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Quantifying the distribution of nanomaterials in complex samples is of great significance to
the toxicological research of nanomaterials as well as their clinical applications. Radiotracer
technology is a powerful tool for biological and environmental tracing of nanomaterials
because it has the advantages of high sensitivity and high reliability, and can be matched
with some spatially resolved technologies for non-invasive, real-time detection. However,
the radiolabeling operation of nanomaterials is relatively complicated, and fundamental
studies on how to optimize the experimental procedures for the best radiolabeling of
nanomaterials are still needed. This minireview looks back into the methods of
radiolabeling of nanomaterials in previous work, and highlights the superiority of the
“last-step” labeling strategy. At the same time, the problems existing in the stability test of
radiolabeling and the suggestions for further improvement are also addressed.
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INTRODUCTION

Nanotechnology has emerged rapidly during the past years in a broad range of product domains. It
provides opportunities to manipulate or develop materials at nanoscale dimensions for a wide variety of
applications (Liong et al., 2008; Chhowalla et al., 2013;WuH. et al., 2020; Liu et al., 2021; Xuan et al., 2021),
where conventional techniques may reach their limits. Nanomaterials (NMs) are inevitably being released
into the environment during the processes of production, transport, use, disposal and recycling, and
subsequently into human bodies. In addition, human may be unintentionally exposed to some natural or
incidental NMs (Hochella et al., 2019; Wang H. et al., 2020), and sometimes even intentionally, to some
medical NMs (Martins et al., 2020). Regardless of the sources and exposure routes of NMs, tracing and
quantifying the biodistribution of NMs is fundamentally important to wide-ranging fields from
nanotoxicology to drug delivery (Wang et al., 2013).

In general, the methods for NMs measurement in biological samples depend on the chemical
composition and peculiarities of the structure of NMs, and there is no universal technique to date
suitable for all NMs. Among those techniques developed for NMs quantification and imaging (as shown in
Table 1), isotope tracing, especially radioactive tracing, is one of the most powerful tools available for
assigning a source and tracking their distribution from nano to global scale. In addition, radiolabeled NMs
have drawn considerable attention in the fields of nuclear medicine and molecular imaging, drug delivery,
and radiation therapy (Ge et al., 2020; Wu S. et al., 2020). Whether in a radiotracing study or construction
of a radioactive theranostic nano-plat, radiolabeling of NMs is always a prerequisite and amajor challenge.
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Therefore, researchers should weigh the necessity of using radioactive
tracing, how to choose nuclides, what kind of connection strategy to
adopt, and how to minimize the inherent defects of radiotracing
methods.

ADVANTAGES AND DISADVANTAGES OF
RADIOTRACER TECHNIQUE

Isotope tracing, especially radioactive tracing, shows superiority
over the other techniques developed for NMs quantification and
imaging due to its following features (for more focused
discussion, only radiotracer technique will be mentioned below):

High sensitivity. Radiotracer technique has a much greater
sensitivity compared to conventional fluorescence labeling (Yin
et al., 2017), and can be associated with a range of detection
methods, including c spectrometry, scintillation counting, PET
and SPECT. For example, radioactive 141Ce labeling and HPGE c
spectrometry were used to quantify the distribution of ceria
nanoparticles (NPs) in rat after intratracheal injection, and a
detection limit better than 1 pg/g was achieved (He et al., 2010).

Great accuracy and reliability. The accuracy and reliability of
radiotracer technique relies on the ultra-low background noise in
radioactivity detection, therefore, the specific signals of the labeled
NMs could be easily distinguished from the interference or artifacts
from natural or background-level components (Zhang et al., 2009).
Without labeling, the signals of carbon NMs would be completely
masked by the organic or inorganic carbon in environmental and
biological matrices (Chen et al., 2017). The detection of some metal-
based NMs is also limited by the naturally high background. For
example, the quantification of iron oxide NPs in vivo might be
interfered with by endogenous iron (Patil et al., 2015).

Large penetration depth. Since the decay of the majority of
radioactive isotopes involves the emission of high-penetrating
c-ray, radiolabeled NMs in bulk samples could be directly
detected without pre-cutting, crushing or digesting the samples.
This greatly reduced the difficulty of tracing and quantifying NMs
in complexmatrices.Whenmatchedwith PETor SPECT, radiotracer
technique could even provide a non-invasive, whole-body, real-time,

and dynamic imaging capability (Yu et al., 2017; Abdollah et al.,
2018). It makes possible to quantitatively measure the NMs
concentration in various organs over time, which provides
invaluable information for NMs pharmacokinetics (also known as
particokinetics) or NMs-based diagnosis and therapy.

