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Mild cognitive impairment (MCI) and Alzheimer’s disease (AD) affect a high proportion
of the elderly population with an increasing prevalence. Sleep disturbances are
frequent in those with MCI and AD. This review summarizes existing research on
sleep disturbances and neuroinflammation in MCI and AD. Although strong evidence
supports various pathways linking sleep and AD pathology, the temporal direction of
this central relationship is not yet known. Improved understanding of sleep disturbance
and neuroinflammation in MCI and AD may aid in the identification of targets for
their prevention.
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INTRODUCTION

Alzheimer’s disease (AD) is a leading public health problem (Ballard et al., 2011) affecting
24 million people worldwide (Ballard et al., 2011; Reitz and Mayeux, 2014). Descriptive evidence
implies that sleep may play a crucial role in optimal daytime cognitive functioning, attention,
executive functioning, and memory (Diekelmann and Born, 2010; Killgore, 2010). Disturbed
sleep is associated with cognitive disorders (da Silva, 2015), and early observational data from
institutionalized AD patients showed worse nocturnal sleep among those with more severe
dementia (Bliwise et al., 1995). Epidemiological research among older adults has shown that both
short and long sleepers have worse cognitive function (Potvin et al., 2012; Devore et al., 2014) and
greater cognitive decline in contrast to adults sleeping 7 or 8 h per night (Keage et al., 2012; Benito-
León et al., 2013). Thus, a U-shaped association between sleep duration and cognitive outcomes has
been suggested (Yaffe et al., 2014). Both cross-sectional (Muangpaisan et al., 2008; Naismith et al.,
2010; Guarnieri et al., 2012) and longitudinal studies (Westerberg et al., 2012), have shown that
sleep disturbance is linked to mild cognitive impairment (MCI) and AD.

Patients with dementias, especially AD, often have disrupted nocturnal sleep. When monitored
in overnight sleep studies (Vitiello et al., 1990; Montplaisir et al., 1998), they have earlier bedtimes
and much more variable wake-up times than those without AD (Bliwise et al., 1992). Approximately
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25–44% of patients with AD reported having sleep disturbances,
although sleep was measured via self-report (Guarnieri et al.,
2012). Nocturnal sleep disturbance is more frequent in dementia
patients with Lewy bodies than in patients with AD, although
nocturnal sleep disturbances in AD are more associated with
advanced disease (Bliwise et al., 2011). There may also be
a higher prevalence of sleep apnea in AD patients, though
this remains a controversial area (Bliwise, 1996; Bliwise et al.,
2019). Nevertheless, a potential causal role for sleep apnea in
impaired cognition in the aged could be exacerbated by sleep
fragmentation, inflammation, oxidative stress, and hypoxemia,
all of which are features of disturbed respiration during sleep
(Daulatzai, 2012, 2013). In this review, we examine relevant
existing human research on neuroinflammation and sleep
disturbance in MCI and AD.

IMPORTANCE OF EXPLORING
MICROGLIA, NEUROINFLAMMATION,
AND SLEEP IN MCI AND AD

We propose a model in which disturbed sleep may play
a crucial causal role for cognitive decline in old age. This
places neuroinflammation as the most important mediating
variable underlying many of the associations noted to date.
Sleep disturbance may be a major risk factor for AD and
is associated with increased inflammation (Hansson et al.,
2006; Alvarez et al., 2007). The amyloid cascade hypothesis
proposed by Hardy and Higgins (1992) postulates that the
accumulation of insoluble amyloid β (Aβ) is the primary
driver of AD pathology. However, research has demonstrated
neuroinflammatory responses connected to Aβ deposition
common to both sleep disturbance and AD.

