a total volume of 20 ml); (iv) a thermoregulated heater and 
mini-fan, which control the temperature inside the morbi-
dostat enclosure box; (v) two 2 l feed bottles controlled by 2 
peristaltic pumps connected by sterile tubing to an assembly 
of 12 check valves (2 valves per reactor, each connected to 1 of 
the 2 pumps) providing the flow of media (with and without 
antibiotic); (vi) a 6-position magnetic stir plate, which enables 
mixing (upon dilution) and agitation. An Arduino micro-
controller is programmed to control the main parameters of 
the run: (i) temperature; (ii) time between dilutions (cycle 
time, CT); (iii) selection of the volume delivered by pump 
1 (medium without drug) or pump 2 (medium with drug) 
for each culture dilution, depending on the culture turbidity 
and growth rate in each tube. A user interface for parameter 
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Fig. 2. Morbidostat approach implementation. (a) Morbidostat control logic: cultures with OD <lower threshold (LT) are diluted with cycle 
time (CT)=60 min with the ‘medium without drug’ (pump 1). After growing to OD >LT, CT is decreased to 15 min. At OD > drug threshold 
(DT) the ‘medium with drug’ (pump 2) is added if the OD at the end of the current cycle is greater than at the end of the previous cycle. 
Otherwise the culture is diluted with medium without drug (pump 1). (b) General scheme of morbidostat. Two bottles: one containing 
medium without drug and the other containing medium with drug connected to two peristaltic pumps (pumps 1 and 2, respectively). 
Each pump is connected with six reactors. A valve on each tube controls media flow to individual reactors. Each reactor has three 
ports: (i) input for media and air, (ii) sampling port and (iii) waste line. The OD in each reactor is monitored by laser and photodiode. (c) 
Morbidostat device: side view with open box.
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manipulation and real-time status display (including growth 
curves) is run on a PC using MegunoLink software (https://
www.​megunolink.​com/).

The major differences between our implementation of morbi-
dostat hardware and the originally published design [12] 
include (Fig. 2b):

(i)	 using two pumps and a system of check valves to control 
the media flow instead of an array of multiple individual 
pumps, which allowed us to significantly simplify and 
increase robustness of the fluidics component;

(ii)	 a permanent sterile-filtered air flow (disrupted only 
for short periods of time during media addition and 
mixing), which allows us to maintain constant volume 
(20 ml) in the reactor and create an air gap between 
media and culture; the latter allows us to avoid cross-
contamination between reactors and input lines.

The encoded morbidostat logic (Fig. 2a) includes the following 
major steps:

(1)	 an optical density at the end of the current cycle, before 
dilution (OD1), is compared with two parameters: pre-
defined drug threshold (DT) and optical density reached 
during the previous cycle (OD0);

(2)	 if OD1 ≥DT and (OD1−OD0) ≥0, the dilution is made by 
drug-containing medium (pump 2);

(3)	 otherwise drug-free medium (pump 1) is added.

An additional step was introduced on top of the original 
morbidostat logic [12]. It operates with an additional prede-
fined parameter, the lower threshold (LT) (see Fig.  2a), 
instructing the system to skip periodic dilutions (typically 
every 10–20 min for rapidly growing cultures such as E. coli) if 
OD1 <LT and instead perform hourly dilutions with drug-free 
medium. In the beginning of the run this feature allows all six 
cultures to reach the same minimal density (OD1=LT) prior to 
entering the active dilution mode. During the run, this ‘safe 
mode’ prevents a complete wash-out of the culture after an 
excessive dose of drug.

Parental strain
We used the E. coli BW25113 ΔuxaC::kan strain (JW3063) 
from the KEIO collection [29] as a starting point for the evolu-
tion of TCS resistance. The choice of this strain (instead of the 
wild-type BW25113) with a transposon-replaced nonessential 
gene (hexuronate transporter UxaC) was dictated by two 
considerations: (i) to take advantage of transposon-encoded 
kanamycin (Kan) resistance to guarantee sterility, and (ii) to 
leverage the KEIO collection of gene deletion mutants with 
the same genetic background for follow-up validation experi-
ments. A total genomic DNA extract from the unevolved 
culture used to inoculate all six reactors of the morbidostat 
on day 1 was sequenced with mean coverage of 530×.

Evolutionary runs (Fig. 3)
On the first of the four consecutive evolutionary runs (day 
1), growth in all six reactors of the morbidostat was started 
using the same inoculum of the chosen parental strain  

[E. coli BW25113 ΔuxaC::kan strain (JW3063)]. This inoculum 
was obtained by propagation of the primary glycerol stock 
from the KEIO collection [29] in Luria-Bertani (LB) medium 
with 50 µg ml−1 Kan and 2 % DMSO. The overnight culture was 
diluted 100-fold, grown to OD600 ~0.2 and diluted 10-fold with 
the same medium, which was also used as drug-free (pump 
1) medium for culture dilutions in the morbidostat over the 
course of the entire study. A drug-feeding (pump 2) medium 
had the same composition with 10 µm TCS (during day 1) or 
50 µm TCS (days 2–4). In the following consecutive runs (days 
2–4), glycerol stocks made from samples collected at the end of 
the previous run were used to inoculate respective reactors. A 
total of four one-day (continuous 24 h) runs were performed. 
After each run, six culture samples were collected; reactors and 
all feedlines were sterilized prior to starting the next run. The 
main parameters used in each run were: dilution volume V=2 ml 
(1/10 of total volume); LT=0.15; DT=0.4; CT=15 min. In addi-
tion to preparing glycerol stocks that were used for inoculation, 
MIC analysis, and later isolation of individual clones, a portion 
of each collected sample was used to prepare and freeze cell 
pellets for genomic DNA extraction.

Whole-genome sequencing (WGS)
Genomic DNA from the starting culture and 24 samples 
of evolving bacterial populations in time series (6 reactors 
×4 days) was extracted from cell pellets with the Sigma 
Aldrich GenElute Bacterial Genomic DNA kit (NA2110). 
Sequencing libraries were prepared with the Illumina 
TruSeq DNA PCR-Free High Throughput Library Prep kit 
(#20015963) according to the manufacturer’s instructions. 
DNA was sequenced with the Illumina NextSeq 500 using 
2×150 reads to reach up to 500–1000-fold genomic coverage 
in each sample (see Table S1, available in the online version of 
this article, for data quality and statistics). Reads were cleaned 
from adapter sequences, poly-G sequences and were trimmed 
by Phred base quality score with the Trimmomatic [30] (with 
‘SLIDINGWINDOW : 4 : 15 HEADCROP : 10 CROP : 145 
MINLEN : 65′ parameters). Cleaned reads were mapped onto 
an E. coli BW25113 genome downloaded from the PATRIC 
database (genome ID 679895.18) [31] with the BWA aligner 
[32] (using the ‘-M’ parameter). Alignments were corrected 
with lofreq viterbi [33] (using ‘--keepflags’ parameter). 
Quality scores were recalibrated with GATK BaseRecalibrator 
[34]. Sequencing data in fastq format have been deposited at 
the National Center for Biotechnology Information (NCBI) 
Sequence Read Archive (SRA), BioProject PRJNA472810.