However, radiotracer technique has some inherent
disadvantages. Often, the selection of radiolabeling
methodology will be limited by radionuclide/equipment
availability, as this type of work requires expensive facilities
and strict qualifications (Pellico et al., 2021). After radioactive
contamination, matrices and animals must be maintained or
disposed in a way that satisfies safety requirements for human
staffing. But the greatest difficulty of radiotracer technique lies in
the radiolabeling of NMs, because the experimental operation can
be time-consuming and laborious, and requires radiation
shielding for health and safety considerations.

RADIOLABELING STRATEGIES

An ideal radiolabeling strategy should be easy, fast, robust, and highly
efficient and must make only minimal changes to the original
properties of NMs. Radiolabeling strategies could be classified
according to the type of NMs, the radionuclide and/or the final
application. In this review, labeling strategies are divided into two
categories according to the timing of adding radionuclides: the
incorporation strategy and the derivatization strategy. It needs to
be clarified in advance that this simple classification is only for the
convenience of discussion, and some exceptions will also be
mentioned case by case.

The incorporation strategy incorporates the radionuclide into
the structure or the core of NMs via radiochemical synthesis, using
a synthetic route exactly the same as the NMs to be labeled, only
partially replacing one of the cold precursors with a hot nuclide.
For example, Zhang et al. (2011) radiolabeled ceria NPs by
radiochemical synthesis of 141CeO2 from a mixture of
140Ce(NO3)3 and 141Ce(NO3)3, and Pellico et al. (2016)
radiolabeled iron oxide NPs (IONPs) by doping 68Ga in the
core of IONPs. The as-synthesized radioactive NMs have

TABLE 1 | Techniques for NMs quantification or imaging.

Technique References(s)

optical/electron microscopic imaging Lee et al. (2011); Tsoi et al. (2016); Guillard et al. (2020); Sun et al. (2020)
photoacoustic imaging Bouchard et al. (2009); Kim et al. (2011)
Raman spectroscopy Zavaleta et al. (2009); Nicolson et al. (2019)
optical emission spectrometry Kückelhaus et al. (2005)
mass spectrometry Cai et al. (2016); Meermann and Nischwitz (2018)
MRa imaging Sun et al. (2008); Lee et al. (2011)
Ferromagnetic resonance Lacava et al. (2001); Levy et al. (2011)
neutron activation analysis Zinicovscaia et al. (2018)
isotope tracing He et al. (2010); Zhang et al. (2011); Chen et al. (2017); Zhang et al. (2019)
PET/SPECTb Tseng et al. (2014); Gao et al. (2015); Ni et al. (2018)
synchrotron radiation XRFc or STXMd Qu et al. (2011); Zhang et al. (2012); He et al. (2013)

Note: amagnetic resonance.
bpositron emission tomography / single-photon emission computed tomography.
cX-ray fluorescence spectroscopy.
dscanning transmission X-ray microscopy.

Frontiers in Toxicology | www.frontiersin.org December 2021 | Volume 3 | Article 7533162

Dai et al. Radiolabeling of Nanomaterials

https://www.frontiersin.org/journals/toxicology
www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles


almost, if not totally, the same physicochemical properties as the
unlabeled NMs. Therefore, incorporation strategy is also called
intrinsic radiolabeling method in some previous reports (Goel
et al., 2014; Chakravarty et al., 2018; Fach et al., 2021), which could
essentially guarantee an accurate reflection of NMs behavior by
detecting the radioactive signals. In addition to radiochemical
synthesis starting from the cold-hot precursors, radionuclide
can be incorporated into the NMs through surface elemental
exchange, or radionuclide deposition in cage-like/mesoporous
NMs (Goel et al., 2014; Tang et al., 2019; Korany et al., 2020).
NMs can also be radioactively activated via thermal and epithermal
neutron bombardment before the tracing study (Antsiferova et al.,
2015). However, neutron activation may bring unexpected thermal
denaturation (especially to the organic functional groups on the
particle surface) and structural damages (Yin et al., 2017), therefore
will not be discussed in this review.