Microglia are a type of glial cell that is common in the central
nervous system (CNS) and functions as a primary line of immune
defense (Nayak et al., 2014). They manage immunosurveillance
and mediate inflammation, both of which are suggested to
be important in AD (Olsson et al., 2013). Activated microglia
appear to have a beneficial effect in response to brain injury,
although uncontrolled microglial activation that is part of aging
may lead to neuronal dysfunction and cognitive decline (Ojo
et al., 2015). Upon exposure to Aβ, microglia and astrocytes
release cytokines, interleukins, nitric oxide, and other potentially
cytotoxic molecules (McGeer and McGeer, 2010; Krabbe et al.,
2013; Heneka et al., 2015). Twenty-four-hour sleep deprivation
followed by 24-h recovery was associated with elevated levels
of IL-6 and microglial activation in the mouse hippocampus,
although not in the cortex (Zhu et al., 2012). Chronic sleep
restriction and low-level microglial activation may promote
neuroinflammation and increase the brain’s vulnerability to insult
(Atienza et al., 2018). Xie et al. (2019) have shown that chronic
sleep fragmentation can induce dysfunction of intracellular
protein degradation and activate microglia predominately in the
hippocampus, which in turn may induce this pro-inflammatory
response (Xie et al., 2019). Rodent models of chronic sleep
deprivation have reported microglial morphological changes,
including enlargement of the cell body and increased expression

of pro-inflammatory cytokines (Hsu et al., 2003; Wisor et al.,
2011). Thus, microglial dysfunction and neuroinflammation may
contribute to the pathophysiology of sleep disorders.

Additionally, intrinsic molecular clock control within
microglia regulates sleep–wake cycle-dependent changes in
synaptic strengths (Hayashi et al., 2013). This intrinsic circadian
control within microglia is an example of a peripheral clock of the
circadian sleep-wake system. These are centrally directed from
the suprachiasmatic nucleus (SCN), which controls metabolomic
changes and synchronizes tissues within the body in response to
internal and external “zeitgebers” such as light (Musiek, 2017).
These cellular circadian rhythms are often expressed through
a transcriptional–translational feedback loop (TTFL) in which
the transcriptional factors CLOCK and BMAL1 heterodimerize
and bind to E-box sequences in target gene promoters to drive
rhythmic expression of Period (Per1-3) and Cryptochrome
(Cry1-2) proteins. These Per and Cry proteins then form a
complex to return to the nucleus and inhibit CLOCK- and
BMAL1-mediated gene expression, completing the feedback
loop (Eckel-Mahan and Sassone-Corsi, 2013; Gachon et al.,
2017). Studies in mice show that when Bmal1 or Clock is deleted
or deficient, they produce arrhythmic circadian cycles in the SCN
(Eckel-Mahan and Sassone-Corsi, 2013; Krishnaiah et al., 2017).
This process may be disrupted in AD patients, as differences in
the phase of these clock gene rhythms have been observed in
the brains of individuals with AD when compared to controls
(Cermakian et al., 2011; Weissova et al., 2016). Additionally, Ni
et al. (2019) show that reduced expression of BMAL1 (a clock
gene) is responsible for increased expression of an inflammatory
type of microglia in APP knockout mice (Ni et al., 2019). This
circadian rhythm dysfunction links AD and sleep disturbance
pathology (Musiek, 2017).

Recent research has demonstrated the importance of a
missense mutation in the triggering receptor expressed on
myeloid cells 2 (TREM2) in increasing one’s risk for AD
(Guerreiro et al., 2013; Jonsson et al., 2013; Wang et al., 2015).
The R47H variant of the gene confers a 2–4.5-fold increased
risk of developing late-onset AD. Behind the APOE ε4 gene,
these results place Trem2 as the strongest associated risk gene
for AD (Guerreiro et al., 2013; Jonsson et al., 2013). In studies
of mice with Aβ accumulation, deletion of Trem2 significantly
reduced the number of plaque-associated macrophages (Jay et al.,
2015). Deletion of Trem2 also led to decreases in astrocytosis
and declines in inflammatory cytokines IL-1β, IL-6, and TNF-α
(Jay et al., 2017). Additionally, studies have shown that microglia
and macrophages lacking TREM2 have a reduced ability to clear
Aβ and apoptotic cells from the brain (Savage et al., 2015).
In addition to TREM2, research has explored other microglia-
specific receptors and their role in immune response in AD.
CX3CL1 is an inhibitory chemokine that binds to CX3CR1
on the surface of microglia, regulating microglial activity and
migration in injury conditions (Limatola and Ransohoff, 2014).
CX3CL1 may also dose-dependently reduce expression of nitric
oxide, IL-6, and TNF-α, and suppress neuronal death induced by
microglial activation. Disrupting the receptor can lead to system
inflammation and microglial neurotoxicity (Jung et al., 2000;
Zujovic et al., 2000; Mizuno et al., 2003; Cardona et al., 2006).