Variant calling and downstream bioinformatics 
analysis
Variant calling was performed using lofreq [33] (with the 
‘--call-indels’ parameter). The scripts are available in the 
https://​github.​com/​sleyn/​Triclosan_​EE_​paper GitHub folder. 
Variants in repeat regions were filtered out. The repeat regions 
were identified via self-alignment of the E. coli BW25113 
genome using NUCmer [35] according to the ‘Identifying 
repeats’ section of the MUMmer manual (http://​mummer.​
sourceforge.​net/​manual/) and filtered out. To eliminate 
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sequencing biases manifest in unusual enrichment of low-
frequency A→C and T→G variants, we applied additional filters 
to the lofreq output (see Methods S1). Structural variants were 
further analysed using the Breseq pipeline [36] in ‘population’ 
mode. To assess IS element rearrangements in populations, 
we have developed a new iJump tool (a description and the 
code are available on https://​github.​com/​sleyn/​ijump) [37]. 
The list of IS elements for tracking their rearrangements was 
created by using blastn of the reference genome against the 
ISfinder database [38]. The IS element blast hits were filtered 
to keep ones with e-values <10−30 and the highest bitscore 
among overlapping hits (see Table S2). We kept iJump inser-
tion predictions that reached at least 1 % frequency in any 
reactor after summarizing frequencies estimated for all copies 
of IS elements. iJump predictions were inspected manually in 
BAM alignments with samtools [39] and Tablet [40]. To assess 
evolutionary dynamics, Muller plots were constructed for a 
subset of predominant mutations (selected from the complete 
list of observed confident structural variants provided in Table 
S3) and their combinations were tentatively deduced from 
synchronous patterns of variant frequencies. The ‘MullerPlot’ 
R package [41] was used for plot visualization. Initial plots 

were further adjusted based on the analysis of mutations in 
isolated individual clones.

Selection and characterization of individual clones
We used LB agar plates with a range of TCS concentrations 
(from 0 to 1.25 µm) to perform colony-forming unit (c.f.u.) 
analysis of 24 collected samples (6 reactors × 4 time points) 
of evolving populations in comparison with the unevolved 
starting culture of the E. coli BW25113 ΔuxaC::kan strain 
(see Fig. S2). From this initial screening, a total of 288 clones 
were selected for the initial assessment of MIC values by a 
microplate growth curve method using endpoint growth/
no-growth measurements at 12 and 24 h (see below) (Table 
S6). Based on the diversity of MIC values and the representa-
tion of distinct sequence variants across all reactors and time 
points, 49 clones were ultimately selected for mapping of 
candidate mutations. This was achieved using PCR ampli-
fication and Sanger sequencing of selected regions in the  
E. coli genome (covering genes fabI, cadC, fimE, yncD, motB, 
rpoA) that contained the most prominent mutations. The 
obtained PCR products were sequenced by Eton Bioscience, 

Fig. 3. Experimental evolution of TCS resistance. (a) Six parallel reactors were inoculated from a single stock of E. coli BW25113 
ΔuxaC::kan strain from he KEIO collection [29] and cultured in the morbidostat at 37 °C in four 24 h daily cycles (a–d). By the end of each 
daily cycle, the cultures were collected and split between cell pellets (for DNA extraction) and glycerol stocks used for inoculation of 
the next cycle. IC

90
 was measured in collected samples of evolving bacterial populations to confirm the evolution of TCS resistance. (b) 

Total genomic DNA was purified from 25 samples [unevolved inoculum + (6 reactors × 4 daily cycles)] and used for Illumina sequencing. 
After primary data processing and variant calling, a total of 60 variants were identified and analysed for evolutionary dynamics and 
mechanistic implications. The mutations in enoyl‐acyl carrier protein reductase fabI are shown as codons with mutated nucleotide and 
amino acid mutations. (c) For a set of 67 (49+18) isolated clones, 20 distinct variants (single, double and triple mutants) were mapped by 
PCR amplification/Sanger sequencing of selected loci. E. coli BW25113 (KEIO collection parent strain), E. coli BW25113 ΔuxaC::kan (parent 
strain for evolution runs) and 6 KEIO collection isolates (ΔcadC::kan,ΔcadA::kan,ΔmotB::kan,ΔyncD::kan,ΔlysP::kan,ΔcadB::kan) were added 
and IC

90
 values for TCS were determined using the growth curve method.

https://github.com/sleyn/ijump
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Inc. (https://www.​etonbio.​com/). Insertions of IS elements 
in the yifE gene and the flhD–uspC intergenic region were 
tested by comparing the size of the PCR products from addi-
tionally selected clones with the wild-type PCR product. 
The 18 clones for IS element analysis were selected sepa-
rately from previously described samples; these clones were 
sourced from reactor 3 at 24 h (n=8) and reactor 5 at 48 h 
(n=10).

MIC determination (IC50 and IC90)
The acquired TCS resistance of selected clones was measured 
using a serial dilution method. Clones were grown on LB/Kan 
(50 μg ml−1) agar plates. Colonies were resuspended in 1 ml 
of MHB/Kan solution and 5–10 µl of suspension was then 
incubated in 1 ml of MHB/Kan and 2 % DMSO in 96-well 
plates with a range of increasing TCS concentrations. For 
the lower range (closer to the IC90 of the unevolved parental 
strain=0.65 µm) the final concentrations of TCS were: 0, 
0.3125, 0.625, 1.25, 2.5, 5, 10 and 20 µm. For 22 h, the OD of 
each sample at each concentration was measured at 600 nm 
wavelength by a BioTek ELx808 plate reader at 37 °C. For each 
well, the area under the growth curve (AUC) was calculated 
using the ‘growthcurver’ R package [42]. The IC90 values were 
calculated from the AUC–TCS concentration data (in inde-
pendently grown duplicates) using the ‘drc’ R package and 
a curve-fitting procedure [43]. We used the LL4 model for 
curve-fitting. The same method was used to estimate changes 
in the apparent values of MIC in evolving populations (see 
Fig. S1), except that diluted glycerol stocks of collected 
samples, instead of individual colonies, were used to inoculate 
the microtitre plates.