Another category of radiolabeling uses derivatization strategy, in
which non-radioactive NMs are synthesized first, and then
radionuclide is conjugated to the surface of the pristine NMs by
physical (e.g., adsorption) or chemical (typically via a radionuclide
chelator anchored on the NMs surface) means. For example, MoS2
NPs were radiolabeled with 64Cu with the help of bifunctional
p-SCN-Bn-NOTA (Dong et al., 2018), and IONPs were
radiolabeled with 69Ge via surface adsorption (Chakravarty et al.,
2014). This strategy is versatile and can incorporate various
radionuclides of choice onto the surface of NMs. However, the
derivatization of NMs could potentially change the surface
properties of the NMs to be radiolabeled and subsequently alter
their environmental or biological behaviors. In other words, the
research should always keep in mind that he/she is tracing the NMs
with radionuclide or radionuclide-chelator complex on their surface,
not their pristine form. (Das et al., 2021).

But then again, surface-unmodified pristine NMs have very
limited biomedical applications, while NMs with multiple surface-
functionalized have been extensively explored to achieve better
dispersibility, targeting and versatility. If considering the chelator
for radionuclide as an intrinsic component of the NMs to be
radiolabeled, the attachment of radionuclides to NMs could also
be regarded as an intrinsic radiolabeling. With this premise, the
derivatization strategy could highlight its advantages over the
incorporation strategy in introducing radionuclide into the NMs
to be labeled as late as possible in the sequence. It allows researchers to
synthesize the pristine NMs non-radioactively, modify the surface
and multi-functionalize the NMs non-radioactively, and then
conjugate radionuclide to the NMs in the last step. Therefore, the
derivatization strategy can be optimized as the “last-step
radiolabeling”. In this way, the experimental procedures that
require radiation shielding are minimalized, and the specific
activity required for radiolabeling is also minimalized due to a
shortened interval between the radiolabeling and the tracing study
(Zhang et al., 2019). In addition, the derivatization strategy can create
considerably more leeway in choosing radionuclides and
experimental procedures for radiolabeling. These features make
derivatization strategy relatively more attractive than incorporation
strategy due to the flexibility in design, ease of operation, low
radiation risk, low cost and time-saving.

IN VIVO STABILITY OF RADIOLABELING

Despite the above-mentioned advantages of the derivatization
strategy, there is still a major concern about the potential
detachment of radioisotopes in vivo, which could lead to
problems such as off-targeting and false positives. After all, the
derivatization strategy binds radionuclides to the surface of the
NMs, where radionuclides would directly interact with bio-milieu.
Generally, organic radiotags linked by strong covalent bonds, like
11C-methylations, 18F-based prosthetic groups, and 14C-taurine
(Deng et al., 2007; Lamb and Holland, 2018; Pellico et al., 2021),
would not be easily dissociated from the NMs in vivo. But this is not
the case for those radiometals. The large family of radiometals
provides the greatest diversity in the selection of radiotags, but
also poses the biggest challenge in radiochemical stability because
radiometals in their ionic forms might be released from NMs surface
in vivo. Therefore, the last part of this minireview will discuss the
possible in vivo detachment of radiometals from the surface of NMs.

In the existing literature, the radiochemical stability of the NMs-
radiometals complex has always been investigated ex vivo as follows:
after the direct (chelator-free) or indirect (typically chelator-based)
chemical bond formation between the radiometals and the NMs
surface, the complex is incubated in simulated body fluids (i.e., serum
or PBS at 37°C) for several hours or overnight, and then the detached
radiometals are collected and quantified by means of centrifugation,
chromatography, or liquid chromatography (Korany et al., 2020;
Wang L. Z. et al., 2020; Papadopoulou et al., 2021). However, one of
our work just demonstrated that some features of the particokinetics
may lead to a previously underappreciated loss in the in vivo stability
of radiolabeling (Zhang et al., 2019).Once the radiolabeledNMs enter
the bloodstream, they are most likely to be quickly removed by
mononuclear phagocyte system (MPS), and trapped in the
endosomes of MPS cells. These endosomes would develop into
lysosomes, with a drop of luminal pH from 7.4 to 6.5 within a
few minutes, and 6.4 to 4.0 within 1 h (Wang et al., 2017). The rapid
and large drop of the local pH may cause significantly more
radiometals to detach from the surface of NMs than the case in
neutral solutions. The effects of low pH will be discussed separately
for specific radiolabeling methods.