Frontiers in Aging Neuroscience | www.frontiersin.org 2 May 2020 | Volume 12 | Article 69

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-00069 May 8, 2020 Time: 15:47 # 3

Pak et al. Sleep Disturbances, MCI and AD

Plasma levels of CX3CL1 have been shown to be elevated in
patients with AD and more so in patients with MCI, possibly due
to increased inflammation preceding AD pathology (Kim et al.,
2008). Additionally, postmortem analysis shows significantly
lower levels of CX3CL1 in the hippocampus of AD brains
compared to controls without dementia (Cho et al., 2011).
Microglia, particularly those that have been activated, exhibit
GABAB receptors (Kuhn et al., 2004). This is important as
GABA decreases the release of pro-inflammatory cytokines IL-
6 and TNF-α by activating astrocytes and microglia through this
receptor (Lee et al., 2011).

Astrocytes reside in the extracellular space (ECS) of the CNS
and are also involved in the clearance of metabolites from the
brain. They are responsible for clearing Aβ from parenchyma
through the recently described glymphatic system (Jessen et al.,
2015). There is a 60% increase in the ECS during sleep, allowing
increased flow of interstitial fluid from para-arterial to para-
venous space that doubles the rate of Aβ clearance at night
(Cedernaes et al., 2017; Mander et al., 2016). In order for this
to occur, low adrenergic input is required to the area. The locus
coeruleus (LC), best known for its role in alertness and attention
and as a center of noradrenergic neurons, acts as the main driver
of metabolite clearance in the brain by reducing its adrenergic
input (Mander et al., 2016). Any activation of the LC during the
night, which occurs in obstructive sleep apnea (OSA), may affect
its role in sleep-mediated memory consolidation (Twigg et al.,
2010; Rosenzweig et al., 2016). Conversely, normal activation of
adrenergic neurons in the LC during the day is neuroprotective,
as noradrenaline (NA) is anti-inflammatory and anti-oxidative
(Heneka et al., 2015). NA is also responsible for reducing TNF-α
expression in microglia, interferon γ-induced expression of class
II antigens in astrocytes, and cytokine induction of type 2 nitric
oxide synthase expression in astrocytes and microglia (Feinstein
et al., 2016). The number of neurons in the LC naturally declines
with age, but this occurs more significantly in individuals with
AD (Robinson, 1975; Heneka et al., 2015). In fact, this reduction
in LC neurons is significantly correlated with the number of
plaques, the number of neurofibrillary tangles, and the severity
of dementia (Bondareff et al., 1981, 1987). It is hypothesized
that increased damage to the LC in AD pathology results from
hyperphosphorylated tau, which appears before tau lesions or Aβ

accumulation in the cortex (Braak et al., 2011).
Melatonin, a major hormone controlling circadian rhythm

and the sleep–wake cycle, is decreased significantly in the
cerebrospinal fluid (CSF) and blood of individuals with AD
(Zhou et al., 2003; Wu and Swaab, 2005). Additionally, reductions
of MT2, a melatonin receptor, are found in the hippocampus of
AD patients (Savaskan et al., 2005, 2002). In addition to its role
in the sleep–wake cycle, melatonin inhibits tau phosphorylation
(Deng et al., 2005) and reduces the release of APP from neurons
(Lahiri, 1999), both hallmarks of AD. Melatonin also plays an
anti-inflammatory role by inhibiting the activation of nuclear
factor kappa B (NF-κB) (Tamura et al., 2009) and reducing
adherence of leukocytes and neutrophils to endothelium,
preventing vascular permeability (Lotufo et al., 2006). Melatonin
is released from the pineal gland, which can be reduced in
volume or undergo calcification in AD (Bumb et al., 2013, 2014).