RESULTS
Populational dynamics of experimental evolution in 
the morbidostat
Pre-existing mutations in the unevolved population
Of the 10 pre-existing variants (listed in Table S4) revealed by 
comparison with the published genomic sequence of E. coli 
BW25113 (RefSeq assembly GCF_000750555.1), only 2 muta-
tions affected the whole population (~100 % frequency): the 
G470S missense variant in the nnr gene encoding bifunctional 
NAD(P)H-hydrate repair enzyme and the disruption of lrhA 
gene (encoding a transcriptional regulator) mediated by IS2 
mobile element.

Among other variants represented in the initial population 
(within the 1–20% frequency range), two variants displayed 
interesting dynamics during the course of experimental 
evolution (Fig. 4). First, a L65Q missense mutation in gene 
fimE encoding regulatory recombinase of the type I fimbriae 
formation expanded from 20 up to ~50 % of populations 
during day 1 in all six reactors. This expansion was followed 
by elimination of the FimE:L65Q variant at a later stage in all 
reactors except R4, where it remained at the level of ~10 %, 
and R5, where the main resistance-driving variant FabI:A21T 
emerged on FimE:L65Q background and extended to cover 
the entire bacterial population. Notably, the population 
representation of the FimE:L65Q variant showed good 
correlation with the frequency of the ON vs OFF position 
of the fim switch (Pearson correlation coefficient r=0.92, see 
Fig. S3). This observation suggests that FimE:L65Q likely has 
a lower recombinase activity, which controls the regulation 
of type I fimbriae expression via on-to-off recombination of 
the fim switch region [44]. This conjecture is consistent with 

Fig. 4. Muller plots of E. coli evolution under triclosan stress in six reactors. Colours indicate various phenotypes. The labels on plot 
indicate emerged mutations. If a label begins with ‘+’, then a mutation is emerging, with the other mutation in the background.

https://www.etonbio.com/
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the predicted localization of the L65 residue near the active 
site in a FimE 3D model (Fig. S4). Second, a low-frequency 
(~1 %) disruption of the yifE (maoP) gene by the IS2 mobile 
element also expanded up to 31 and 48 % of populations 
during day 1 in two out of six reactors. The remaining low-
medium frequency pre-existing variants quickly disappeared 
from populations by day 2–3 in all or most of the reactors, 
along with the emergence and expansion of TCS-resistant 
FabI mutants.

Dynamics of TCS resistance and mutations in evolving 
bacterial populations
The dynamics and extent of TCS resistance acquired over the 
course of experimental evolution (days 1–4) were estimated 
using two approaches. First, the apparent ‘population-wide’ 
IC90 was assessed using a standard growth curve method 
without isolation of individual clones. The estimated IC90 
showed a general trend, increasing from 2- to 4-fold in days 
1–2 up to 10–20-fold by day 4 (Figs 3 and S1). Second, we 
performed c.f.u. analysis on agar plates over a range of TCS 
concentrations. This analysis revealed a gradual increase in 
the frequency of clones growing at TCS concentrations above 
the MIC of the unevolved strain (Fig. S2). Thus, in most reac-
tors, between days 2 and 4, the extent of populational resist-
ance increased from 12–15 % of clones growing at the highest 
TCS concentration, corresponding to 1× MIC, up to 40–70 % 
growing at 4–8× MIC. Up to 300 clones representing different 
time points and extents of evolved TCS resistance across all 6 
reactors were picked for further analysis.

Following verification of gradual acquisition of drug resist-
ance, total genomic DNA from all 24 collected populational 
samples was sequenced with a mean coverage of ~1000× (sd 
~300×) (see Table S1). Upon primary data analysis, variant 
calling and filtration, we identified 60 distinct sequence 
variants that appeared in at least 1 reactor (see Table S3). 
Among them, were 36 missense and 7 synonymous muta-
tions, 2 frameshifts, and 3 intergenic region mutations and 
small indels. In addition, 12 IS element insertion events were 
mapped using a newly developed iJump programme.

A tentative reconstruction of the dynamics of the appearance 
and disappearance of the main sequence variants created 
from deconvolution of populational sequencing data (Table 
S3), illustrated here by Muller plots (Fig. 4), revealed some 
notable trends. At an early stage of experimental evolution 
(days 1–2, up to 48 h), we only see a limited accumulation 
of new mutations. As already mentioned, the predominant 
adaptation processes included expansion within day 1 of the 
two pre-existing variants, FimE:L65Q (in all reactors) and 
yifE:IS2 (in reactors 3 and 5). While in most cases, these vari-
ants were outcompeted and eliminated from populations by 
day 3, in one reactor (R5), the FimE:L65Q variant expanded 
to 100 % and was sustained over the entire course of evolution 
due to the emergence of additional FabI mutations on the 
FimE:L65Q background.

Several low-frequency missense mutations (1–7 %) in genes 
cadC, lysP and motB that appeared within day 1 in at least one 

reactor (up to four reactors in the case of the CadC:M322T 
variant) either disappear by day 2 or combine with one of the 
emerging FabI mutations and expand at a later stage. In most 
reactors at an early stage (days 1–2), FabI mutations do not 
emerge at all (as in R1 and R5) or accumulate at a relatively 
low level (≤30 %, as in R2, R3 and R4). However, in R6, a 
FabI:F203L variant reaches ~80 % of population at day 2 as 
a triple mutant combined with missense mutations in CadC 
and YncD (see Fig. 4, Table S3). The observed faster accumu-
lation of FabI in R6 is consistent with more rapid acquisition 
of robust TCS resistance at an earlier stage (day 2) of evolution 
(see Figs S1 and S2). The initial tentative assignment of double 
(and some triple) mutants that become predominant at a later 
stage (starting day 3) in most reactors (except R1), was based 
on parsimonious analysis of parallel trends in the frequency of 
mutations (from Table S3). However, most of the assignments 
shown in Fig. 4 were later verified by sequencing of selected 
individual clones (see Table 1).