Classic methods for labeling NMs with radiometals rely on the
functionalization of NMs surface with traditional metal ion
chelators. Radiochemists have long been committed to
synthesizing and improving bifunctional chelating agents, with
a chelator (like polyaminocarboxylate groups) at one end and a
chemically-reactive linkage group at the other end (Pellico et al.,
2021). When the chelator matches the radiometals, the
radiolabeling could stay stable during the ex vivo measurement
of radiochemical stability. However, inappropriate choice in
linkage and the local low pH may lead to the detachment of
radiometals from NMs in the following cases:

1) The protonation of chelator’s carboxyl and amine groups may
compromise the in vivo stability of the chelation (Figures 1A,
i. (Liu and Edwards, 2001; Ramli et al., 2009).

2) The newly formed bond between the linkage group of
bifunctional chelating agent and the NMs is too weak to
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maintain stability in vivo (like some ether bonds or ester
bonds, Figure 1Aii).

3) When the chelators are not linked to the surface atoms of
NMs, but to the small molecules that constitute the surface
coating of NMs through hydrogen bonding or amphiphilic
self-assembly, then the chelator-radiometal complexes may
detach from the surface of NMs together with the coating
molecules (Figure 1Aiii).

4) The chelators are directly linked to the surface atoms of NMs,
but the superficial layer of NMs undergo a decomposition in
vivo (especially when in a low pH milieu, Figure 1Aiv).

Besides chelator-based radiolabeling, surface chemical
adsorption of radiometals is simple and easy to implement, and
has received great attention as a chelator-free radiolabeling
method. In the existing examples (Chakravarty et al., 2014;
Lamb and Holland, 2018), the NMs to be radiolabeled often
have a surface coating (like PAA), and therefore, it is difficult
for us to distinguish whether the radiometals are directly adsorbed
on the surface of metal oxide NPs (forming M-O-M bond) or
combined with the carboxyl groups in the surface coating.
Nevertheless, the protonation of either the particle surface or
the carboxyl groups in the low pH could lead to the
detachment of radiometals (Figures 1Bi,ii). When the PAA
coating is loose, or the NMs are easily decomposed in vivo, the
chemically adsorbed radiometals may also undergo a detachment
in the manners similar to those shown in Figures 1Aiii,iv.

Based on the above discussion on the causes of radiometal
detachment in vivo, we here propose several improvements:
1) We should continue to improve bifunctional chelating
agents with pH-insensitive stabilities of both the chelation and the
linkage. 2) If we want to radiolabel degradable NMs via surface
derivatization but do not want to hinder the degradation of the NMs,
we could encapsulate the NMs with a mesoporous shell or long
organic chains with a high degree of cross-linking, and then connect
the radionuclides and the NMs coating through strong and pH-
insensitive bonds. 3) Only when the NMs to be radiolabeled could
remain undegraded in vivo for a long time, can we directly connect
the radiometals to the surface atoms of NMs through strong and pH-
insensitive bonds. 4) The ex vivo measurement of the radiolabeling
stability should be conducted not only in the simulated neutral body
fluids, but also in the artificial lysosomal fluid. In short, we must pay
attention to the differences inmetabolismbetweennanomaterials and
molecules, as well as the resulting different requirements
for radiolabeling. Furthermore, the introduction of a higher level
of automations and even artificial intelligence in the design
and practice of radiolabeling will definitely bring new options for
the radiotracing study of NMs (Zhang et al., 2019; Xu et al., 2021).

To sum up, this minireview looks back into the methods for NMs
radiolabeling, and highlights the superiority of the “last-step
radiolabeling” via derivatization strategy. Meanwhile, we
emphasize here a pH-related detachment of radionuclides from
the NMs that has been underappreciated previously. Since the
radiolabeled NMs will encounter a low pH milieu soon after

FIGURE 1 | Schematic diagrams for different types of radiometal detachment from NMs in vivo, especially at low pH milieu. (A), reasons for the detachment after
chelator-based radiolabeling: (i) compromised chelation; (ii) failed conjugation; (iii) weak bond between NMs and radiometal; (iv) decomposition of the NMs. (B),
reasons for the detachment after chemical adsorption radiolabeling: (i) desorption due to proton competition; (ii) carboxyl group protonation.
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exposure, radiochemical stability in acidic environment is essential for
radiolabeling. This minireview also calls for a careful re-examination
of the previous radiotracing results, as well as further optimization on
the radiolabeling methods for NMs.
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