When Aβ interacts with toll-like receptors in the pineal gland,
subsequent release of pro-inflammatory factors inhibit synthesis
of melatonin through the NF-κB pathway (Cecon et al., 2015).
These pineal gland volume and function changes in AD are
also significantly associated with sleep disturbances and insomnia
(Matsuoka et al., 2017).

TNF-α plays an important role as a pro-inflammatory
cytokine and is elevated in the brains and plasma of individuals
with AD (Chang et al., 2017). TNF-α binds to TNFR1 or
TNFR2 to activate a cytokine cascade. Overexpression of
TNFR1 in the hippocampi of mice resulted in activation
of Aβ-induced apoptosis, while mice lacking the receptor
exhibited reduced microglial activation and improved cognition
performance (He et al., 2007; Li et al., 2004). As noted above,
microglia produce TNF-α in response to Aβ. Perpetuating
this cycle, TNF-α can then promote Aβ production through
upregulation of β-secretase (Liao et al., 2004). IL-1β is another
pro-inflammatory cytokine involved in Aβ plaque development
that is found in increased levels in the hippocampus and
prefrontal cortex of individuals with AD (Cacabelos et al.,
1994). IL-6 is a cytokine whose overproduction can lead
to neuroinflammation (Rothaug et al., 2016). Elevated levels
in midlife predict cognitive decline 10 years later and are
elevated in the CSF and plasma of individuals with AD (Blum-
Degena et al., 1995; Singh-Manoux et al., 2014). In addition
to its release by glial cells in response to Aβ, activation
of IL-6 receptors enhance APP transcription and expression
(Chong, 1997; Ringheim et al., 1998). Elevated levels of
these pro-inflammatory cytokines have also been linked to
sleep disturbances, such as excessive daytime sleepiness (EDS),
obstructive sleep apnea, and narcolepsy (Vgontzas et al., 1997;
Okun et al., 2004). Studies simulating acute sleep loss in humans
have shown TNF-α, IL-6, and cellular adhesion molecules to be
dysregulated (Vgontzas et al., 2004; Frey et al., 2007; Chennaoui
et al., 2011). Even modest sleep restriction is associated with
secretion of IL-6 in both men and women and TNF-α in men
(Mullington et al., 2016).

It is believed that impaired permeability of the blood–brain
barrier (BBB) may be related to neuroinflammation and sleep
disruption (Atienza et al., 2018). Specifically, chronic restriction
of either total sleep time (He et al., 2014) or REM sleep
results in a reduction in BBB integrity (Montagne et al., 2015).
Sleep fragmentation may lead to age-related disruption of the
BBB’s ability to block proinflammatory compounds (Atienza
et al., 2018). Increased BBB permeability in aging may augment
low-grade inflammation on cerebral integrity and mediate the
relationship between disrupted sleep, dysfunctional adiposity,
and impaired cognition (Atienza et al., 2018). These results
suggest that disturbed sleep may play a causative role in
neuroinflammation and subsequent cognitive decline.