Importantly, the dynamics of the appearance and expansion 
of double mutants allow us to confidently reconstruct some 
of the evolutionary trajectories. These dynamics also permit 
us to distinguish mutations that could only have emerged in 
the course of evolution, as opposed to those resulting from 
selective propagation of pre-existing micro-SNPs. Thus, in 
addition to the example of R6 outlined above, another muta-
tion, FabI:A21T, emerged in R4 at day 2 in the background of 
a CadC:M322T variant (initially detected in day 1 without any 
FabI mutations). Starting at day 2, both mutations expanded 
in parallel from ~10 % ion day 2 up to >50 % on day 4 (see 
Fig. 4, Table S3). The inferred co-occurrence of both muta-
tions in one clone was later verified directly (Table 1).]

Nevertheless, the most important and obvious trend is the 
evolution of robust TCS resistance via a range of alternative 
amino acid substitutions in the known TCS target, the enoyl-
[ACP]-reductase FabI target, as a single general mechanism. 
Despite different observed dynamics and a diverse array of 
specific mutations and combinations thereof, 97–99 % of 
bacterial populations in all reactors at day 4 contained at 
least one FabI variant (most commonly F203L or F203C). 
The emergence of a FabI:Q40L variant in the background of 
the dominant FabI:F203L mutant on day 4 in R3 was inferred 
from population sequencing data (Fig. 4), but the respective 
clone was not isolated due to low frequency (~6 %).

Mechanistically relevant variants
Overall, we identified 12 missense variants in 8 positions in the 
gene fabI that are distinct at a nucleotide level, resulting in 10 
amino acid substitutions. All of the respective amino acid resi-
dues are located in the vicinity of the TCS-binding site in the 
known 3D structure of the FabI-NADH-TCS complex (Fig. 5) 
[23]. Five out of 12 variants are substitutions at FabI:F203 
(2 versions of F203L; F203C; F203V; and F203S). Notably, 
these variants are predominant at day 4 in nearly all reactors 
except R5, which is dominated by FabI:A21T. However, the 
A21T mutation of FabI is the second most frequent among all 
FabI variants and only reaches 99 % in the reactor lacking any 
FabI:F203 variants (R5). This observation is consistent with a 
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superior intrinsic resistance/fitness of FabI:F203 variants. Of 
note, a double mutant containing a RpoA:L289F variant in 
the FabI:A21T background emerges and expands up to ~1/3 
of the population in R5 at day 4 (Fig. 4). This variant was not 

characterized at the clonal level, but since no other mutations 
in RpoA (alpha subunit of DNA-directed RNA polymerase) 
or any other genes involved in DNA/RNA metabolism were 
detected, its impact on TCS resistance/fitness appears unlikely.

Table 1. IC
90

 and 95% confidence Interval (CI) values for clones isolated in this study (bold) and selected KO strains from the KEIO collection (gene ID in 
parentheses). The variants are highlighted by distinct positions of FabI mutations and sorted in ascending order by IC

90
 values. The colour in the second 

column shows the IC
90

 gradient from low (green) to high (red)

Evolved variants and KO strains IC90 (μm) CI Fold change

I. Evolved FabI variants

FabI:T194S+CadC:M322T 1.99 1.79–2.18 3

FabI:T194S 2.23 1.74–2.72 3

FabI:I192F 3.52 3.25–3.78 5

FabI:A21T+CadC:M322T 3.56 3.36–3.77 5

FabI:A21T+FimE:L65Q 4.1 3.70–4.51 6

FabI:A21T 4.12 3.76–4.48 6

FabI:I192F+CadC:A220T 4.52 4.31–4.74 7

FabI:F203L 4.85 4.48–5.22 7

FabI:G93S 5.63 5.23–6.03 8

FabI:F203V+CadC:D506E+MotB:L192F 6.17 5.63–6.70 9

FabI:F203L+CadC:M322T+YncD:N319Y 6.72 6.23–7.21 10

FabI:F203C 7.37 6.84–7.90 11

FabI:M159T+FimE:L65Q 8.65 7.83–9.48 13

FabI:F203V 9.48 8.58–10.39 14

FabI:F203S 10.65 9.96–11.35 16

II. Other evolved variants

yifE:IS2* 0.63 0.58–0.69 0.9

us_flhD<>us_uspC:IS5† 0.70 0.62–0.77 1.1

III. Unevolved parental strain

uxaC-KO (JW3063)‡ 0.65 0.62–0.67

uxaC-KO (JW3063) +FimE:L65Q‡ 0.7 0.63–0.78

WT 0.85 0.75–0.96

IV. KO strains from KEIO collection

cadC-KO (JW4094) 0.6 0.58–0.61 0.9

cadA-KO (JW4092) 0.73 0.70–0.75 1.1

motB-KO (JW1878) 0.8 0.78–0.83 1.2

yncD-KO (JW1446) 0.91 0.87–0.94 1.4

lysP-KO (JW2143) 0.98 0.95–1.01 1.5

cadB-KO (JW4093) 1.01 0.95–1.06 1.5

*Evolved clone with IS2 insertion in yifE gene of unknown function.
†Evolved clone with IS5 insertion in the intergenic region between genes flhD and uspC.
‡Two clones with SNP in gene fimE were isolated from the inoculum of the unevolved parental strain.
§Wild-type BW25113 strain (ATCC).



10

Leyn et al., Microbial Genomics 2021;7:000553

Beyond FabI target-based adaptation, only two low-frequency 
events disrupting the acrR gene, the known transcriptional 
repressor of the multidrug efflux transporter AcrAB [45], have 
a clear link to a possible mechanism of TCS resistance. An 
acrR frameshift mutant emerged at day 4 and reached 7 % 
in the population of R3 on the background of the predomi-
nant FabI:F203L variant. The second variant with IS5 mobile 
element insertion in acrR gene reached maximum frequency 
(6 %) at day 3 in R1, but was outcompeted by the FabI:F203L 
single mutant by day 4. None of these variants were charac-
terized at the clonal level due to frequency, and their actual 
contribution to TCS resistance remains unknown.

Other evolved variants
As noted above, mutations in other genes reached appreciable 
levels either at an early stage and/or when combined with one 
of the FabI variants at a later stage of experimental evolu-
tion. Known functions of these genes do not point to any 
obvious links with TCS resistance. However, the observed 
multiple missense mutations in gene cadC point to a possible 
relevance of this integral membrane protein, a pH-sensing 
transcriptional activator of cadaverine pathway CadAB, for 
adaptation to a relatively low TCS pressure or another type of 
stress at the early stage of evolution. Notably, all five missense 
variants of CadC (A220T, M322T, R333S, N466Y and D506E) 
are found in the C-terminal signal-sensing domain of CadC 
3D structure (PDB ID: 3LY7) [46]. Another observed early 
stage variant, LysP:G80S, observed in three reactors on day 
1 (at ~3.5 % frequency), affects lysine permease LysP, which 
is known to interact and negatively regulate CadC. Due to 
low frequencies of respective single mutants, none of these 
variants were characterized at the clonal level.