Existing human studies on microglia and neuroinflammation
are limited in that they do not measure sleep explicitly
(Schuitemaker et al., 2009; Olsson et al., 2013) but may
hold relevance for possible causal pathways linking poor
sleep to cognitive decline. CSF YKL-40, a glycoprotein
and biomarker of glial inflammation, is associated with a
cerebral structural signature distinct from that related to p-tau
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neurodegeneration at the earliest stages of cognitive decline due
to AD (Gispert et al., 2016). In order to investigate if microglial
markers could differentiate between AD and controls, and
secondly between stable MCI and those progressing to AD, the
Olsson et al. study quantified YKL-40 and sCD14 in CSF from
96 AD patients, 65 healthy controls, and 170 patients with MCI
from baseline and over 5.7 years (Olsson et al., 2013). YKL-40,
and not sCD14, was significantly elevated in AD compared
with healthy controls (p = 0.003). Furthermore, according to
the National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA) (Olsson et al.,
2013), YKL-40 and sCD14 were increased in MCI patients who
converted to vascular dementia (VaD) (p = 0.029 and p = 0.008),
but not to AD. However, when stratified according to CSF
levels of tau and Aβ42, YKL-40 was elevated in those with an
AD-indicative profile compared with stable MCI with a normal
profile (p = 0.037). In addition, YKL-40 and sCD14 were very
stable in AD patients with strong correlation between time-
points (r = 0.94, p = 3.4 × 10−25; r = 0.77, p = 2.0 × 10−11)
and the cortical damage marker T-tau (Olsson et al., 2013).
Thus, microglial markers appear stable for monitoring CNS
inflammation and microglia activation in clinical trials (Olsson
et al., 2013). Moreover, YKL-40 differentiates between AD and
controls, between stable MCI to AD, and those that convert to
AD and VaD. In order to clarify the role of disturbed sleep and its
impact on neuroinflammation, it will be important to measure
sleep explicitly in future studies.

Studies conducted in human subjects have demonstrated that
neuroinflammation, which includes microglia activation and
increases in the levels of pro-inflammatory cytokines in the
brain, may lead to cognitive function decline (Schuitemaker
et al., 2009). Schuitemaker et al. (2009) conducted a study
examining levels of pro-inflammatory cytokines in patients
with MCI and probable AD. In this study, 145 subjects had
probable AD and 67 had MCI. Patients were diagnosed with
MCI according to Petersen et al. (1999): failing in one or
more cognitive domains or a greater cognitive decline than that
expected for the person’s age or education but not interfering
notably with daily activities (Petersen et al., 1999). Patients were
diagnosed with probable AD according to McKhann et al. (1984):
the gradual worsening of specific cognitive functions such as
language, motor skills, and perception (McKhann et al., 1984).
The MCI patients were further classified as having either a
low-risk or high-risk for AD according to their Aβ42 and tau
levels in CSF, with cut-off values from previously published
work (Schoonenboom et al., 2005). High risk CSF consisted
of Aβ42 ≤ 494 pg/mL and tau > 356 pg/mL and low risk
CSF consisted of Aβ42 > 494 pg/mL and tau > 356 pg/mL.
CSF and serum CRP levels were significantly higher in MCI
compared to AD patients after adjustment for age, APOE ε4
genotype, and cardiovascular diseases. This difference remained
present in patients with a low-risk biomarker profile for AD after
adjustment for the abovementioned covariates. CSF IL-6 levels
were also significantly higher in MCI patients with a low-risk
CSF profile (Schuitemaker et al., 2009). Again, these studies have
not assessed sleep per se but do suggest that associations between

cognitive impairment and sleep noted in the literature may well
be reflecting such mediational effects.

SLEEP DISTURBANCES IN
ALZHEIMER’S

The adverse effects of sleep on the production and clearance
of proteins have been seen in neurodegenerative diseases such
as AD (Ju et al., 2017; Olsson et al., 2018; Shokri-Kojori et al.,
2018). Sleep has a role in regulating neuronal activity that affects
the release of glymphatic proteins, Aβ, and τ (Huang et al.,
2012). The brain relies on the glymphatic clearance pathway
to remove these waste materials (Xie et al., 2013). Studies have
shown positive associations between sleep deprivation, OSA, and
increased efflux of these proteins in the brain. Spira et al. (2013)
found that older adults with shorter sleep duration have an
increase in Aβ (Spira et al., 2013). Another study conducted
with healthy volunteers revealed that a night of total sleep
deprivation led to a physiological increase in cerebral Aβ42,
an isoform of Aβ (Ooms et al., 2014). A 2-year prospective
longitudinal study conducted in community-dwelling healthy
older adults found that OSA was associated with markers of
increased amyloid burden (Sharma et al., 2018). A study of
OSA patients from the Korean Genome and Epidemiology Study
revealed significant Pittsburgh compound B (PiB) deposition
compared to controls at the right posterior cingulate gyrus
and the right temporal cortex; there was no area of higher
uptake in the controls compared with the OSA group (Yun
et al., 2017). The study found that OSA accelerates amyloid
deposition, contributing to the development or progression of
AD (Yun et al., 2017).

Clarifying the underlying causes of sleep disturbances in AD
can help to improve quality of life and understanding of disease
progression. A prior study by Lee et al. (2007) investigating
whether reports of daytime sleepiness in AD were correlated with
lower functional status showed that EDS is linked to lower quality
of life in AD subjects (Lee et al., 2007). EDS has been reported
to range from 44.5 (Guarnieri et al., 2012) to 52.1% (Park et al.,
2011) in AD patients. Despite this high prevalence, there is a lack
of research on the mechanistic causes of sleepiness in AD, which
will have important implications for improving quality of life and
disease progression.

Recent research reveals a correlation between self-reported
EDS and Aβ deposition in cognitively normal subjects (Carvalho
et al., 2018; Spira et al., 2018). Spira et al. (2018) showed
that EDS is associated with more than 2.5 times the odds of
Aβ deposition at follow-up 15.7 years later in 124 cognitively
normal subjects (Spira et al., 2018). However, they did not
look at objectively measured sleepiness and did not adequately
control for variables such as sleep quality, which may be linked
to higher CSF Aβ (Ooms et al., 2014); sleep duration, which
may influence Aβ accumulation (Spira et al., 2013); or sleep
apnea, which is linked to sleepiness and may influence Aβ

(Spira et al., 2014; Bu et al., 2015). Another study of 2,172
subjects found that baseline EDS is associated with a longitudinal
increase in Aβ accumulation [measured by Pittsburgh compound
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B positron emission tomography (PiB-PET)] in elderly persons
without dementia (Carvalho et al., 2018). One study of 1,041
non-demented participants over 65 years found that increased
daytime sleepiness and sleep inadequacy was a risk factor for
development of dementia, which occurred in 78 participants
over the following 3 years (Tsapanou et al., 2015). Additionally,
increased Aβ deposition in the brainstems of patients with
more frequent nocturnal awakenings is associated with cognitive
impairment (You et al., 2019). Prior studies have confirmed this
link between poor sleep and/or sleep disturbance and cognitive
impairment (Blackwell et al., 2006; Tworoger et al., 2006; Xu
et al., 2011; Yaffe et al., 2011). Aβ deposition as a result of
less adequate sleep, more sleep problems, and greater daytime
somnolence has been reported in AD-sensitive brain regions and
is associated with greater AD pathology (Sprecher et al., 2015,
2017). This relationship between sleep and Aβ accumulation
has also been demonstrated in subjects with pre-clinical AD (Ju
et al., 2013). A cross-sectional study of 145 cognitively normal
individuals (half of which had a parental history of late-onset
AD) measured sleep quality using wrist actigraphy and Aβ levels
in CSF samples (Ju et al., 2013). 22% of the sample met their
definition of “preclinical” AD, in which CSF Aβ42 levels were
500 pg/mL or less. This group experienced worse sleep quality
and more frequent napping (Ju et al., 2013).

The apolipoprotein (APOE) ε4 allele significantly increases
one’s risk for developing AD. One copy of the allele can
increase risk of developing AD by nearly threefold, while two
alleles may increase one’s risk by 8–15 times (Corder et al.,
1993). APOE ε4 has also been linked to sleep disturbances.
For example, Koo et al. (2019) showed that carriers of the
gene more frequently experienced disrupted sleep as compared
to non-carriers (Koo et al., 2019). Sleep quality measured by
polysomnography (PSG) and wrist actigraphy was also shown
to be lower in individuals with APOE ε4 as compared to non-
carriers (Drogos et al., 2016). Additionally, APOE ε4 has been
linked to an increased risk of developing sleep apnea (Kadotani
et al., 2001; Gottlieb et al., 2004).