Another interesting variant, insertion of IS5 element upstream 
of the flhDC operon, emerged and peaked in two reactors on 
day 3 (30 % in R4 and ~70 % in R5). This operon encoding 
transcriptional activators of the flagella biosynthesis pathway 
was disrupted by IS5 insertion at two positions: (i) –95/–99 
interfering with LrhA (–89/–129) and OmpR (–101/–163) 
binding sites, and (ii) –315/–318 upstream of them (relative 
to the transcription start site according to Baker et al. [47]). 
These positions are known hotspots for IS element insertions 
leading to upregulation of flagellar and mobility genes in  
E. coli [47]. Notably, previously discussed IS2 insertions in 
the gene yifE also have a tentative association with the flagella 
pathway, as this gene is located upstream of hdfR, the regulator 
of flagellar master operon flhDC [48]. Analysis of isolated 
clones representing both variants (see below) revealed no 
appreciable impact on TCS IC90 (see Table 1), suggesting that 
a yet unknown adaptive role of these variants (if any) is not 
directly related to drug resistance.

Verification and characterization of individual 
evolved clones
A total of 49 clones representing the maximum diversity 
of TCS resistance (determined from preliminary screening 
of 288 clones, Fig. S2, Table S6) and anticipated mutations 
(deduced from evolutionary dynamics, Table S3) were 
selected for detailed characterization. This included accurate 
determination of TCS IC90 and mapping of potential driver 
mutations by PCR amplification of the respective segments 
of the cadC, fabI, yncD, motB, fimE and rpoA genes. These 
results obtained for 15 evolved clones with mapped distinct 
mutations and 2 distinct sub-clones isolated from the 

Fig. 5. Three-dimensional structure of FabI (PDB ID: 1QSG [23]) with NAD (yellow) and TCS (orange). Amino acid residues affected by 
mutations identified in this study are coloured red. For mutations where the IC

90
 is known it is shown by extension lines in µm.
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unevolved population of BW25113 ΔuxaC::kan strain (with 
and without FimE:L65Q variant) are provided in Table 1. 
In addition, two clones representing IS element insertions 
in the yifE gene and the flhD–uspC intergenic region were 
isolated from the respective samples, verified by PCR/Sanger 
sequencing and tested for TCS resistance. A panel of char-
acterized clones covered nearly all of the FabI single mutant 
variants and some of the observed double and triple mutants. 
The observed IC90 values vary substantially in a range from 
~2 up to >10 µm over the entire panel of 15 FabI variants 
(section I in Table 1). This corresponds to a fold change from 
3 to 16× as compared to the averaged IC90 of the parental 
strain sub-clones of E. coli BW25113 ΔuxaC::kan with and 
without the FimE:L65Q variant (section III in Table 1). These 
variations depend on the position and specific amino acid 
substitution (as in the case of multiple FabI:F203 variants) 
but, with a few exceptions, show almost no dependence on 
the presence or absence of mutations in other genes. The 
observed variations in TCS resistance are generally consistent 
with the outcome of convergent evolution, which included 
the competition of distinct FabI variants within the same 
reactors. As already emphasized, most day 4 populations are 
dominated by the FabI:F203-driven variants that show the 
highest level of TCS resistance. Not surprisingly, at day 4 
in R6, the FabI:F203S single mutant, which has the highest 
IC90(10.7 µm), ultimately outcompeted a triple mutant (FabI:
F203L+CadC:M322T+YncD:N319Y) with a somewhat lower 
IC90 (6.7 µm).

Although CadC single mutant variants were not isolated due 
to their low frequency, we used a series of strains from the 
KEIO collection [29] to assess the effect of individual gene 
knockouts in the cad pathway (genes cadC, cadA, cadB, lysP) 
on TCS resistance (Table 1). CadC is a transcriptional activator 
of lysine/cadaverine antiporter cadB and lysine decarboxylase 
cadA [49], and lysine transporter lysP is a posttranslational 
negative regulator of CadC [50]. Therefore, deletion of cadC 
might be expected to have a negative effect, similar to that of 
the deletion of cadA or cadB, and opposite to the effect of lysP 
deletion. However, the observed IC90 values were either nearly 
the same (for CadC-KO and CadA-KO) or only ~1.5-fold 
higher (for CadB-KO, LysP-KO) than for the isogenic control 
strain (UxaC-KO).

Cross-resistance between biocides and antibiotics is a 
concern for the overuse of TCS in consumer products, and 
exposure to biocides was found to decrease the susceptibility 
of Salmonella to multiple antibiotics, including broad-
spectrum quinolones [51]. Since their presence did not 
increase TCS resistance directly, a series of CadC variants 
were examined for possible cross-resistance effects of such 
mutations. Five single FabI-mutant clones and seven double 
CadC-FabI mutant clones (with shared FabI mutations) were 
tested for resistance to various antibiotics (ampicillin, chlo-
ramphenicol, ciprofloxacin, erythromycin and tetracycline). 
All clones had the same MIC for each tested drug, exhibiting 
no cross-resistance trends with the presence or absence of 
CadC mutations.

DISCUSSION
In this study we have evaluated the morbidostat-based contin-
uous culture method to study the evolution of antibiotic resist-
ance. For this purpose, we have established an experimental 
evolution workflow (Fig. 1), which included engineering a 
morbidostat device based on a published conceptual design 
(Fig. 2) [12], and applied the workflow and device to study 
the evolution of TCS resistance in E. coli (Fig. 3). This analysis 
revealed a notable diversity of emerging mutant variants 
expanding and contracting in six parallel bacterial cultures 
and showing distinct evolutionary trajectories. All these 
trajectories converged within 4 days into a limited number 
of solutions (Fig. 4) sharing one general mechanism of robust 
TCS resistance (up to 16-fold increase in IC90) driven by a 
range of adaptive amino acid substitutions in the vicinity of 
NAD/TCS-binding site of the known target enzyme enoyl-
[ACP]-reductase FabI (Fig. 5). The 8 detected amino acid 
residues comprising a total of 12 distinct substitution variants 
included all 3 FabI positions (G93, M159 and F203) previously 
reported to confer robust TCS resistance [19, 24]. These three 
positions, most notably F203, featuring four distinct substitu-
tions, are associated with FabI variants dominating bacterial 
populations at the latest stage of evolution and showing the 
highest extent of TCS resistance measured in isolated clones 
(Table 1). Other FabI variants identified only in this study 
(affecting A21, Q40, I192, T194 and A197 residues) were 
generally less competitive (except for a special case of A21T) 
and showed lower IC90 for TCS. This observation illustrates an 
advantage of the dynamic genomic profiling-based approach 
(over a more conventional clone isolation) for the detection 
of transient variants with lower drug resistance and/or fitness. 
Remarkably, most of these ‘low-ranking’ residues are located 
at the NAD side of the FabI–NAD–TCS complex (Fig. 5), and 
some of them (I192 and T194) were shown to form hydrogen 
bonds with NAD [23]. Therefore, it is tempting to hypothesize 
that the respective mutations are more likely to confer TCS 
resistance via shifting NAD position in the FabI active site, 
which may be a less efficient strategy than a direct interference 
with TCS binding. Indeed, the three ‘high-ranking’ residues 
(G93, M159 and F203) are located on the TCS side of the 
FabI–NAD–TCS complex and are known to form hydro-
phobic interactions with the TCS molecule [23].