SLEEP DISTURBANCES IN MCI

Sleep disturbances are not restricted to those with AD but are
also prevalent in patients with MCI (da Silva, 2015). MCI is
viewed as a transitional stage between normal decline of cognitive
aging to dementia, which is a general term for loss of memory
and other cognitive abilities severe enough to interfere with
daily life (Muangpaisan et al., 2008). The specific transition
between normal aging and MCI can be subtle and the distinction
between MCI and very early dementia is challenging (da Silva,
2015). Patients affected with this condition have a higher
conversion rate to AD, with an estimated average rate of 10–
15% annually (Muangpaisan et al., 2008). MCI patients may show
intermediate levels of electroencephalographically (EEG) defined
sleep instability relative to AD patients (Maestri et al., 2015).
Sleep disturbance is prevalent and may be predictive of cognitive
decline in older adults and in those with neurodegenerative
disorders (da Silva, 2015). Though these studies suggest linkage

between sleep disturbance and MCI, the underlying mechanisms
of sleep disturbances remain unclear.

A prior small case-control study of 16 older adults and
8 MCI subjects found that amnesiac MCI (aMCI) patients
had lower delta and theta power during non-REM sleep and
spent less time in slow-wave sleep. This is concerning since
the sleep changes common in aMCI may interfere with sleep-
dependent memory consolidation (Westerberg et al., 2012).
Brayet et al. (2016) reported slower EEG frequencies during REM,
particularly for amnestic- relative to non-amnestic MCI (Brayet
et al., 2016). Additionally, at least one study has indicated that
the associations between disrupted sleep and impaired cognition
in MCI may be, at least in part, moderated by APOE genotype
(Hita-Yanez et al., 2012).

INTEGRATION OF EVIDENCE:
NEUROINFLAMMATION AS A MEDIATOR
OF THE ASSOCIATION OF SLEEP
DISTURBANCE WITH AD

We propose neuroinflammation as the mediator between AD
and sleep disturbance. AD and sleep disturbance, as described
in Figure 1. Evidence has accumulated linking sleep disturbance
to Aβ deposits in the brain, particularly in regions that
Aβ is typically found in AD. Aβ also serves as a target
of inflammatory response, attracting microglia that release
cytokines, interleukins, and other potentially cytotoxic molecules.
Other pathological changes in melatonin and NA release, both
serving roles in sleep-wake neural circuitry and functioning in
anti-inflammatory responses, reduce the brain’s ability to respond
to inflammation generated by Aβ deposition. Sleep disturbances
also independently promote a rise in inflammatory cytokines and
interleukins and are separately linked to cognitive decline and
AD. Fewer studies, however, have examined all three outcomes –
AD, sleep disturbance, and inflammatory markers – within a
human population. Most have addressed only one or two of these
relationships at a time.