Beyond FabI variants, we observed only two events potentially 
contributing to TCS resistance via upregulation of the acrAB 
efflux pump operon due to inactivation of the AcrR repressor. 
Both reached only a low frequency (6–7 %) at the later stage 
(days 3–4) of experimental evolution. Although none of the 
respective clones were characterized, in previous studies, 
acrAB overexpression was shown to provide only a twofold 
increase in TCS-resistance [26]. These observations gener-
ally suggest that AcrAB-driven efflux upregulation provides 
a degree of resistance or fitness that is less competitive under 
selective conditions in the morbidostat.

Of the early stage events (Fig.  4, Table S3), several low-
frequency missense mutations in the gene cadC (and one in 
lysP) appeared to be the most promising candidates for an 
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alternative mechanism of TCS resistance. This conjecture 
was based on the observed variety of independent, distinct 
and exclusively missense mutations that are all localized in 
the C-terminal periplasmic domain of the pH-sensing CadC 
transcriptional activator of the cadBA operon. Although the 
exact function and mechanism of action of CadC have not 
been fully elucidated, it has been implicated in acid stress 
response, which could provide a mechanistic basis for the 
adaptation to TCS-induced stress. However, a comparative 
characterization of the five pairs of isolated FabI single mutant 
variants with respective (FabI +CadC) double mutants failed 
to provide conclusive support for this hypothesis (see Table 1, 
Fig. S5). Therefore, at this point a mechanistic role of the 
observed cadC mutations in the evolution of TCS resistance 
(if any) remains unclear. Interestingly, a point mutation, 
CadC-Y504H, was implicated in the increased resistance of 
avian pathogenic E. coli to some plant-derived antibacterial 
agents, such as carvacrol [52].

The observed early-stage expansion of pre-existing variants 
(FimE:L65Q+YfiE:IS2), as well as the emergence of the (flhD–
uspC:IS5) variant, point to a possible contribution of fimbriae 
and flagella biogenesis to TCS adaptation. This conjecture is 
consistent with previous reports on (i) activation of flagellar 
assembly genes in response to TCS [53, 54] and (ii) the 
contribution of fimbriae biosynthesis (genes fimABCDEI) to 
E. coli survival in the presence of TCS revealed by transposon 
mutagenesis [55]. However, none of the isolated clones repre-
senting these variants showed any improvement of TCS IC90 
(Table 1). Likewise, a double mutant (FabI:A21T+FimE:L65Q) 
variant showed the same level of TCS resistance as a respective 
single mutant FabI:A21T. Overall, the obtained clonal data did 
not provide support for the involvement of flagella or fimbriae 
pathways in the evolution of TCS resistance. The observed 
transient expansion of respective variants may be explained 
by the general adaptation to growth in the morbidostat or by 
compensation for the pre-existing IS2-disruption of the gene 
lrhA (Table S4), a master regulator of motility, chemotaxis, 
fimbriae and flagella biosynthesis genes [56].

In summary, in this study we have successfully used the estab-
lished morbidostat-based workflow to assess the dynamics 
of experimental evolution and identify and verify a range of 
mutations driving acquired TCS resistance in E. coli. Despite 
the diversity of evolutionary trajectories and mutations across 
six parallel reactors, we have observed parallel evolution 
toward a single mechanism of robust TCS resistance (up to 
16× increase of IC90). This level of resistance is achieved by 
the substitution of at least one of several amino acid resi-
dues in the active site of FabI, the essential enzyme in fatty 
acid synthesis and the known TCS target. The established 
approach allowed us to detect all previously reported FabI 
mutations conferring TCS resistance and identify a broader 
set of previously undetected ones.

Overall, the obtained results provide a proof of concept 
and illustrate the potential advantages of the developed 
methodology for target identification (or verification) and 
the elucidation of yet unknown mechanisms of action and 

resistance for established antibiotics and novel drug candi-
dates. The prevalence of FabI mutations is in line with recent 
studies of bacterial isolates (human- and soil-associated) and 
metagenomes, where it was shown that mutations in FabI or 
substitutions to resistant analogues are the most abundant 
mechanisms for TCS resistance (see Table S7) [24, 57].

Funding information
This work was supported by an F. Hoffmann-La Roche Ltd pRED post-
doctoral fellowship to S. L.

Acknowledgements
We want to thank Drs Pavel Pevzner (UCSD) and Sergey Nurk (St 
Petersburg State University) for consultations on computational data 
analysis, and Brian James and Kang Liu (at SBP Genomics Core Facility) 
for help with gDNA library preparation and Illumina sequencing.

Author contributions
Conceptualization: A. L. O., F. G. A. Data curation: S. A. L., J. E. Z. Formal 
analysis: S. A. L. Funding acquisition: A. L. O. Investigation: S. A. L., O. V. 
K., X. L., M. El., L. M., M. G., A. L. O. Methodology: S. A. L., J. E. Z., A. C., O. V. 
K., A. L. O. Project administration: A. L. O., S. A. L. Resources: A. L. O., S. A. 
L. Software: S. A. L., A. C. Supervision: A. L. O., F. G. A., M. Eb. Validation: 
S. A. L., A. L. O. Visualization: S. A. L. Writing – review and editing: J. E. 
Z., A. L. O., F. G. A., M. Eb.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References
	1.	 Leinonen R, Sugawara H, Shumway M. International nucleotide 

sequence database C. the sequence read archive. Nucleic Acids Res 
2011;39:D19–21.