Two studies have examined all three outcomes within mouse
models. Ni et al. (2019) studied APP knock-in (APP-KI) and
wild-type (WT) mice injected with an agonist for REV-ERB
designed to reduce expression of BMAL1, a central clock
gene (Ni et al., 2019). This disruption of CLOCK/BMAL1-
driven transcriptional loops impaired microglia in APP-KI
mice. This led to NF-κB activation, increasing expression of
pro-inflammatory genes (TNF-α, IL-1β, and IL-6) (Ni et al.,
2019). This study demonstrates that clock gene disturbance
in microglia is involved in early onset of AD by inducing
chronic neuroinflammation (Ni et al., 2019). Thus, disturbed
sleep and its subsequent triggering of inflammatory responses
may play a critical role in AD pathology development.
Cecon et al. (2015) also studied these outcomes in a mouse
model. They treated rat pineal glands with Aβ1−40 or Aβ1−42
before inducing melatonin synthesis with NA (Cecon et al.,
2015). They found that Aβ interfered with melatonin binding.
Additionally, 52 inflammatory genes were upregulated in
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FIGURE 1 | A central pathway through which sleep disturbance and AD pathology is connected is through neuroinflammation caused by Aβ deposition (Heneka
et al., 2015). Microglia and astrocytes are both activated and release inflammatory factors in response to Aβ (Krabbe et al., 2013). Additionally, disruption of internal
clock gene function in microglia causes an increase in their release (Ni et al., 2019). AD pathology may damage neural pathways and lead to calcification within the
pineal gland (Bumb et al., 2013, 2014). This leads to a reduction in the amount of melatonin which in turn causes sleep disturbance (Matsuoka et al., 2017). This
relationship is bidirectional, as sleep disturbance is linked to disruptions of melatonin release (Wu and Swaab, 2005). Melatonin has anti-inflammatory properties,
reducing the release of these factors by attenuating the release of NF-κB (Cecon et al., 2015). Additionally, melatonin reduces amyloid precursor protein (APP), thus
protecting against Aβ creation (Lahiri, 1999). However, Aβ, by binding toll-like receptors of the pineal gland, may block melatonin release, leading to sleep
disturbance in AD (Cecon et al., 2015). Noradrenaline, released from the locus coeruleus (LC) also plays an anti-inflammatory role, as the neurotransmitter can
reduce the release of inflammatory factors (Feinstein et al., 2016). Low adrenergic input from the LC to the extracellular space (ECS, location of astrocytes) during
sleep is required to allow Aβ and other metabolite clearance to occur (Mander et al., 2016). The LC-noradrenergic system activates with cortico-hippocampal
neuronal replay during NREM EEG slow oscillations, suggesting a prominent role in sleep dependent memory consolidation (Rosenzweig et al., 2016; Twigg et al.,
2010). Thus, inappropriate activation of the LC may compromise its role in memory consolidation during sleep and reduce Aβ clearance, leading to AD pathology.
Finally, sleep disturbance has been independently linked to the release of inflammatory factors and increased blood brain barrier (BBB) permeability (He et al., 2014;
Montagne et al., 2015). Sleep disturbance is correlated with increased Aβ deposition and may be occurring through any of the above pathways (Ju et al., 2017;
Ooms et al., 2014; Spira et al., 2013).

response to Aβ. Through the NF-κB pathway, these inflammatory
factors inhibited synthesis of melatonin, reducing production
of the hormone by 75% (Cecon et al., 2015). This study
demonstrates a way in which Aβ, a hallmark of AD, may
interfere with sleep regulation through disruption of melatonin
via inflammatory pathways.

We have included a summary of the key human and animal
studies discussed above in Table 1. It is unclear whether sleep
disturbance leads to AD through inflammation or whether
AD pathology leads to inflammation and subsequent sleep
disturbance. The amyloid cascade hypothesis has provided a
platform for researchers to target Aβ in hopes of developing
effective AD drugs. Given that Aβ deposition triggers

inflammation in the brain, it is hypothesized that treatment
of Aβ would solve both problems. However, clinical trials in
this area have been lacking. Others have instead focused on
the brain’s inflammatory response to Aβ, specifically whether
non-steroidal anti-inflammatory drugs (NSAIDs) may reduce
AD risk or stop progression of the disease. These studies have
also been inconclusive (Miguel-Álvarez et al., 2015). Largely
missing from the literature are human studies examining all three
outcomes: AD pathology, sleep disturbance, and inflammatory
markers. Additionally, randomized studies examining the
effect of treating sleep disturbance on AD risk would aid in
determining the temporal relationship between AD and sleep
(Irwin and Vitiello, 2019).
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CONCLUSION

Sleep disturbances are common in both MCI and AD. There
is a need to better evaluate the role of neuroinflammation
associated with sleep disturbance in the progression of MCI
and AD. There are methodological limitations of existing
studies that must be acknowledged. Results are supported by
a small number of studies, have small sample sizes, often
do not differentiate between different subgroups of MCI
(amnesiac versus non-amnesiac), and do not consistently
address confounders, including several common comorbidities
in older adults such as depression or OSA, which could also
negatively impact sleep quality and AD biomarkers. Large
scale human studies with more comprehensive and objective
sleep measures are needed. Future studies should consider
the important biological/metabolic signatures associated with
sleep disturbance and neuroinflammation, and subsequent

cognitive decline with age. From a clinical perspective,
a better understanding of the associations between sleep
disturbances, cognitive integrity, and brain integrity in older
adults may allow for more targeted preventive strategies that
promote healthy aging.
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