	2.	 Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A 
et al. Attributable deaths and disability-adjusted life-years caused 
by infections with antibiotic-resistant bacteria in the EU and the 
European economic area in 2015: a population-level modelling 
analysis. Lancet Infect Dis 2019;19:56–66.

	3.	 Centers for Disease Control and Prevention. Antibiotic resistance 
threats in the United States 2019.

	4.	 World Health Organization. Antibacterial agents in clinical devel-
opment 2017.

	5.	 Barrick JE, Lenski RE. Genome dynamics during experimental 
evolution. Nat Rev Genet 2013;14:827–839.

	6.	 Gresham D, Dunham MJ. The enduring utility of continuous 
culturing in experimental evolution. Genomics 2014;104:399–405.

	7.	 Ekkers DM, Branco Dos Santos F, Mallon CA, Bruggeman F, van 
Doorn GS. The omnistat: a flexible continuous-culture system for 
prolonged experimental evolution. Methods Ecol Evol 2020;11:932–942.

	8.	 Gopalakrishnan V, Krishnan NP, McClure E, Pelesko J, Crozier D 
et al. A low-cost, open source, self-contained bacterial evolutionary 
biorEactor (eve). bioRxiv 2019;729434.

	9.	 Heins ZJ, Mancuso CP, Kiriakov S, Wong BG, Bashor CJ et  al. 
Designing automated, high-throughput, continuous cell growth 
experiments using eVOLVER. J Vis Exp 2019 [Epub ahead of print 
19 05 2019].

	10.	 Matteau D, Baby V, Pelletier S, Rodrigue S. A small-volume, low-cost, 
and versatile continuous culture device. PLoS One 2015;10:e0133384.

	11.	 Toprak E, Veres A, Michel J-B, Chait R, Hartl DL et al. Evolutionary 
paths to antibiotic resistance under dynamically sustained drug 
selection. Nat Genet 2011;44:101–105.

	12.	 Toprak E, Veres A, Yildiz S, Pedraza JM, Chait R et al. Building a 
morbidostat: an automated continuous-culture device for studying 
bacterial drug resistance under dynamically sustained drug inhibi-
tion. Nat Protoc 2013;8:555–567.

	13.	 Verhoeven E, Abdellati S, Nys P, Laumen J, De Baetselier I et al. 
Construction and optimization of a 'NG Morbidostat' - An automated 



13

Leyn et al., Microbial Genomics 2021;7:000553

continuous-culture device for studying the pathways towards anti-
biotic resistance in Neisseria gonorrhoeae. F1000Res 2019;8:560.

	14.	 Dößelmann B, Willmann M, Steglich M, Bunk B, Nübel U et al. Rapid 
and consistent evolution of colistin resistance in extensively drug-
resistant Pseudomonas aeruginosa during Morbidostat culture. 
Antimicrob Agents Chemother 2017;61 [Epub ahead of print 24 08 
2017].

	15.	 Jones RD, Jampani HB, Newman JL, Lee AS. Triclosan: a review of 
effectiveness and safety in health care settings. Am J Infect Control 
2000;28:184–196.

	16.	 Carey DE, McNamara PJ. The impact of triclosan on the spread of 
antibiotic resistance in the environment. Front Microbiol 2014;5:780.

	17.	 McNamara PJ, Levy SB. Triclosan: an instructive tale. Antimicrob 
Agents Chemother 2016;60:AAC.02105-16–6.

	18. 	 Westfall C, Flores-Mireles AL, Robinson JI, Lynch AJL, Hultgren S 
et al. The widely used antimicrobial triclosan induces high levels 
of antibiotic tolerance in vitro and reduces antibiotic efficacy up to 
100-fold in vivo. Antimicrob Agents Chemother 2019;63 [Epub ahead 
of print 25 04 2019].

	19.	 McMurry LM, Oethinger M, Levy SB. Triclosan targets lipid 
synthesis. Nature 1998;394:531–532.

	20.	 Heath RJ, Yu YT, Shapiro MA, Olson E, Rock CO. Broad spectrum 
antimicrobial biocides target the FabI component of fatty acid 
synthesis. J Biol Chem 1998;273:30316–30320.

	21.	 Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME et al. Mecha-
nism of triclosan inhibition of bacterial fatty acid synthesis. J Biol 
Chem 1999;274:11110–11114.

	22.	 Roujeinikova A, Levy CW, Rowsell S, Sedelnikova S, Baker PJ et al. 
Crystallographic analysis of triclosan bound to enoyl reductase. J 
Mol Biol 1999;294:527–535.

	23.	 Stewart MJ, Parikh S, Xiao G, Tonge PJ, Kisker C. Structural basis 
and mechanism of enoyl reductase inhibition by triclosan. J Mol 
Biol 1999;290:859–865.

	24.	 Khan R, Kong HG, Jung Y-H, Choi J, Baek K-Y et  al. Triclosan 
resistome from metagenome reveals diverse enoyl acyl carrier 
protein reductases and selective enrichment of triclosan resist-
ance genes. Sci Rep 2016;6:32322.

	25. 	 Grandgirard D, Furi L, Ciusa ML, Baldassarri L, Knight DR et  al. 
Mutations upstream of fabI in triclosan resistant Staphylococcus 
aureus strains are associated with elevated fabI gene expression. 
BMC Genomics 2015;16:345.

	26. 	 McMurry LM, Oethinger M, Levy SB. Overexpression of marA, 
soxS, or acrAB produces resistance to triclosan in labora-
tory and clinical strains of Escherichia coli. FEMS Microbiol Lett 
1998;166:305–309.

	27.	 Villalaín J, Mateo CR, Aranda FJ, Shapiro S, Micol V. Membrano-
tropic effects of the antibacterial agent triclosan. Arch Biochem 
Biophys 2001;390:128–136.

	28.	 Escalada MG, Russell AD, Maillard J-Y, Ochs D. Triclosan-bacteria 
interactions: single or multiple target sites? Lett Appl Microbiol 
2005;41:476–481.

	29. 	 Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. Construction 
of Escherichia coli K-12 in-frame, single-gene knockout mutants: 
the Keio collection. Mol Syst Biol 2006;2:0008.

	30.	 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for 
illumina sequence data. Bioinformatics 2014;30:2114–2120.

	31.	 Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improve-
ments to PATRIC, the all-bacterial bioinformatics database and 
analysis resource center. Nucleic Acids Res 2017;45:D535–D542.

	32.	 Li H, Durbin R. Fast and accurate short read alignment with 
Burrows-Wheeler transform. Bioinformatics 2009;25:1754–1760.

	33.	 Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH et  al. LoFreq: a 
sequence-quality aware, ultra-sensitive variant caller for uncovering 
cell-population heterogeneity from high-throughput sequencing 
datasets. Nucleic Acids Res 2012;40:11189–11201.

	34.	 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et  al. 
The genome analysis toolkit: a MapReduce framework for 

analyzing next-generation DNA sequencing data. Genome Res 
2010;20:1297–1303.

	35.	 Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versa-
tile and open software for comparing large genomes. Genome Biol 
2004;5:R12.

	36.	 Deatherage DE, Traverse CC, Wolf LN, Barrick JE. Detecting rare 
structural variation in evolving microbial populations from new 
sequence junctions using breseq. Front Genet 2014;5:468.

	37. 	 Leyn SA. iJump: a fast tool for tracking bacterial mobile elements 
rearrangements in course of adaptive laboratory evolution [version 
1; not peer reviewed]. DOI: https://​doi.​org/​10.​7490/​f1000research.​
1118098.​1. F1000Research, ISCB Comm J. 2020;9:799 (poster).

	38.	 Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: 
the reference centre for bacterial insertion sequences. Nucleic 
Acids Res 2006;34:D32–D36.

	39.	 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et  al. The 
sequence Alignment/Map format and SAMtools. Bioinformatics 
2009;25:2078–2079.

	40.	 Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L et  al. Using 
tablet for visual exploration of second-generation sequencing data. 
Brief Bioinform 2013;14:193–202.

	41. 	 Farahpour F, Saeedghalati M, Hoffmann D. MullerPlot: generates 
Muller Plot from Population/Abundance/Frequency dynamics 
data. R package version 012. 2016.

	42.	 Sprouffske K, Wagner A. Growthcurver: an R package for obtaining 
interpretable metrics from microbial growth curves. BMC Bioinfor-
matics 2016;17:172.

	43.	 Ritz C, Baty F, Streibig JC, Gerhard D. Dose-Response analysis 
using R. PLoS One 2015;10:e0146021.

	44. 	 Abraham JM, Freitag CS, Clements JR, Eisenstein BI. An invert-
ible element of DNA controls phase variation of type 1 fimbriae of 
Escherichia coli. Proc Natl Acad Sci U S A 1985;82:5724–5727.

	45.	 Ma D, Alberti M, Lynch C, Nikaido H, Hearst JE. The local repressor AcrR 
plays a modulating role in the regulation of acrAB genes of Escheri-
chia coli by global stress signals. Mol Microbiol 1996;19:101–112.

	46. 	 Haneburger I, Fritz G, Jurkschat N, Tetsch L, Eichinger A et  al. 
Deactivation of the E. coli pH stress sensor CadC by cadaverine. J 
Mol Biol 2012;424:15–27.

	47. 	 Barker CS, Prüss BM, Matsumura P. Increased motility of Escheri-
chia coli by insertion sequence element integration into the regula-
tory region of the flhD operon. J Bacteriol 2004;186:7529–7537.

	48.	 Ko M, Park C. H-NS-Dependent regulation of flagellar synthesis is 
mediated by a LysR family protein. J Bacteriol 2000;182:4670–4672.

	49. 	 Kuper C, Jung K. CadC-mediated activation of the cadBA promoter 
in Escherichia coli. J Mol Microbiol Biotechnol 2005;10:26–39.

	50. 	 Tetsch L, Koller C, Haneburger I, Jung K. The membrane-integrated 
transcriptional activator CadC of Escherichia coli senses lysine 
indirectly via the interaction with the lysine permease LysP. Mol 
Microbiol 2008;67:570–583.

	51.	 Webber MA, Whitehead RN, Mount M, Loman NJ, Pallen MJ et al. 
Parallel evolutionary pathways to antibiotic resistance selected by 
biocide exposure. J Antimicrob Chemother 2015;70:2241–2248.

	52.	 Al-Mnaser AA, Woodward MJ. Sub-lethal concentrations of phyto-
chemicals (Carvacrol and Oregano) select for reduced susceptibility 
mutants of Escherichia coli O23:H52. Pol J Microbiol 2020;69:121–125.

	53. 	 Lenahan M, Sheridan Áine, Morris D, Duffy G, Fanning S et al. Tran-
scriptomic analysis of triclosan-susceptible and -tolerant Escheri-
chia coli O157:H19 in response to triclosan exposure. Microb Drug 
Resist 2014;20:91–103.

	54. 	 Bailey AM, Constantinidou C, Ivens A, Garvey MI, Webber MA et al. 
Exposure of Escherichia coli and Salmonella enterica serovar Typh-
imurium to triclosan induces a species-specific response, including 
drug detoxification. J Antimicrob Chemother 2009;64:973–985.

	55.	 Yasir M, Turner AK, Bastkowski S, Baker D, Page AJ et al. TraDIS-
Xpress: a high-resolution whole-genome assay identifies novel 
mechanisms of triclosan action and resistance. Genome Res 
2020;30:239–249.



14

Leyn et al., Microbial Genomics 2021;7:000553

	56. 	 Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF et al. LrhA as 
a new transcriptional key regulator of flagella, motility and chemo-
taxis genes in Escherichia coli. Mol Microbiol 2002;45:521–532.

	57.	 Khan R, Roy N, Choi K, Lee S-W. Distribution of triclosan-resistant 
genes in major pathogenic microorganisms revealed by metage-
nome and genome-wide analysis. PLoS One 2018;13:e0192277.

Five reasons to publish your next article with a Microbiology Society journal
1.   The Microbiology Society is a not-for-profit organization.
2.   We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3.   �Our journals have a global readership with subscriptions held in research institutions around  

the world.
4.   80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5.   Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.


	Experimental evolution in morbidostat reveals converging genomic trajectories on the path to triclosan resistance
	Abstract
	Data Summary﻿﻿
	Introduction
	Methods
	Morbidostat design (﻿Fig. 2﻿)
	Parental strain
	Evolutionary runs (﻿﻿﻿Fig. 3﻿)
	Whole-genome sequencing (WGS)
	Variant calling and downstream bioinformatics analysis
	Selection and characterization of individual clones
	MIC determination (IC﻿50﻿ and IC﻿90﻿)

	Results
	Populational dynamics of experimental evolution in the morbidostat
	Pre-existing mutations in the unevolved population
	Dynamics of TCS resistance and mutations in evolving bacterial populations
	Mechanistically relevant variants
	Other evolved variants

	Verification and characterization of individual evolved clones

	Discussion
	References


